期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
A Novel Bidirectional LSTM and Attention Mechanism Based Neural Network for Answer Selection in Community Question Answering 被引量:3
1
作者 Bo Zhang Haowen Wang +2 位作者 Longquan Jiang Shuhan Yuan Meizi Li 《Computers, Materials & Continua》 SCIE EI 2020年第3期1273-1288,共16页
Deep learning models have been shown to have great advantages in answer selection tasks.The existing models,which employ encoder-decoder recurrent neural network(RNN),have been demonstrated to be effective.However,the... Deep learning models have been shown to have great advantages in answer selection tasks.The existing models,which employ encoder-decoder recurrent neural network(RNN),have been demonstrated to be effective.However,the traditional RNN-based models still suffer from limitations such as 1)high-dimensional data representation in natural language processing and 2)biased attentive weights for subsequent words in traditional time series models.In this study,a new answer selection model is proposed based on the Bidirectional Long Short-Term Memory(Bi-LSTM)and attention mechanism.The proposed model is able to generate the more effective question-answer pair representation.Experiments on a question answering dataset that includes information from multiple fields show the great advantages of our proposed model.Specifically,we achieve a maximum improvement of 3.8%over the classical LSTM model in terms of mean average precision. 展开更多
关键词 Question answering answer selection deep learning Bi-LSTM attention mechanisms
下载PDF
Attention-based encoder-decoder model for answer selection in question answering 被引量:11
2
作者 Yuan-ping NIE Yi HAN +2 位作者 Jiu-ming HUANG Bo JIAO Ai-ping LI 《Frontiers of Information Technology & Electronic Engineering》 SCIE EI CSCD 2017年第4期535-544,共10页
One of the key challenges for question answering is to bridge the lexical gap between questions and answers because there may not be any matching word between them. Machine translation models have been shown to boost ... One of the key challenges for question answering is to bridge the lexical gap between questions and answers because there may not be any matching word between them. Machine translation models have been shown to boost the performance of solving the lexical gap problem between question-answer pairs. In this paper, we introduce an attention-based deep learning model to address the answer selection task for question answering. The proposed model employs a bidirectional long short-term memory (LSTM) encoder-decoder, which has been demonstrated to be effective on machine translation tasks to bridge the lexical gap between questions and answers. Our model also uses a step attention mechanism which allows the question to focus on a certain part of the candidate answer. Finally, we evaluate our model using a benchmark dataset and the results show that our approach outperforms the existing approaches. Integrating our model significantly improves the performance of our question answering system in the TREC 2015 LiveQA task. 展开更多
关键词 Question answering answer selection ATTENTION Deep learning
原文传递
Research on the Algorithm of Avionic Device Fault Diagnosis Based on Fuzzy Expert System 被引量:6
3
作者 LI Jie SHEN Shi-tuan 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2007年第3期223-229,共7页
Based on the fuzzy expert system fault diagnosis theory, the knowledge base architecture and inference engine algorithm are put forward for avionic device fault diagnosis. The knowledge base is constructed by fault qu... Based on the fuzzy expert system fault diagnosis theory, the knowledge base architecture and inference engine algorithm are put forward for avionic device fault diagnosis. The knowledge base is constructed by fault query network, of which the basic ele- ment is the test-diagnosis fault unit. Every underlying fault cause's membership degree is calculated using fuzzy product inference algorithm, and the fault answer best selection algorithm is developed, to which the deep knowledge is applied. Using some examples the proposed algorithm is analyzed for its capability of synthesis diagnosis and its improvement compared to greater membership degree first principle. 展开更多
关键词 fuzzy expert system fault query network fault answer best selection algorithm fuzzy theory test-diagnosis fault unit
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部