期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Adsorption Characteristics of Remazol Black B on Anoxic Sludge
1
作者 黄满红 陈亮 +1 位作者 陈东辉 陈超鹏 《Journal of Donghua University(English Edition)》 EI CAS 2009年第2期159-163,共5页
The adsorption characteristics of Remazol Black B on anoxic sludge were investigated.The parameters,such as initial pH,sulphate concentration,and temperature,affecting the dye adsorption were studied.The adsorption da... The adsorption characteristics of Remazol Black B on anoxic sludge were investigated.The parameters,such as initial pH,sulphate concentration,and temperature,affecting the dye adsorption were studied.The adsorption data were analyzed with three adsorption isotherm models,namely Langmuir,Freudlich,and linear partition.The results showed that adsorption of Remazol Black B on the sterilized sludge reached equilibrium in 4 h.It also indicated that pH had significant effect on anoxic sludge adsorption behavior.The adsorption capacity of anoxic sludge decreased with the increase of pH value and the maximum adsorption capacity of dyes occurred at pH=3.The adsorptive capacities increased with the decrease of temperature and increase of sulphate concentration.Results also indicated that the adsorption equilibrium of Remazol Black B on anoxic sludge could be well fitted by Freundlich model. 展开更多
关键词 ADSORPTION Remazol Black B anoxic sludge
下载PDF
Effects of shear force on formation and properties of anoxic granular sludge in SBR 被引量:2
2
作者 Xinyan ZHANG Binbin WANG +2 位作者 Qingqing HAN Hongmei ZHAO Dangcong PENG 《Frontiers of Environmental Science & Engineering》 SCIE EI CAS CSCD 2013年第6期896-905,共10页
This paper reports the effects of shear force on anoxic granular sludge in sequencing batch reactors (SBR). The study was carried out in two SBRs (SBR1 and SBR2) in which sodium acetate (200mg COD·L^-1) was... This paper reports the effects of shear force on anoxic granular sludge in sequencing batch reactors (SBR). The study was carried out in two SBRs (SBR1 and SBR2) in which sodium acetate (200mg COD·L^-1) was used as the sole substrate and sodium nitrate (40 mgNO3-N·L^-1) was employed as the electron acceptor. The preliminary objective of this study was to cultivate anoxic granules in the SBR in order to investigate the effects of shear force on the formation of anoxic granular sludge and to compare the properties of anoxic sludge in the SBR. This study reports new results for the values of average velocity gradient, a measure of the applied shear force, which was varied in the two SBRs (3.79 s^-1 and 9.76 s^-1 for SBR1 and SBR2 respectively). The important findings of this research highlight the dual effects of shear force on anoxic granules. A low shear force can produce large anoxic granules with high activity and poor settling ability, whereas higher shear forces produce smaller granules with better settling ability and lower activity. The results of this study show that the anoxic granulation is closely related to the strength of the shear force. For high shear force, this research demonstrated that: 1) granules with smaller diameters, high density and good settling ability were formed in the reactor, and 2) granular sludge formed faster than it did in the low shear force reactor (41days versus 76 days). Once a steady-state has been achieved, the nitrate and COD removal rates were found to be 98% and 80%, respectively. For low shear force, such as was applied in SBR1, this research demonstrated that: 1) the activity of anoxic granular sludge in low shear force was higher than that in high shear force, 2) higher amount of soluble microbial products (SMPs) were produced, and 3) large pores were observed inside the larger granules,which are beneficial for nitrogen gas diffusion. Electron microscopic examination of the anoxic granules in both reactors showed that the morphology of the granules was ellipsoidal with a clear outline. Coccus and rod-shaped bacteria were wrapped by filamentous bacteria on the surface of granule. 展开更多
关键词 DENITRIFICATION anoxic granular sludge sequencing batch reactors (SBR) shear force
原文传递
The first metagenome of activated sludge from full-scale anaerobic/anoxic/oxic(A2O) nitrogen and phosphorus removal reactor using Illumina sequencing 被引量:22
3
作者 Mei Tian Fangqing Zhao +5 位作者 Xin Shen Kahou Chu Jinfeng Wang Shuai Chen Yan Guo Hanhu Liu 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2015年第9期181-190,共10页
The anaerobic/anoxic/oxic(A2O) process is globally one of the widely used biological sewage treatment processes. This is the first report of a metagenomic analysis using Illumina sequencing of full-scale A2O sludge ... The anaerobic/anoxic/oxic(A2O) process is globally one of the widely used biological sewage treatment processes. This is the first report of a metagenomic analysis using Illumina sequencing of full-scale A2O sludge from a municipal sewage treatment plant.With more than 530,000 clean reads from different taxa and metabolic categories, the metagenome results allow us to gain insight into the functioning of the biological community of the A2O sludge. There are 51 phyla and nearly 900 genera identified from the A2O activated sludge ecosystem. Proteobacteria, Bacteroidetes, Nitrospirae and Chloroflexi are predominant phyla in the activated sludge, suggesting that these organisms play key roles in the biodegradation processes in the A2O sewage treatment system.Nitrospira, Thauera, Dechloromonas and Ignavibacterium, which have abilities to metabolize nitrogen and aromatic compounds, are most prevalent genera. The percent of nitrogen and phosphorus metabolism in the A2O sludge is 2.72% and 1.48%, respectively. In the current A2O sludge, the proportion of Candidatus Accumulibacter is 1.37%, which is several times more than that reported in a recent study of A2O sludge. Among the four processes of nitrogen metabolism, denitrification related genes had the highest number of sequences(76.74%), followed by ammonification(15.77%), nitrogen fixation(3.88%) and nitrification(3.61%). In phylum Planctomycetes, four genera(Planctomyces, Pirellula, Gemmata and Singulisphaera) are included in the top 30 abundant genera, suggesting the key role of ANAMMOX in nitrogen metabolism in the A2O sludge. 展开更多
关键词 Metagenome Biodiversity Anaerobic/anoxic/oxic(A2O) Activated sludge Nitrogen metabolism ANAMMOX
原文传递
Effect of Mn^(2+)on the phosphorus removal and bioflocculation under anoxic condition 被引量:1
4
作者 Xiaohui Xu Lanhe Zhang +2 位作者 Xiangdong Zhang Xiaohui Guan Dezhou Wei 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2022年第5期37-46,共10页
Manganese ion(Mn^(2+))generated from metallurgical,steel making and chemical industries enters sewage treatment plants and affects the sludge activity and flocculation.The effect of Mn^(2+)on the removal of chemical o... Manganese ion(Mn^(2+))generated from metallurgical,steel making and chemical industries enters sewage treatment plants and affects the sludge activity and flocculation.The effect of Mn^(2+)on the removal of chemical oxygen demand(COD)and total phosphorus(TP)and sludge activity were investigated in anoxic zone of an anaerobic/anoxic/oxic(A2O)process.The compositions and structures of extracellular polymeric substances(EPS)were charac-terized using three-dimensional excitation emission matrix fluorescence spectroscopy(3D-EEM),X-ray photoelectron spectroscopy(XPS)and Fourier transform infrared spectroscopy(FTIR)to reveal the relationship among Mn^(2+),EPS and sludge flocculation.The results showed thatlow concentration of Mn^(2+)(<5 mg/L)improved removal efficiencies of COD and TP and increased the activity of alkaline phosphatase,acid phosphatase and dehydrogenase.Meanwhile,the addition of Mn^(2+)increased total EPS,sludge contact angle,Zeta potential and sludge particle size,and thus enhanced sludge flocculation.However,high concentration of Mn^(2+)(>10 mg/L)hindered microbial flocculation and reduced removal efficiencies of the pollutants.When Mn^(2+)was 5 mg/L,removal efficiencies of COD and TP reached 65%and 90%,respectively.Sludge flocculation was the best and SVI was 70.56 mL//g.The changes of Mn^(2+)concentration caused deviation of groups'compositions in LB-EPS and TB-EPS,where the main components were always protein(PN)and polysaccharide(PS).The addition of Mn^(2+)resulted in the degradation of humic acids.However,it did not give rise to significant morphology changes of EPS. 展开更多
关键词 Mn^(2+) WASTEWATER anoxic sludge Extracellular polymeric substances (EPS) FLOCCULATION
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部