期刊文献+
共找到9,203篇文章
< 1 2 250 >
每页显示 20 50 100
An Improved Image Steganography Security and Capacity Using Ant Colony Algorithm Optimization
1
作者 Zinah Khalid Jasim Jasim Sefer Kurnaz 《Computers, Materials & Continua》 SCIE EI 2024年第9期4643-4662,共20页
This advanced paper presents a new approach to improving image steganography using the Ant Colony Optimization(ACO)algorithm.Image steganography,a technique of embedding hidden information in digital photographs,shoul... This advanced paper presents a new approach to improving image steganography using the Ant Colony Optimization(ACO)algorithm.Image steganography,a technique of embedding hidden information in digital photographs,should ideally achieve the dual purposes of maximum data hiding and maintenance of the integrity of the cover media so that it is least suspect.The contemporary methods of steganography are at best a compromise between these two.In this paper,we present our approach,entitled Ant Colony Optimization(ACO)-Least Significant Bit(LSB),which attempts to optimize the capacity in steganographic embedding.The approach makes use of a grayscale cover image to hide the confidential data with an additional bit pair per byte,both for integrity verification and the file checksumof the secret data.This approach encodes confidential information into four pairs of bits and embeds it within uncompressed grayscale images.The ACO algorithm uses adaptive exploration to select some pixels,maximizing the capacity of data embedding whileminimizing the degradation of visual quality.Pheromone evaporation is introduced through iterations to avoid stagnation in solution refinement.The levels of pheromone are modified to reinforce successful pixel choices.Experimental results obtained through the ACO-LSB method reveal that it clearly improves image steganography capabilities by providing an increase of up to 30%in the embedding capacity compared with traditional approaches;the average Peak Signal to Noise Ratio(PSNR)is 40.5 dB with a Structural Index Similarity(SSIM)of 0.98.The approach also demonstrates very high resistance to detection,cutting down the rate by 20%.Implemented in MATLAB R2023a,the model was tested against one thousand publicly available grayscale images,thus providing robust evidence of its effectiveness. 展开更多
关键词 STEGANOGRAPHY STEGANALYSIS capacity optimization ant colony algorithm
下载PDF
MOALG: A Metaheuristic Hybrid of Multi-Objective Ant Lion Optimizer and Genetic Algorithm for Solving Design Problems
2
作者 Rashmi Sharma Ashok Pal +4 位作者 Nitin Mittal Lalit Kumar Sreypov Van Yunyoung Nam Mohamed Abouhawwash 《Computers, Materials & Continua》 SCIE EI 2024年第3期3489-3510,共22页
This study proposes a hybridization of two efficient algorithm’s Multi-objective Ant Lion Optimizer Algorithm(MOALO)which is a multi-objective enhanced version of the Ant Lion Optimizer Algorithm(ALO)and the Genetic ... This study proposes a hybridization of two efficient algorithm’s Multi-objective Ant Lion Optimizer Algorithm(MOALO)which is a multi-objective enhanced version of the Ant Lion Optimizer Algorithm(ALO)and the Genetic Algorithm(GA).MOALO version has been employed to address those problems containing many objectives and an archive has been employed for retaining the non-dominated solutions.The uniqueness of the hybrid is that the operators like mutation and crossover of GA are employed in the archive to update the solutions and later those solutions go through the process of MOALO.A first-time hybrid of these algorithms is employed to solve multi-objective problems.The hybrid algorithm overcomes the limitation of ALO of getting caught in the local optimum and the requirement of more computational effort to converge GA.To evaluate the hybridized algorithm’s performance,a set of constrained,unconstrained test problems and engineering design problems were employed and compared with five well-known computational algorithms-MOALO,Multi-objective Crystal Structure Algorithm(MOCryStAl),Multi-objective Particle Swarm Optimization(MOPSO),Multi-objective Multiverse Optimization Algorithm(MOMVO),Multi-objective Salp Swarm Algorithm(MSSA).The outcomes of five performance metrics are statistically analyzed and the most efficient Pareto fronts comparison has been obtained.The proposed hybrid surpasses MOALO based on the results of hypervolume(HV),Spread,and Spacing.So primary objective of developing this hybrid approach has been achieved successfully.The proposed approach demonstrates superior performance on the test functions,showcasing robust convergence and comprehensive coverage that surpasses other existing algorithms. 展开更多
关键词 Multi-objective optimization genetic algorithm ant lion optimizer METAHEURISTIC
下载PDF
Bio-Inspired Intelligent Routing in WSN: Integrating Mayfly Optimization and Enhanced Ant Colony Optimization for Energy-Efficient Cluster Formation and Maintenance
3
作者 V.G.Saranya S.Karthik 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第10期127-150,共24页
Wireless Sensor Networks(WSNs)are a collection of sensor nodes distributed in space and connected through wireless communication.The sensor nodes gather and store data about the real world around them.However,the node... Wireless Sensor Networks(WSNs)are a collection of sensor nodes distributed in space and connected through wireless communication.The sensor nodes gather and store data about the real world around them.However,the nodes that are dependent on batteries will ultimately suffer an energy loss with time,which affects the lifetime of the network.This research proposes to achieve its primary goal by reducing energy consumption and increasing the network’s lifetime and stability.The present technique employs the hybrid Mayfly Optimization Algorithm-Enhanced Ant Colony Optimization(MFOA-EACO),where the Mayfly Optimization Algorithm(MFOA)is used to select the best cluster head(CH)from a set of nodes,and the Enhanced Ant Colony Optimization(EACO)technique is used to determine an optimal route between the cluster head and base station.The performance evaluation of our suggested hybrid approach is based on many parameters,including the number of active and dead nodes,node degree,distance,and energy usage.Our objective is to integrate MFOA-EACO to enhance energy efficiency and extend the network life of the WSN in the future.The proposed method outcomes proved to be better than traditional approaches such as Hybrid Squirrel-Flying Fox Optimization Algorithm(HSFLBOA),Hybrid Social Reindeer Optimization and Differential Evolution-Firefly Algorithm(HSRODE-FFA),Social Spider Distance Sensitive-Iterative Antlion Butterfly Cockroach Algorithm(SADSS-IABCA),and Energy Efficient Clustering Hierarchy Strategy-Improved Social Spider Algorithm Differential Evolution(EECHS-ISSADE). 展开更多
关键词 Enhanced ant colony optimization mayfly optimization algorithm wireless sensor networks cluster head base station(BS)
下载PDF
Improved ant colony optimization for multi-depot heterogeneous vehicle routing problem with soft time windows 被引量:10
4
作者 汤雅连 蔡延光 杨期江 《Journal of Southeast University(English Edition)》 EI CAS 2015年第1期94-99,共6页
Considering that the vehicle routing problem (VRP) with many extended features is widely used in actual life, such as multi-depot, heterogeneous types of vehicles, customer service priority and time windows etc., a ... Considering that the vehicle routing problem (VRP) with many extended features is widely used in actual life, such as multi-depot, heterogeneous types of vehicles, customer service priority and time windows etc., a mathematical model for multi-depot heterogeneous vehicle routing problem with soft time windows (MDHVRPSTW) is established. An improved ant colony optimization (IACO) is proposed for solving this model. First, MDHVRPSTW is transferred into different groups according to the nearest principle, and then the initial route is constructed by the scanning algorithm (SA). Secondly, genetic operators are introduced, and crossover probability and mutation probability are adaptively adjusted in order to improve the global search ability of the algorithm. Moreover, the smooth mechanism is used to improve the performance of the ant colony optimization (ACO). Finally, the 3-opt strategy is used to improve the local search ability. The proposed IACO was tested on three new instances that were generated randomly. The experimental results show that IACO is superior to the other three existing algorithms in terms of convergence speed and solution quality. Thus, the proposed method is effective and feasible, and the proposed model is meaningful. 展开更多
关键词 vehicle routing problem soft time window improved ant colony optimization customer service priority genetic algorithm
下载PDF
Feature Extraction of Stored-grain Insects Based on Ant Colony Optimization and Support Vector Machine Algorithm 被引量:1
5
作者 胡玉霞 张红涛 +1 位作者 罗康 张恒源 《Agricultural Science & Technology》 CAS 2012年第2期457-459,共3页
[Objective] The aim was to study the feature extraction of stored-grain insects based on ant colony optimization and support vector machine algorithm, and to explore the feasibility of the feature extraction of stored... [Objective] The aim was to study the feature extraction of stored-grain insects based on ant colony optimization and support vector machine algorithm, and to explore the feasibility of the feature extraction of stored-grain insects. [Method] Through the analysis of feature extraction in the image recognition of the stored-grain insects, the recognition accuracy of the cross-validation training model in support vector machine (SVM) algorithm was taken as an important factor of the evaluation principle of feature extraction of stored-grain insects. The ant colony optimization (ACO) algorithm was applied to the automatic feature extraction of stored-grain insects. [Result] The algorithm extracted the optimal feature subspace of seven features from the 17 morphological features, including area and perimeter. The ninety image samples of the stored-grain insects were automatically recognized by the optimized SVM classifier, and the recognition accuracy was over 95%. [Conclusion] The experiment shows that the application of ant colony optimization to the feature extraction of grain insects is practical and feasible. 展开更多
关键词 Stored-grain insects ant colony optimization algorithm Support vector machine Feature extraction RECOGNITION
下载PDF
基于知识迁移的Ant-Q算法 被引量:4
6
作者 王雪松 潘杰 程玉虎 《电子学报》 EI CAS CSCD 北大核心 2011年第10期2359-2365,共7页
常规Ant-Q算法计算复杂度随问题的规模呈现出阶乘级的增长,极大地抑制了算法的收敛速度,同时其仅关注单一任务本身,使得求出的解不具有可重用性,在处理一系列相关联任务时效率较低.为此,提出一种基于知识迁移的Ant-Q算法,通过贝叶斯理... 常规Ant-Q算法计算复杂度随问题的规模呈现出阶乘级的增长,极大地抑制了算法的收敛速度,同时其仅关注单一任务本身,使得求出的解不具有可重用性,在处理一系列相关联任务时效率较低.为此,提出一种基于知识迁移的Ant-Q算法,通过贝叶斯理论分析源任务与目标任务的相似率,并以此为权值确定各源任务的迁移样本数,然后将各源任务样本按迁移价值降序排列,筛选出有效迁移样本,指导Agent快速做出合理决策.在att532旅行商问题上的仿真结果表明,知识迁移能够有效降低目标任务的学习难度,从而快速找到问题的最优解. 展开更多
关键词 知识迁移 ant-Q算法 贝叶斯理论 样本筛选 旅行商问题
下载PDF
基于改进Ant-miner算法的分类规则挖掘 被引量:3
7
作者 肖菁 梁燕辉 《计算机工程》 CAS CSCD 2012年第17期162-165,共4页
为提高基于传统Ant-miner算法分类规则的预测准确性,提出一种基于改进Ant-miner的分类规则挖掘算法。利用样例在总样本中的密度及比例构造启发式函数,以避免在多个具有相同概率的选择条件下造成算法偏见。对剪枝规则按变异系数进行单点... 为提高基于传统Ant-miner算法分类规则的预测准确性,提出一种基于改进Ant-miner的分类规则挖掘算法。利用样例在总样本中的密度及比例构造启发式函数,以避免在多个具有相同概率的选择条件下造成算法偏见。对剪枝规则按变异系数进行单点变异,由此扩大规则的搜索空间,提高规则的预测准确度。在Ant-miner算法的信息素更新公式中加入挥发系数,使其更接近现实蚂蚁的觅食行为,防止算法过早收敛。基于UCI标准数据的实验结果表明,该算法相比传统Ant-miner算法具有更高的预测准确度。 展开更多
关键词 ant-miner算法 分类规则挖掘 数据挖掘 蚁群优化 规则修剪策略
下载PDF
一种基于AntNet改进的QoS路由算法 被引量:6
8
作者 潘达儒 袁艳波 《小型微型计算机系统》 CSCD 北大核心 2006年第7期1169-1174,共6页
对具有NP完全难度的网络状态动态变化下的路由问题,提出了一种基于蚁群网络(A n tnet)的蚁群优化分布式Q oS路由算法.算法的主要特点是:(1)采用了动态更新的概率表替代传统的路由表;(2)采用了智能的初始化方法;(3)采用了一种新颖的信息... 对具有NP完全难度的网络状态动态变化下的路由问题,提出了一种基于蚁群网络(A n tnet)的蚁群优化分布式Q oS路由算法.算法的主要特点是:(1)采用了动态更新的概率表替代传统的路由表;(2)采用了智能的初始化方法;(3)采用了一种新颖的信息素更新机制;(4)采用一种新的节点选择机制;(5)引入蚂蚁相遇机制.与标准的A n tN et相比,该算法具有更快的收敛速度和较好的吞吐能力.另外,算法同时考虑了满足Q oS度量和负载平衡等问题. 展开更多
关键词 蚁群优化算法 服务质量 路由算法 蚁群网络
下载PDF
TrANTHOCNET:信任性蚁群自组织路由算法 被引量:2
9
作者 刘衍珩 张婧 王健 《电子学报》 EI CAS CSCD 北大核心 2012年第2期319-326,共8页
移动自组网依靠多点协作完成路由任务,可信的路由协议需要节点之间建立一定的信任关系,但大多数信任路由模型只追求路由的信任性而忽略了健壮性.本文基于ANTHOCNET算法,设计了兼顾信任性和健壮性的TrANTHOCNET算法.引入模糊Petri网的形... 移动自组网依靠多点协作完成路由任务,可信的路由协议需要节点之间建立一定的信任关系,但大多数信任路由模型只追求路由的信任性而忽略了健壮性.本文基于ANTHOCNET算法,设计了兼顾信任性和健壮性的TrANTHOCNET算法.引入模糊Petri网的形式化推理算法处理节点之间的不确定关系,并利用位置信息对信息素实时更新以提高路由健壮性.实验结果表明TrANTHOCNET较ANTHOCNET、AODV和T-AODV均表现出较强的抵抗恶意节点攻击的能力,在路由性能方面也验证了本算法的有效性. 展开更多
关键词 移动自组网 模糊PETRI网 蚁群算法 信任路由
下载PDF
基于Ant-agent的自动化码头AGV控制算法 被引量:9
10
作者 兰培真 陈锦文 曹士连 《交通运输系统工程与信息》 EI CSCD 北大核心 2020年第1期190-197,共8页
为解决自动化码头水平运输区存在的自动导引车(AGV)路径冲突和道路死锁问题,提高运输效率,将AGV视为蚂蚁智能体(Ant-agent),设定其携带负反馈机制的信息素进入运输路网.引入拥挤度及拥挤度阈值q,建立新的状态转移规则;针对节点冲突和路... 为解决自动化码头水平运输区存在的自动导引车(AGV)路径冲突和道路死锁问题,提高运输效率,将AGV视为蚂蚁智能体(Ant-agent),设定其携带负反馈机制的信息素进入运输路网.引入拥挤度及拥挤度阈值q,建立新的状态转移规则;针对节点冲突和路径拥堵,构建解决机制;提出基于Ant-agent的AGV控制算法,采用两阶段均匀设计试验法确定算法最优参数组合.仿真结果表明,与传统动态路径规划算法对比,所提算法在各运输任务量下的避碰性能、解锁性能和运输效率均有较大提高,可有效地解决AGV路径冲突和道路死锁,提高运输效率. 展开更多
关键词 智能交通 路径冲突 道路死锁 ant-agent 自动导引车 控制算法
下载PDF
融合AntNet与遗传算法的动态网络路由算法 被引量:1
11
作者 夏鸿斌 须文波 刘渊 《计算机应用》 CSCD 北大核心 2009年第4期1048-1051,共4页
提出了一种新的动态分布式网络路由算法。在AntNet算法中引入了路径遗传运算(GA),提出了新的信息素更新策略。对蚂蚁发现的路径进行染色体编码,并用适应度函数对其进行适应度评价,通过路径交叉和路径变异运算以及种群的不断进化,来提高... 提出了一种新的动态分布式网络路由算法。在AntNet算法中引入了路径遗传运算(GA),提出了新的信息素更新策略。对蚂蚁发现的路径进行染色体编码,并用适应度函数对其进行适应度评价,通过路径交叉和路径变异运算以及种群的不断进化,来提高解的质量。仿真结果表明,所提出的算法能快速收敛,且有效地提高了网络吞吐量、降低了平均延时。 展开更多
关键词 遗传算法 蚁群优化 网络路由
下载PDF
Ant-Q算法在矩形件优化排料中的应用 被引量:1
12
作者 须文波 刘瑞杰 《江南大学学报(自然科学版)》 CAS 2006年第3期270-273,共4页
矩形件优化排料问题是一类具有NP完全难度的组合优化问题,该优化问题可用与或树描述,即把矩形件优化排料问题变换为寻找一棵面积比率最大的二叉树问题.使用Ant-Q算法能够有效实现这种树搜索,从而求得矩形件优化排料问题的优化解.
关键词 矩形件优化排料 ant-Q算法 树搜索
下载PDF
Ant-Miner算法研究和性能优化
13
作者 邵晓艳 王艳 +1 位作者 李玲玲 胡欣茹 《河南师范大学学报(自然科学版)》 CAS CSCD 北大核心 2012年第3期154-157,182,共5页
首先阐述了Ant-Miner算法的实现原理,然后从不同角度对Ant-Miner算法进行分析,并针对Ant-Miner算法的不足之处提出了相应的改进和优化方案,最后通过实验证明优化后的算法能达到更好的效果.
关键词 数据挖掘 蚁群算法 分类规则
下载PDF
Ant-Miner算法改进及在地震预测中的应用
14
作者 邵晓艳 刘宁 +1 位作者 李玲玲 胡欣茹 《西北地震学报》 CSCD 北大核心 2012年第3期215-219,共5页
首先阐述了Ant-Miner算法的原理,然后从不同角度对Ant-Miner算法进行研究分析,并针对该算法的不足之处提出了相应的改进和优化方案。最后将经过改进的Ant-Miner算法应用到地震预测中。结果证明优化后的Ant-Miner算法比传统C4.5分类算法... 首先阐述了Ant-Miner算法的原理,然后从不同角度对Ant-Miner算法进行研究分析,并针对该算法的不足之处提出了相应的改进和优化方案。最后将经过改进的Ant-Miner算法应用到地震预测中。结果证明优化后的Ant-Miner算法比传统C4.5分类算法能达到更好的效果。 展开更多
关键词 蚁群算法 分类规则 地震预测
下载PDF
WPANT:应用于移动对等网络的轻量级层次蚁群路由算法
15
作者 曲大鹏 王兴伟 黄敏 《东北大学学报(自然科学版)》 EI CAS CSCD 北大核心 2011年第3期356-359,共4页
针对移动对等网络中存在的节点移动、拓扑多变、资源受限和可扩展性差等问题,提出了一种基于轻量级层次结构的蚁群路由算法.该算法通过选取活动路由上的节点将网络划分成轻量级的层次结构,在此结构上运行蚁群路由算法.轻量级的层次结构... 针对移动对等网络中存在的节点移动、拓扑多变、资源受限和可扩展性差等问题,提出了一种基于轻量级层次结构的蚁群路由算法.该算法通过选取活动路由上的节点将网络划分成轻量级的层次结构,在此结构上运行蚁群路由算法.轻量级的层次结构提高了蚁群算法中信息素更新机制的效率,同时,蚁群路由算法的自组织和流量均衡等特性增强了轻量级层次结构的健壮性.模拟仿真表明了该算法的有效性. 展开更多
关键词 移动对等网络 路由 蚂蚁算法 轻量级层次 流量均衡
下载PDF
Improved ant colony optimization algorithm for the traveling salesman problems 被引量:22
16
作者 Rongwei Gan Qingshun Guo +1 位作者 Huiyou Chang Yang Yi 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2010年第2期329-333,共5页
Ant colony optimization (ACO) is a new heuristic algo- rithm which has been proven a successful technique and applied to a number of combinatorial optimization problems. The traveling salesman problem (TSP) is amo... Ant colony optimization (ACO) is a new heuristic algo- rithm which has been proven a successful technique and applied to a number of combinatorial optimization problems. The traveling salesman problem (TSP) is among the most important combinato- rial problems. An ACO algorithm based on scout characteristic is proposed for solving the stagnation behavior and premature con- vergence problem of the basic ACO algorithm on TSP. The main idea is to partition artificial ants into two groups: scout ants and common ants. The common ants work according to the search manner of basic ant colony algorithm, but scout ants have some differences from common ants, they calculate each route's muta- tion probability of the current optimal solution using path evaluation model and search around the optimal solution according to the mutation probability. Simulation on TSP shows that the improved algorithm has high efficiency and robustness. 展开更多
关键词 ant colony optimization heuristic algorithm scout ants path evaluation model traveling salesman problem.
下载PDF
Weapon target assignment problem satisfying expected damage probabilities based on ant colony algorithm 被引量:26
17
作者 Wang Yanxia Qian Longjun Guo Zhi Ma Lifeng 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2008年第5期939-944,共6页
A weapon target assignment (WTA) model satisfying expected damage probabilities with an ant colony algorithm is proposed. In order to save armament resource and attack the targets effectively, the strategy of the we... A weapon target assignment (WTA) model satisfying expected damage probabilities with an ant colony algorithm is proposed. In order to save armament resource and attack the targets effectively, the strategy of the weapon assignment is that the target with greater threat degree has higher priority to be intercepted. The effect of this WTA model is not maximizing the damage probability but satisfying the whole assignment result. Ant colony algorithm has been successfully used in many fields, especially in combination optimization. The ant colony algorithm for this WTA problem is described by analyzing path selection, pheromone update, and tabu table update. The effectiveness of the model and the algorithm is demonstrated with an example. 展开更多
关键词 weapon target assignment ant colony algorithm optimization.
下载PDF
Algorithm for Low Altitude Penetration Aircraft Path Planning with Improved Ant Colony Algorithm 被引量:19
18
作者 叶文 马登武 范洪达 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2005年第4期304-309,共6页
The ant colony algorithm is a new class of population basic algorithm. The path planning is realized by the use of ant colony algorithm when the plane executes the low altitude penetration, which provides a new method... The ant colony algorithm is a new class of population basic algorithm. The path planning is realized by the use of ant colony algorithm when the plane executes the low altitude penetration, which provides a new method for the path planning. In the paper the traditional ant colony algorithm is improved, and measures of keeping optimization, adaptively selecting and adaptively adjusting are applied, by which better path at higher convergence speed can be found. Finally the algorithm is implemented with computer simulation and preferable results are obtained. 展开更多
关键词 ant colony algorithm path planning keeping optimization adaptively adiusting low altitude penetration
下载PDF
Ant colony optimization algorithm and its application to Neuro-Fuzzy controller design 被引量:11
19
作者 Zhao Baojiang Li Shiyong 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2007年第3期603-610,共8页
An adaptive ant colony algorithm is proposed based on dynamically adjusting the strategy of updating trail information. The algorithm can keep good balance between accelerating convergence and averting precocity and s... An adaptive ant colony algorithm is proposed based on dynamically adjusting the strategy of updating trail information. The algorithm can keep good balance between accelerating convergence and averting precocity and stagnation. The results of function optimization show that the algorithm has good searching ability and high convergence speed. The algorithm is employed to design a neuro-fuzzy controller for real-time control of an inverted pendulum. In order to avoid the combinatorial explosion of fuzzy rules due tσ multivariable inputs, a state variable synthesis scheme is employed to reduce the number of fuzzy rules greatly. The simulation results show that the designed controller can control the inverted pendulum successfully. 展开更多
关键词 neuro-fuzzy controller ant colony algorithm function optimization genetic algorithm inverted pen-dulum system.
下载PDF
Novel Approach to Nonlinear PID Parameter Optimization Using Ant Colony Optimization Algorithm 被引量:11
20
作者 Duan Hai-bin Wang Dao-bo Yu Xiu-fen 《Journal of Bionic Engineering》 SCIE EI CSCD 2006年第2期73-78,共6页
This paper presents an application of an Ant Colony Optimization (ACO) algorithm to optimize the parameters in the design of a type of nonlinear PID controller. The ACO algorithm is a novel heuristic bionic algorith... This paper presents an application of an Ant Colony Optimization (ACO) algorithm to optimize the parameters in the design of a type of nonlinear PID controller. The ACO algorithm is a novel heuristic bionic algorithm, which is based on the behaviour of real ants in nature searching for food. In order to optimize the parameters of the nonlinear PID controller using ACO algorithm, an objective function based on position tracing error was constructed, and elitist strategy was adopted in the improved ACO algorithm. Detailed simulation steps are presented. This nonlinear PID controller using the ACO algorithm has high precision of control and quick response. 展开更多
关键词 ant Colony Optimization ALGORITHM PHEROMONE nonlinear PID parameter optimization
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部