MANET routing is critical and routing decision should be made sooner before the node leaves the network.Fast decisions always compensate network performance.In addition,most MANET routing protocols assume a friendly a...MANET routing is critical and routing decision should be made sooner before the node leaves the network.Fast decisions always compensate network performance.In addition,most MANET routing protocols assume a friendly and cooperative environment,and hence are vulnerable to various attacks.Trust and Reputation would serve as a major solution to these problems.Learning the network characteristics and choosing right routing decisions at right times would be a significant solution.In this work,we have done an extensive survey of fault tolerant protocols and ant colony algorithms applied to routing in MANETs.We propose a QoS constrained fault tolerant ant lookahead routing algorithm which attempts to identify valid route and look-ahead route pairs which might help in choosing the alternate path in case of valid route failure.The results prove that the proposed algorithm takes better routing decisions with 20-30 percent improvement compared with existing ant colony algorithms.展开更多
针对蚁群算法运动规划收敛慢且精度不佳的问题,提出一种改进势场蚁群(improved artificial potential field ant colony optimization, IAPF-ACO)算法。斥力计算模型引入目标调节因子解决势场寻优不可达且易陷入局部最优问题。蚁群算法...针对蚁群算法运动规划收敛慢且精度不佳的问题,提出一种改进势场蚁群(improved artificial potential field ant colony optimization, IAPF-ACO)算法。斥力计算模型引入目标调节因子解决势场寻优不可达且易陷入局部最优问题。蚁群算法计算框架加入改进势场模型,即启发信息函数中增加势场信息因子。三维障碍物空间仿真规划表明:IAPF-ACO算法在离散环境与聚集环境规划路径质量较优、规划结果较为稳定。在MATLAB搭建工业机器人仿真模型,关节空间内对规划路径点平滑处理,避障仿真结果表明,工业机器人末端位移是一条安全、平滑的运动轨迹。展开更多
The common failure mechanism for brittle rocks is known to be axial splitting which happens parallel to the direction of maximum compression. One of the mechanisms proposed for modelling of axial splitting is the slid...The common failure mechanism for brittle rocks is known to be axial splitting which happens parallel to the direction of maximum compression. One of the mechanisms proposed for modelling of axial splitting is the sliding crack or so called, “wing crack” model. Fairhurst-Cook model explains this specific type of failure which starts by a pre-crack and finally breaks the rock by propagating 2-D cracks under uniaxial compression. In this paper, optimization of this model has been considered and the process has been done by a complete sensitivity analysis on the main parameters of the model and excluding the trends of their changes and also their limits and “peak points”. Later on this paper, three artificial intelligence algorithms including Particle Swarm Intelligence (PSO), Ant Colony Optimization (ACO) and genetic algorithm (GA) has been used and compared in order to achieve optimized sets of parameters resulting in near-maximum or near-minimum amounts of wedging forces creating a wing crack.展开更多
A relationship between lung transplant success and many features of recipients’/donors has long been studied.However,modeling a robust model of a potential impact on organ transplant success has proved challenging.In...A relationship between lung transplant success and many features of recipients’/donors has long been studied.However,modeling a robust model of a potential impact on organ transplant success has proved challenging.In this study,a hybrid feature selection model was developed based on ant colony opti-mization(ACO)and k-nearest neighbor(kNN)classifier to investigate the rela-tionship between the most defining features of recipients/donors and lung transplant success using data from the United Network of Organ Sharing(UNOS).The proposed ACO-kNN approach explores the features space to identify the representative attributes and classify patients’functional status(i.e.,quality of life)after lung transplantation.The efficacy of the proposed model was verified using 3,684 records and 118 input features from the UNOS.The developed approach examined the reliability and validity of the lung allocation process.The results are promising regarding accuracy prediction to be 91.3%and low computational time,along with better decision capabilities,emphasizing the potential for automatic classification of the lung and other organs allocation pro-cesses.In addition,the proposed model recommends a new perspective on how medical experts and clinicians respond to uncertain and challenging lung alloca-tion strategies.Having such ACO-kNN model,a medical professional can sum-marize information through the proposed method and make decisions for the upcoming transplants to allocate the donor organ.展开更多
The dynamic traveling salesman problem(DTSP)is significant in logistics distribution in real-world applications in smart cities,but it is uncertain and difficult to solve.This paper proposes a scheme library-based ant...The dynamic traveling salesman problem(DTSP)is significant in logistics distribution in real-world applications in smart cities,but it is uncertain and difficult to solve.This paper proposes a scheme library-based ant colony optimization(ACO)with a two-optimization(2-opt)strategy to solve the DTSP efficiently.The work is novel and contributes to three aspects:problemmodel,optimization framework,and algorithmdesign.Firstly,in the problem model,traditional DTSP models often consider the change of travel distance between two nodes over time,while this paper focuses on a special DTSP model in that the node locations change dynamically over time.Secondly,in the optimization framework,the ACO algorithm is carried out in an offline optimization and online application framework to efficiently reuse the historical information to help fast respond to the dynamic environment.The framework of offline optimization and online application is proposed due to the fact that the environmental change inDTSPis caused by the change of node location,and therefore the newenvironment is somehowsimilar to certain previous environments.This way,in the offline optimization,the solutions for possible environmental changes are optimized in advance,and are stored in a mode scheme library.In the online application,when an environmental change is detected,the candidate solutions stored in the mode scheme library are reused via ACO to improve search efficiency and reduce computational complexity.Thirdly,in the algorithm design,the ACO cooperates with the 2-opt strategy to enhance search efficiency.To evaluate the performance of ACO with 2-opt,we design two challenging DTSP cases with up to 200 and 1379 nodes and compare them with other ACO and genetic algorithms.The experimental results show that ACO with 2-opt can solve the DTSPs effectively.展开更多
In recent years, Japan, and especially rural areas have faced the growing problems of debt-ridden local railway lines along with the population decline and aging population. Therefore, it is best to consider the disco...In recent years, Japan, and especially rural areas have faced the growing problems of debt-ridden local railway lines along with the population decline and aging population. Therefore, it is best to consider the discontinuation of local railway lines and introduce replacement buses to secure the transportation methods of the local people especially in rural areas. Based on the above background, targeting local railway lines that may be discontinued in the near future, appropriate bus stops when provided with potential bus stops were selected, the present study proposed a method that introduces routes for railway replacement buses adopting ant colony optimization (ACO). The improved ACO was designed and developed based on the requirements set concerning the route length, number of turns, road width, accessibility of railway lines and zones without bus stops as well as the constraint conditions concerning the route length, number of turns and zones without bus stops. Original road network data were generated and processed adopting a geographic information systems (GIS), and these are used to search for the optimal route for railway replacement buses adopting the improved ACO concerning the 8 zones on the target railway line (JR Kakogawa line). By comparing the improved ACO with Dijkstra’s algorithm, its relevance was verified and areas needing further improvements were revealed.展开更多
An energy-efficient heuristic mechanism is presented to obtain the optimal solution for the coverage problem in sensor networks. The mechanism can ensure that all targets are fully covered corresponding to their level...An energy-efficient heuristic mechanism is presented to obtain the optimal solution for the coverage problem in sensor networks. The mechanism can ensure that all targets are fully covered corresponding to their levels of importance at minimum cost, and the ant colony optimization algorithm (ACO) is adopted to achieve the above metrics. Based on the novel design of heuristic factors, artificial ants can adaptively detect the energy status and coverage ability of sensor networks via local information. By introducing the evaluation function to global pheromone updating rule, the pheromone trail on the best solution is greatly enhanced, so that the convergence process of the algorithm is speed up. Finally, the optimal solution with a higher coverage- efficiency and a longer lifetime is obtained.展开更多
文摘MANET routing is critical and routing decision should be made sooner before the node leaves the network.Fast decisions always compensate network performance.In addition,most MANET routing protocols assume a friendly and cooperative environment,and hence are vulnerable to various attacks.Trust and Reputation would serve as a major solution to these problems.Learning the network characteristics and choosing right routing decisions at right times would be a significant solution.In this work,we have done an extensive survey of fault tolerant protocols and ant colony algorithms applied to routing in MANETs.We propose a QoS constrained fault tolerant ant lookahead routing algorithm which attempts to identify valid route and look-ahead route pairs which might help in choosing the alternate path in case of valid route failure.The results prove that the proposed algorithm takes better routing decisions with 20-30 percent improvement compared with existing ant colony algorithms.
文摘针对蚁群算法运动规划收敛慢且精度不佳的问题,提出一种改进势场蚁群(improved artificial potential field ant colony optimization, IAPF-ACO)算法。斥力计算模型引入目标调节因子解决势场寻优不可达且易陷入局部最优问题。蚁群算法计算框架加入改进势场模型,即启发信息函数中增加势场信息因子。三维障碍物空间仿真规划表明:IAPF-ACO算法在离散环境与聚集环境规划路径质量较优、规划结果较为稳定。在MATLAB搭建工业机器人仿真模型,关节空间内对规划路径点平滑处理,避障仿真结果表明,工业机器人末端位移是一条安全、平滑的运动轨迹。
文摘The common failure mechanism for brittle rocks is known to be axial splitting which happens parallel to the direction of maximum compression. One of the mechanisms proposed for modelling of axial splitting is the sliding crack or so called, “wing crack” model. Fairhurst-Cook model explains this specific type of failure which starts by a pre-crack and finally breaks the rock by propagating 2-D cracks under uniaxial compression. In this paper, optimization of this model has been considered and the process has been done by a complete sensitivity analysis on the main parameters of the model and excluding the trends of their changes and also their limits and “peak points”. Later on this paper, three artificial intelligence algorithms including Particle Swarm Intelligence (PSO), Ant Colony Optimization (ACO) and genetic algorithm (GA) has been used and compared in order to achieve optimized sets of parameters resulting in near-maximum or near-minimum amounts of wedging forces creating a wing crack.
文摘A relationship between lung transplant success and many features of recipients’/donors has long been studied.However,modeling a robust model of a potential impact on organ transplant success has proved challenging.In this study,a hybrid feature selection model was developed based on ant colony opti-mization(ACO)and k-nearest neighbor(kNN)classifier to investigate the rela-tionship between the most defining features of recipients/donors and lung transplant success using data from the United Network of Organ Sharing(UNOS).The proposed ACO-kNN approach explores the features space to identify the representative attributes and classify patients’functional status(i.e.,quality of life)after lung transplantation.The efficacy of the proposed model was verified using 3,684 records and 118 input features from the UNOS.The developed approach examined the reliability and validity of the lung allocation process.The results are promising regarding accuracy prediction to be 91.3%and low computational time,along with better decision capabilities,emphasizing the potential for automatic classification of the lung and other organs allocation pro-cesses.In addition,the proposed model recommends a new perspective on how medical experts and clinicians respond to uncertain and challenging lung alloca-tion strategies.Having such ACO-kNN model,a medical professional can sum-marize information through the proposed method and make decisions for the upcoming transplants to allocate the donor organ.
基金supported in part by the National Research Foundation of Korea (NRF-2021H1D3A2A01082705).
文摘The dynamic traveling salesman problem(DTSP)is significant in logistics distribution in real-world applications in smart cities,but it is uncertain and difficult to solve.This paper proposes a scheme library-based ant colony optimization(ACO)with a two-optimization(2-opt)strategy to solve the DTSP efficiently.The work is novel and contributes to three aspects:problemmodel,optimization framework,and algorithmdesign.Firstly,in the problem model,traditional DTSP models often consider the change of travel distance between two nodes over time,while this paper focuses on a special DTSP model in that the node locations change dynamically over time.Secondly,in the optimization framework,the ACO algorithm is carried out in an offline optimization and online application framework to efficiently reuse the historical information to help fast respond to the dynamic environment.The framework of offline optimization and online application is proposed due to the fact that the environmental change inDTSPis caused by the change of node location,and therefore the newenvironment is somehowsimilar to certain previous environments.This way,in the offline optimization,the solutions for possible environmental changes are optimized in advance,and are stored in a mode scheme library.In the online application,when an environmental change is detected,the candidate solutions stored in the mode scheme library are reused via ACO to improve search efficiency and reduce computational complexity.Thirdly,in the algorithm design,the ACO cooperates with the 2-opt strategy to enhance search efficiency.To evaluate the performance of ACO with 2-opt,we design two challenging DTSP cases with up to 200 and 1379 nodes and compare them with other ACO and genetic algorithms.The experimental results show that ACO with 2-opt can solve the DTSPs effectively.
文摘In recent years, Japan, and especially rural areas have faced the growing problems of debt-ridden local railway lines along with the population decline and aging population. Therefore, it is best to consider the discontinuation of local railway lines and introduce replacement buses to secure the transportation methods of the local people especially in rural areas. Based on the above background, targeting local railway lines that may be discontinued in the near future, appropriate bus stops when provided with potential bus stops were selected, the present study proposed a method that introduces routes for railway replacement buses adopting ant colony optimization (ACO). The improved ACO was designed and developed based on the requirements set concerning the route length, number of turns, road width, accessibility of railway lines and zones without bus stops as well as the constraint conditions concerning the route length, number of turns and zones without bus stops. Original road network data were generated and processed adopting a geographic information systems (GIS), and these are used to search for the optimal route for railway replacement buses adopting the improved ACO concerning the 8 zones on the target railway line (JR Kakogawa line). By comparing the improved ACO with Dijkstra’s algorithm, its relevance was verified and areas needing further improvements were revealed.
基金The Natural Science Foundation of Jiangsu Province(NoBK2005409)
文摘An energy-efficient heuristic mechanism is presented to obtain the optimal solution for the coverage problem in sensor networks. The mechanism can ensure that all targets are fully covered corresponding to their levels of importance at minimum cost, and the ant colony optimization algorithm (ACO) is adopted to achieve the above metrics. Based on the novel design of heuristic factors, artificial ants can adaptively detect the energy status and coverage ability of sensor networks via local information. By introducing the evaluation function to global pheromone updating rule, the pheromone trail on the best solution is greatly enhanced, so that the convergence process of the algorithm is speed up. Finally, the optimal solution with a higher coverage- efficiency and a longer lifetime is obtained.