Designing a sparse array with reduced transmit/receive modules(TRMs)is vital for some applications where the antenna system’s size,weight,allowed operating space,and cost are limited.Sparse arrays exhibit distinct ar...Designing a sparse array with reduced transmit/receive modules(TRMs)is vital for some applications where the antenna system’s size,weight,allowed operating space,and cost are limited.Sparse arrays exhibit distinct architectures,roughly classified into three categories:Thinned arrays,nonuniformly spaced arrays,and clustered arrays.While numerous advanced synthesis methods have been presented for the three types of sparse arrays in recent years,a comprehensive review of the latest development in sparse array synthesis is lacking.This work aims to fill this gap by thoroughly summarizing these techniques.The study includes synthesis examples to facilitate a comparative analysis of different techniques in terms of both accuracy and efficiency.Thus,this review is intended to assist researchers and engineers in related fields,offering a clear understanding of the development and distinctions among sparse array synthesis techniques.展开更多
In this paper,an antenna array composed of circular array and orthogonal linear array is proposed by using the design of long and short baseline“orthogonal linear array”and the circular array ambiguity resolution de...In this paper,an antenna array composed of circular array and orthogonal linear array is proposed by using the design of long and short baseline“orthogonal linear array”and the circular array ambiguity resolution design of multi-group baseline clustering.The effectiveness of the antenna array in this paper is verified by sufficient simulation and experiment.After the system deviation correction work,it is found that in the L/S/C/X frequency bands,the ambiguity resolution probability is high,and the phase difference system error between each channel is basically the same.The angle measurement error is less than 0.5°,and the positioning error is less than 2.5 km.Notably,as the center frequency increases,calibration consistency improves,and the calibration frequency points become applicable over a wider frequency range.At a center frequency of 11.5 GHz,the calibration frequency point bandwidth extends to 1200 MHz.This combined antenna array deployment holds significant promise for a wide range of applications in contemporary wireless communication systems.展开更多
Side lobe level reduction(SLL)of antenna arrays significantly enhances the signal-to-interference ratio and improves the quality of service(QOS)in recent and future wireless communication systems starting from 5G up t...Side lobe level reduction(SLL)of antenna arrays significantly enhances the signal-to-interference ratio and improves the quality of service(QOS)in recent and future wireless communication systems starting from 5G up to 7G.Furthermore,it improves the array gain and directivity,increasing the detection range and angular resolution of radar systems.This study proposes two highly efficient SLL reduction techniques.These techniques are based on the hybridization between either the single convolution or the double convolution algorithms and the genetic algorithm(GA)to develop the Conv/GA andDConv/GA,respectively.The convolution process determines the element’s excitations while the GA optimizes the element spacing.For M elements linear antenna array(LAA),the convolution of the excitation coefficients vector by itself provides a new vector of excitations of length N=(2M−1).This new vector is divided into three different sets of excitations including the odd excitations,even excitations,and middle excitations of lengths M,M−1,andM,respectively.When the same element spacing as the original LAA is used,it is noticed that the odd and even excitations provide a much lower SLL than that of the LAA but with amuch wider half-power beamwidth(HPBW).While the middle excitations give the same HPBWas the original LAA with a relatively higher SLL.Tomitigate the increased HPBWof the odd and even excitations,the element spacing is optimized using the GA.Thereby,the synthesized arrays have the same HPBW as the original LAA with a two-fold reduction in the SLL.Furthermore,for extreme SLL reduction,the DConv/GA is introduced.In this technique,the same procedure of the aforementioned Conv/GA technique is performed on the resultant even and odd excitation vectors.It provides a relatively wider HPBWthan the original LAA with about quad-fold reduction in the SLL.展开更多
With the rapid development of communication technology,the problem of antenna array optimization plays a crucial role.Among many types of antennas,line antenna arrays(LAA)are the most commonly applied,but the side lob...With the rapid development of communication technology,the problem of antenna array optimization plays a crucial role.Among many types of antennas,line antenna arrays(LAA)are the most commonly applied,but the side lobe level(SLL)reduction is still a challenging problem.In the radiation process of the linear antenna array,the high side lobe level will interfere with the intensity of the antenna target radiation direction.Many conventional methods are ineffective in obtaining the maximumside lobe level in synthesis,and this paper proposed a quantum equilibrium optimizer(QEO)algorithm for line antenna arrays.Firstly,the linear antenna array model consists of an array element arrangement.Array factor(AF)can be expressed as the combination of array excitation amplitude and position in array space.Then,inspired by the powerful computing power of quantum computing,an improved quantum equilibrium optimizer combining quantum coding and quantum rotation gate strategy is proposed.Finally,the proposed quantum equilibrium optimizer is used to optimize the excitation amplitude of the array elements in the linear antenna array model by numerical simulation to minimize the interference of the side lobe level to the main lobe radiation.Six differentmetaheuristic algorithms are used to optimize the excitation amplitude in three different arrays of line antenna arrays,the experimental results indicated that the quantum equilibrium optimizer is more advantageous in obtaining the maximum side lobe level reduction.Compared with other metaheuristic optimization algorithms,the quantum equilibrium optimizer has advantages in terms of convergence speed and accuracy.展开更多
This work presents,design and specific absorption rate(SAR)analysis of a 37GHz antenna,for 5th Generation(5G)applications.The proposed antenna comprises of 4-elements of rectangular patch and an even distribution.The ...This work presents,design and specific absorption rate(SAR)analysis of a 37GHz antenna,for 5th Generation(5G)applications.The proposed antenna comprises of 4-elements of rectangular patch and an even distribution.The radiating element is composed of copper material supported by Rogers RT5880 substrate of thickness,0.254 mm,dielectric constant(εr),2.2,and loss tangent,0.0009.The 4-elements array antenna is compact in size with a dimension of 8mm×20mm in length and width.The radiating patch is excited with a 50 ohms connector i.e.,K-type.The antenna resonates in the frequency band of 37 GHz,that covers the 5G applications.The antenna behavior is studied both in free space and in the proximity of the human body.Three models of the human body,i.e.,belly,hand,and head(contain skin,fat,muscles,and bone)are considered for on-body simulations.At resonant frequency,the antenna gives a boresight gain of 11.6 dB.The antenna radiates efficiently with a radiated efficiency of more than 90%.Also,it is observed that the antenna detunes to the lowest in the proximity of the human body,but still a good impedance matching is achieved considering the−10 dB criteria.Moreover,SAR is also being presented.The safe limit of 2 W/kg for any 10 g of biological tissue,specified by the European International Electro Technical Commission(IEC)has been considered.The calculated values of SAR for human body models,i.e.,belly,hand and head are 1.82,1.81 and 1.09 W/kg,respectively.The SAR values are less than the international recommendations for the three models.Furthermore,the simulated and measured results of the antenna are in close agreement,which makes it,a potential candidate for the fifth-generation smart phones and other handheld devices.展开更多
The electric-controlled metasurface antenna array(ECMSAA)with ultra-wideband frequency reconfigurable reflection suppression is proposed and realized.Firstly,an electriccontrolled metasurface with ultra-wideband frequ...The electric-controlled metasurface antenna array(ECMSAA)with ultra-wideband frequency reconfigurable reflection suppression is proposed and realized.Firstly,an electriccontrolled metasurface with ultra-wideband frequency reconfigurable in-phase reflection characteristics is designed.The element of the ECMSAA is constructed by loading the single electric-controlled metasurface unit on the conventional patch antenna element.The radiation properties of the conventional patch antenna and the reflection performance of electric-controlled metasurface are maintained when the antenna and the metasurface are integrated.Thus,the ECMSAA elements have excellent radiation properties and ultra-wideband frequency reconfigurable in-phase reflection characteristics simultaneously.To take a further step,a 6×10 ECMSAA is realized based on the designed metasurface antenna element.Simulated and measured results prove that the reflection of the ECMSAA is dynamically suppressed in the P and L bands.Meanwhile,high-gain and multi-polarization radiation properties of the ECMSAA are achieved.This design method not only realizes the frequency reconfigurable reflection suppression of the antenna array in the ultra-wide frequency band but also provides a way to develop an intelligent low-scattering antenna.展开更多
As an important part of phased array system,the research on phased array antenna is very necessary.The phased array antenna achieves the scanning beam adaptively by regulating the phase difference between each array e...As an important part of phased array system,the research on phased array antenna is very necessary.The phased array antenna achieves the scanning beam adaptively by regulating the phase difference between each array element.In this paper,a dual K-band circularly polarized antenna with high broadband,broadband beam,wide axial ratio bandwidth and high radiation efficiency is designed.We combine with the advantages of slot antenna and aperture antenna,use multimode waveguide cavity structure to design an aperture antenna,which is fed to waveguide circular polarizer by slot coupling in order to realize circular polarization radiation.Meanwhile,it has the characteristics of broadband,broadband beam,wide axial ratio bandwidth and high radiation efficiency.A slit antenna is designed by using a multimode waveguide cavity structure and a slit coupling feed to a waveguide circular polarizer is used to achieve circularly polarized radiation.The designed antenna consists of two K-band circularly polarized antenna units,and the spacing between the two units is 9.5 mm,which is fed by aK-band T/R module(Transmitter/Receiver module).In order to study the performance of the pattern in the case of the research group,the 2-unit structure is established.The simulation results of frequency–axial ratio bandwidth are given,and the simulation result of the antenna array is shown.The practical results of antenna design and test are also given.展开更多
A global localization system of in-pipe robot is introduced in this paper.Global position system(GPS)is applied to monitor the motion of robot along the whole pipeline which is equally divided intomany segments by tra...A global localization system of in-pipe robot is introduced in this paper.Global position system(GPS)is applied to monitor the motion of robot along the whole pipeline which is equally divided intomany segments by tracking stations.The definite segment in which robot existing can be detected and thisis long-range localization.Ultra-long wave(ULW)is adopted to solve the problem of metallic shieldingand realize effective communication between inside and outside of pipeline.ULW emitter is carried byrobot.When the plant is broken or defects on pipe-wall are inspected,the robot will stop moving.Anten-na array is presented and disposed upon the definite segment to search the accurate location of robot,andthis is short-range localization.In this paper,five-antenna array is adopted and an effective linear signalfusion algorithm is presented.The localization precision reaches R < 25cm.By tests in Shengli oil field,the whole system is verified with robust solutions.展开更多
In this paper,we have proposed a novel structure of Ka-band based phased array antenna with calibration function.In the design of Kaband antenna,the active phased array system is adopted and the antenna would work in ...In this paper,we have proposed a novel structure of Ka-band based phased array antenna with calibration function.In the design of Kaband antenna,the active phased array system is adopted and the antenna would work in the dual polarization separation mode.We have given out the schematic diagram for the proposed Ka-band antenna,where the Kaband antenna is in the form of waveguide slot array antenna,with 96 units in azimuth and 1 unit in distance.Each group of units is driven by a singlechannel Transmitter/Receiver(T/R)component,and the whole array contains 192 T/R components in total.The size of the T/R component is 55mm(length)×50mm(width)×5.8mm(height),3 Sub-micro Sub-Miniature Push-on(SSMP)blind sockets and a 21-core low-frequency socket are designed on the two sides of the T/R component.In order to meet the technical specifications of phased array antenna,the Ka-band transceiver component is designed based on Low Temperatrue Co-fired Ceramic(LTCC)technology to achieve miniaturization and lightweight.In our approach,the feed network includes two parts:transceiver network and calibration network.The transceiver network consists of 241:8 time-delay power dividers,12 two-way power dividers and 2 six-way time-delay power dividers.The power supply required by theKaband antenna unit is provided to each active component by the power module after Ka band wavelet control distribution.Simulation and measurement results are given in the form of standing wave and scanning capability.展开更多
A novel differential quasi-Yagi antenna is first presented and compared with a normal single-ended counterpart.The simulated and measured results show that the differential quasi-Yagi antenna outperforms the conventio...A novel differential quasi-Yagi antenna is first presented and compared with a normal single-ended counterpart.The simulated and measured results show that the differential quasi-Yagi antenna outperforms the conventional single-ended one.The differential quasi-Yagi antenna is then used as an element for linear arrays.A study of the coupling mechanism between the two differential and the two singleended quasi-Yagi antennas is conducted,which reveals that the TE0 mode is the dominant mode,and the driver is the decisive part to account for the mutual coupling.Next,the effects of four decoupling structures are respectively evaluated between the two differential quasi-Yagi antennas.Finally,the arrays with simple but effective decoupling structures are fabricated and measured.The measured results demonstrate that the simple slit or air-hole decoupling structure can reduce the coupling level from−18 dB to−25 dB and meanwhile maintain the impedance matching and radiation patterns of the array over the broad bandwidth.The differential quasi-Yagi antenna should be a promising antenna candidate for many applications.展开更多
Antennas are an indispensable element in wireless networks. For long-distance wireless communication, antenna gains need to be very strong (highly directive) because the signal from the antenna loses a lot of str...Antennas are an indispensable element in wireless networks. For long-distance wireless communication, antenna gains need to be very strong (highly directive) because the signal from the antenna loses a lot of strength as it travels over long distances. This is true in the military with missile, radar, and satellite systems, etc. Antenna arrays are commonly employed to focus electromagnetic waves in a certain direction that cannot be achieved perfectly with a single-element antenna. The goal of this study is to design a rectangular microstrip high-gain 2 × 1 array antenna using ADS Momentum. This microstrip patch array design makes use of the RT-DUROID 5880 as a substrate with a dielectric constant of 2.2, substrate height of 1.588 mm, and tangent loss of 0.001. To achieve efficient gain and return loss characteristics for the proposed array antenna, RT-Duroid is a good choice of dielectric material. The designed array antenna is made up of two rectangular patches, which have a resonance frequency of 3.3 GHz. These rectangular patches are excited by microstrip feed lines with 13 mm lengths and 4.8 mm widths. The impedance of the patches is perfectly matched by these transmission lines, which helps to get better antenna characteristics. At a resonance frequency of 3.3 GHz, the suggested antenna array has a directivity of 10.50 dB and a maximum gain of 9.90 dB in the S-band. The S parameters, 3D radiation pattern, directivity, gain, and efficiency of the constructed array antenna are all available in ADS Momentum.展开更多
An antenna array based base station receiver for multicarrier Direct Sequence Code Division Multiple Access (DS-CDMA) system is proposed. The main advantage of the receiver is that the spatial diversity is achieved by...An antenna array based base station receiver for multicarrier Direct Sequence Code Division Multiple Access (DS-CDMA) system is proposed. The main advantage of the receiver is that the spatial diversity is achieved by combining signals of array elements. Based on the detailed analysis of multiuser interference and noise characteristics, the performance of the proposed receiver is analyzed. Theoretical analysis shows significant performance improvement in terms of system capacity due to the use of antenna arrays compared with the conventional single antenna multicarrier DS-CDMA approach. Simulation results confirm the theoretical analysis.展开更多
In this paper, we propose the blind space-time high rate multi-user detector for synchronous uplink multi-rate Direct Sequence Code Division Multiple Access (DS-CDMA) systems with antenna array at the base station. ...In this paper, we propose the blind space-time high rate multi-user detector for synchronous uplink multi-rate Direct Sequence Code Division Multiple Access (DS-CDMA) systems with antenna array at the base station. By employing antenna array at the base stations, the spatial dimension is used efficiently to suppress co-channel interference and increase the capacity for multi-rate CDMA system. After low rate physical users in the system are modeled as corresponding high rate virtual users, we construct the space-time signature vectors of virtual users. And subspace projection algorithm is employed to estimate space-time signature vectors blindly. Then a soft-decision high rate lnultiuser detector is proposed based on the estimated signature vectors, which avoids estimating the ambiguous complex factors which are necessary in traditional blind detector. Numerical simulation results evaluate the performance in terms of Bit Error Rate (BER) for the proposed scheme. Simultaneously, it demonstrates that the system capability increases two times when using twoelement antenna array.展开更多
Code-Division Multiple-Access (CDMA) systems are interference limited,and therefore efficient interference management is necessary to enhance the performance of a CDMA system.In this paper,a successive beamforming (sp...Code-Division Multiple-Access (CDMA) systems are interference limited,and therefore efficient interference management is necessary to enhance the performance of a CDMA system.In this paper,a successive beamforming (spatial filtering),linear decorrelating MultiUser Detection (MUD, temporal filtering) and diversity reception structure for uplink multicarrier Direct Sequence CDMA (DS-CDMA) system with antenna array are proposed.By beamforming,the antenna array suppresses interference according to the distinct array signature.Subsequently,linear decorrelating MUD is ap- plied to separate the signals of different users and eliminate Multiple Access Interference (MAI).Finally, the decorrelated signals at different subcarriers that belong to the same user are combined to achieve frequency diversity.Simulation results show that the proposed structure offers significant Bit Error Rate (BER) performance improvement by successively exploiting the space-time-frequency processing.展开更多
Two blind multiuser detection algorithms for antenna array in Code Division Multiple Access (CDMA) system which apply the linearly constrained condition to the Least Squares Constant Modulus Algorithln (LSCMA) are...Two blind multiuser detection algorithms for antenna array in Code Division Multiple Access (CDMA) system which apply the linearly constrained condition to the Least Squares Constant Modulus Algorithln (LSCMA) are proposed in this paper. One is the Linearly Constrained LSCMA (LC-LSCMA), the other is the Preprocessing LC-LSCMA (PLC-LSCMA). The two algorithms are compared with the conventional LSCMA. The results show that the two algorithms proposed in this paper are superior to the conventional LSCMA and the best one is PLC-LSCMA.展开更多
VHF (Very High Frequency) band antenna array will receive analog signal from universe for storage after digital sampling and adding time scale, and then do the interference analysis of different sub-station digital si...VHF (Very High Frequency) band antenna array will receive analog signal from universe for storage after digital sampling and adding time scale, and then do the interference analysis of different sub-station digital signal. It requires the time-frequency system with high precision and low drifting. This paper explains a time-frequency system of VHF band antenna, which can produce standard 10 MHz signal and clock signal needed by sampler, to ensure that two computers which sampling data has the same system time and the storage data has the accurate time scale, the system includes time comparison programme based on the GPS network timing two different sampling control computers. Timing strategy uses a time comparison software which based on the Labview graphical programming platform. This software captures the system time of two computers to analyze and determine the time deviation when the two computers occurs time offset, and then grant the GPS time of NTP server to the two computers through local area network in this time deviation. Final results show that this method can automatically calibrate the system time of the computers in the LAN, Precision Can Reach 0.1 s Orless.展开更多
The beam scan with variable linear polarization directions of antenna arrays using MM/C transmit-receive (T/R) modules is explored. It is shown that the beam scan and the polarizations of electric fields can be contro...The beam scan with variable linear polarization directions of antenna arrays using MM/C transmit-receive (T/R) modules is explored. It is shown that the beam scan and the polarizations of electric fields can be controlled simultaneously if the forms of module arrangement are chosen properly and the amplitudes and the phases of array excitation are determined by the method presented in this article. Moreover, the calculations of the amplitudes and the phases of array excitation are simplified greatly while using the bounded conditions properly, and the desired beam sweep rate is achieved.展开更多
In this paper, a novel direction of arrival(DOA) estimation algorithm using directional antennas in cylindrical conformal arrays(CCAs) is proposed. To eliminate the shadow effect, we divide the CCAs into several subar...In this paper, a novel direction of arrival(DOA) estimation algorithm using directional antennas in cylindrical conformal arrays(CCAs) is proposed. To eliminate the shadow effect, we divide the CCAs into several subarrays to obtain the complete output vector. Considering the anisotropic radiation pattern of a CCA, which cannot be separated from the manifold matrix, an improved interpolation method is investigated to transform the directional subarray into omnidirectional virtual nested arrays without non-orthogonal perturbation on the noise vector. Then, the cross-correlation matrix(CCM) of the subarrays is used to generate the consecutive co-arrays without redundant elements and eliminate the noise vector. Finally, the full-rank equivalent covariance matrix is constructed using the output of co-arrays,and the unitary estimation of the signal parameters via rotational invariance techniques(ESPRIT) is performed on the equivalent covariance matrix to estimate the DOAs with low computational complexity. Numerical simulations verify the superior performance of the proposed algorithm, especially under a low signal-to-noise ratio(SNR) environment.展开更多
The influence of the distorted plane of the active phased array antenna on the electromagnetic performance is of great significance to the research on and development of the high-performance antennas. On the bent and ...The influence of the distorted plane of the active phased array antenna on the electromagnetic performance is of great significance to the research on and development of the high-performance antennas. On the bent and bowl-shape distortion, the model is established of the relationship between the electromagnetic performance and the position error of the radiated elements. The method is presented of analyzing the far-field pattern of the distorted rectangular active phased array antenna. The analysis results of a planar phased array antenna with different distortions grades prove the validity of the model. Therefore, by the method, the antenna designers may set the reasonable requirement on the structural tolerance in manufacturing antenna.展开更多
Large-scale array aided beamforming improves the spectral efficiency(SE) as a benefit of high angular resolution.When dual-beam downlink beamforming is applied to the train moving towards cell edge,the inter-beam ambi...Large-scale array aided beamforming improves the spectral efficiency(SE) as a benefit of high angular resolution.When dual-beam downlink beamforming is applied to the train moving towards cell edge,the inter-beam ambiguity(IBA) increases as the directional difference between beams becomes smaller.An adaptive antenna activation based beamforming scheme was proposed to mitigate IBA.In the district near the base station(BS),all antenna elements(AEs) were activated to generate two beams.As the distance from the train to the BS increased,only the minimum number of AEs satisfying the resolution criterion would be activated.At the cell edge,one beam was switched off due to intolerable IBA.The proposed scheme can achieve SE gain to the non-adaptive scheme and show more robustness against the direction-of-arrival(DOA) estimation error.展开更多
基金supported by the National Natural Science Foundation of China under Grant No.U2341208.
文摘Designing a sparse array with reduced transmit/receive modules(TRMs)is vital for some applications where the antenna system’s size,weight,allowed operating space,and cost are limited.Sparse arrays exhibit distinct architectures,roughly classified into three categories:Thinned arrays,nonuniformly spaced arrays,and clustered arrays.While numerous advanced synthesis methods have been presented for the three types of sparse arrays in recent years,a comprehensive review of the latest development in sparse array synthesis is lacking.This work aims to fill this gap by thoroughly summarizing these techniques.The study includes synthesis examples to facilitate a comparative analysis of different techniques in terms of both accuracy and efficiency.Thus,this review is intended to assist researchers and engineers in related fields,offering a clear understanding of the development and distinctions among sparse array synthesis techniques.
文摘In this paper,an antenna array composed of circular array and orthogonal linear array is proposed by using the design of long and short baseline“orthogonal linear array”and the circular array ambiguity resolution design of multi-group baseline clustering.The effectiveness of the antenna array in this paper is verified by sufficient simulation and experiment.After the system deviation correction work,it is found that in the L/S/C/X frequency bands,the ambiguity resolution probability is high,and the phase difference system error between each channel is basically the same.The angle measurement error is less than 0.5°,and the positioning error is less than 2.5 km.Notably,as the center frequency increases,calibration consistency improves,and the calibration frequency points become applicable over a wider frequency range.At a center frequency of 11.5 GHz,the calibration frequency point bandwidth extends to 1200 MHz.This combined antenna array deployment holds significant promise for a wide range of applications in contemporary wireless communication systems.
基金Research Supporting Project Number(RSPD2023R 585),King Saud University,Riyadh,Saudi Arabia.
文摘Side lobe level reduction(SLL)of antenna arrays significantly enhances the signal-to-interference ratio and improves the quality of service(QOS)in recent and future wireless communication systems starting from 5G up to 7G.Furthermore,it improves the array gain and directivity,increasing the detection range and angular resolution of radar systems.This study proposes two highly efficient SLL reduction techniques.These techniques are based on the hybridization between either the single convolution or the double convolution algorithms and the genetic algorithm(GA)to develop the Conv/GA andDConv/GA,respectively.The convolution process determines the element’s excitations while the GA optimizes the element spacing.For M elements linear antenna array(LAA),the convolution of the excitation coefficients vector by itself provides a new vector of excitations of length N=(2M−1).This new vector is divided into three different sets of excitations including the odd excitations,even excitations,and middle excitations of lengths M,M−1,andM,respectively.When the same element spacing as the original LAA is used,it is noticed that the odd and even excitations provide a much lower SLL than that of the LAA but with amuch wider half-power beamwidth(HPBW).While the middle excitations give the same HPBWas the original LAA with a relatively higher SLL.Tomitigate the increased HPBWof the odd and even excitations,the element spacing is optimized using the GA.Thereby,the synthesized arrays have the same HPBW as the original LAA with a two-fold reduction in the SLL.Furthermore,for extreme SLL reduction,the DConv/GA is introduced.In this technique,the same procedure of the aforementioned Conv/GA technique is performed on the resultant even and odd excitation vectors.It provides a relatively wider HPBWthan the original LAA with about quad-fold reduction in the SLL.
基金supported by the National Science Foundation of China under Grant No.62066005Project of the Guangxi Science and Technology under Grant No.AD21196006.
文摘With the rapid development of communication technology,the problem of antenna array optimization plays a crucial role.Among many types of antennas,line antenna arrays(LAA)are the most commonly applied,but the side lobe level(SLL)reduction is still a challenging problem.In the radiation process of the linear antenna array,the high side lobe level will interfere with the intensity of the antenna target radiation direction.Many conventional methods are ineffective in obtaining the maximumside lobe level in synthesis,and this paper proposed a quantum equilibrium optimizer(QEO)algorithm for line antenna arrays.Firstly,the linear antenna array model consists of an array element arrangement.Array factor(AF)can be expressed as the combination of array excitation amplitude and position in array space.Then,inspired by the powerful computing power of quantum computing,an improved quantum equilibrium optimizer combining quantum coding and quantum rotation gate strategy is proposed.Finally,the proposed quantum equilibrium optimizer is used to optimize the excitation amplitude of the array elements in the linear antenna array model by numerical simulation to minimize the interference of the side lobe level to the main lobe radiation.Six differentmetaheuristic algorithms are used to optimize the excitation amplitude in three different arrays of line antenna arrays,the experimental results indicated that the quantum equilibrium optimizer is more advantageous in obtaining the maximum side lobe level reduction.Compared with other metaheuristic optimization algorithms,the quantum equilibrium optimizer has advantages in terms of convergence speed and accuracy.
文摘This work presents,design and specific absorption rate(SAR)analysis of a 37GHz antenna,for 5th Generation(5G)applications.The proposed antenna comprises of 4-elements of rectangular patch and an even distribution.The radiating element is composed of copper material supported by Rogers RT5880 substrate of thickness,0.254 mm,dielectric constant(εr),2.2,and loss tangent,0.0009.The 4-elements array antenna is compact in size with a dimension of 8mm×20mm in length and width.The radiating patch is excited with a 50 ohms connector i.e.,K-type.The antenna resonates in the frequency band of 37 GHz,that covers the 5G applications.The antenna behavior is studied both in free space and in the proximity of the human body.Three models of the human body,i.e.,belly,hand,and head(contain skin,fat,muscles,and bone)are considered for on-body simulations.At resonant frequency,the antenna gives a boresight gain of 11.6 dB.The antenna radiates efficiently with a radiated efficiency of more than 90%.Also,it is observed that the antenna detunes to the lowest in the proximity of the human body,but still a good impedance matching is achieved considering the−10 dB criteria.Moreover,SAR is also being presented.The safe limit of 2 W/kg for any 10 g of biological tissue,specified by the European International Electro Technical Commission(IEC)has been considered.The calculated values of SAR for human body models,i.e.,belly,hand and head are 1.82,1.81 and 1.09 W/kg,respectively.The SAR values are less than the international recommendations for the three models.Furthermore,the simulated and measured results of the antenna are in close agreement,which makes it,a potential candidate for the fifth-generation smart phones and other handheld devices.
基金the National Natural Science Foundation of China(61901493,61901492,61801485)the Natural Science Foundation of Hunan Province(2020JJ5676).
文摘The electric-controlled metasurface antenna array(ECMSAA)with ultra-wideband frequency reconfigurable reflection suppression is proposed and realized.Firstly,an electriccontrolled metasurface with ultra-wideband frequency reconfigurable in-phase reflection characteristics is designed.The element of the ECMSAA is constructed by loading the single electric-controlled metasurface unit on the conventional patch antenna element.The radiation properties of the conventional patch antenna and the reflection performance of electric-controlled metasurface are maintained when the antenna and the metasurface are integrated.Thus,the ECMSAA elements have excellent radiation properties and ultra-wideband frequency reconfigurable in-phase reflection characteristics simultaneously.To take a further step,a 6×10 ECMSAA is realized based on the designed metasurface antenna element.Simulated and measured results prove that the reflection of the ECMSAA is dynamically suppressed in the P and L bands.Meanwhile,high-gain and multi-polarization radiation properties of the ECMSAA are achieved.This design method not only realizes the frequency reconfigurable reflection suppression of the antenna array in the ultra-wide frequency band but also provides a way to develop an intelligent low-scattering antenna.
文摘As an important part of phased array system,the research on phased array antenna is very necessary.The phased array antenna achieves the scanning beam adaptively by regulating the phase difference between each array element.In this paper,a dual K-band circularly polarized antenna with high broadband,broadband beam,wide axial ratio bandwidth and high radiation efficiency is designed.We combine with the advantages of slot antenna and aperture antenna,use multimode waveguide cavity structure to design an aperture antenna,which is fed to waveguide circular polarizer by slot coupling in order to realize circular polarization radiation.Meanwhile,it has the characteristics of broadband,broadband beam,wide axial ratio bandwidth and high radiation efficiency.A slit antenna is designed by using a multimode waveguide cavity structure and a slit coupling feed to a waveguide circular polarizer is used to achieve circularly polarized radiation.The designed antenna consists of two K-band circularly polarized antenna units,and the spacing between the two units is 9.5 mm,which is fed by aK-band T/R module(Transmitter/Receiver module).In order to study the performance of the pattern in the case of the research group,the 2-unit structure is established.The simulation results of frequency–axial ratio bandwidth are given,and the simulation result of the antenna array is shown.The practical results of antenna design and test are also given.
基金Supported by the High Technology Research and Development Programme of China (No. 2006AA04Z205)
文摘A global localization system of in-pipe robot is introduced in this paper.Global position system(GPS)is applied to monitor the motion of robot along the whole pipeline which is equally divided intomany segments by tracking stations.The definite segment in which robot existing can be detected and thisis long-range localization.Ultra-long wave(ULW)is adopted to solve the problem of metallic shieldingand realize effective communication between inside and outside of pipeline.ULW emitter is carried byrobot.When the plant is broken or defects on pipe-wall are inspected,the robot will stop moving.Anten-na array is presented and disposed upon the definite segment to search the accurate location of robot,andthis is short-range localization.In this paper,five-antenna array is adopted and an effective linear signalfusion algorithm is presented.The localization precision reaches R < 25cm.By tests in Shengli oil field,the whole system is verified with robust solutions.
文摘In this paper,we have proposed a novel structure of Ka-band based phased array antenna with calibration function.In the design of Kaband antenna,the active phased array system is adopted and the antenna would work in the dual polarization separation mode.We have given out the schematic diagram for the proposed Ka-band antenna,where the Kaband antenna is in the form of waveguide slot array antenna,with 96 units in azimuth and 1 unit in distance.Each group of units is driven by a singlechannel Transmitter/Receiver(T/R)component,and the whole array contains 192 T/R components in total.The size of the T/R component is 55mm(length)×50mm(width)×5.8mm(height),3 Sub-micro Sub-Miniature Push-on(SSMP)blind sockets and a 21-core low-frequency socket are designed on the two sides of the T/R component.In order to meet the technical specifications of phased array antenna,the Ka-band transceiver component is designed based on Low Temperatrue Co-fired Ceramic(LTCC)technology to achieve miniaturization and lightweight.In our approach,the feed network includes two parts:transceiver network and calibration network.The transceiver network consists of 241:8 time-delay power dividers,12 two-way power dividers and 2 six-way time-delay power dividers.The power supply required by theKaband antenna unit is provided to each active component by the power module after Ka band wavelet control distribution.Simulation and measurement results are given in the form of standing wave and scanning capability.
文摘A novel differential quasi-Yagi antenna is first presented and compared with a normal single-ended counterpart.The simulated and measured results show that the differential quasi-Yagi antenna outperforms the conventional single-ended one.The differential quasi-Yagi antenna is then used as an element for linear arrays.A study of the coupling mechanism between the two differential and the two singleended quasi-Yagi antennas is conducted,which reveals that the TE0 mode is the dominant mode,and the driver is the decisive part to account for the mutual coupling.Next,the effects of four decoupling structures are respectively evaluated between the two differential quasi-Yagi antennas.Finally,the arrays with simple but effective decoupling structures are fabricated and measured.The measured results demonstrate that the simple slit or air-hole decoupling structure can reduce the coupling level from−18 dB to−25 dB and meanwhile maintain the impedance matching and radiation patterns of the array over the broad bandwidth.The differential quasi-Yagi antenna should be a promising antenna candidate for many applications.
文摘Antennas are an indispensable element in wireless networks. For long-distance wireless communication, antenna gains need to be very strong (highly directive) because the signal from the antenna loses a lot of strength as it travels over long distances. This is true in the military with missile, radar, and satellite systems, etc. Antenna arrays are commonly employed to focus electromagnetic waves in a certain direction that cannot be achieved perfectly with a single-element antenna. The goal of this study is to design a rectangular microstrip high-gain 2 × 1 array antenna using ADS Momentum. This microstrip patch array design makes use of the RT-DUROID 5880 as a substrate with a dielectric constant of 2.2, substrate height of 1.588 mm, and tangent loss of 0.001. To achieve efficient gain and return loss characteristics for the proposed array antenna, RT-Duroid is a good choice of dielectric material. The designed array antenna is made up of two rectangular patches, which have a resonance frequency of 3.3 GHz. These rectangular patches are excited by microstrip feed lines with 13 mm lengths and 4.8 mm widths. The impedance of the patches is perfectly matched by these transmission lines, which helps to get better antenna characteristics. At a resonance frequency of 3.3 GHz, the suggested antenna array has a directivity of 10.50 dB and a maximum gain of 9.90 dB in the S-band. The S parameters, 3D radiation pattern, directivity, gain, and efficiency of the constructed array antenna are all available in ADS Momentum.
基金Supported by the National Natural Science Foundation of China (No.60372014)Open Research Foundation of National Mobile Communications Research Laboratory, Southeast University, China.
文摘An antenna array based base station receiver for multicarrier Direct Sequence Code Division Multiple Access (DS-CDMA) system is proposed. The main advantage of the receiver is that the spatial diversity is achieved by combining signals of array elements. Based on the detailed analysis of multiuser interference and noise characteristics, the performance of the proposed receiver is analyzed. Theoretical analysis shows significant performance improvement in terms of system capacity due to the use of antenna arrays compared with the conventional single antenna multicarrier DS-CDMA approach. Simulation results confirm the theoretical analysis.
基金Partially supported by the National Natural Science Foundation of China (No.60572046 & No.60502022) and the Research Fund for Doctoral Program of Higher Education of China (No.20020698024 & No.20030698027).
文摘In this paper, we propose the blind space-time high rate multi-user detector for synchronous uplink multi-rate Direct Sequence Code Division Multiple Access (DS-CDMA) systems with antenna array at the base station. By employing antenna array at the base stations, the spatial dimension is used efficiently to suppress co-channel interference and increase the capacity for multi-rate CDMA system. After low rate physical users in the system are modeled as corresponding high rate virtual users, we construct the space-time signature vectors of virtual users. And subspace projection algorithm is employed to estimate space-time signature vectors blindly. Then a soft-decision high rate lnultiuser detector is proposed based on the estimated signature vectors, which avoids estimating the ambiguous complex factors which are necessary in traditional blind detector. Numerical simulation results evaluate the performance in terms of Bit Error Rate (BER) for the proposed scheme. Simultaneously, it demonstrates that the system capability increases two times when using twoelement antenna array.
基金Supported by the National Natural Science Foundation of China (No.60572036)Open Research Fund of National Mobile Communications Research Laboratory,Southeast University,China.
文摘Code-Division Multiple-Access (CDMA) systems are interference limited,and therefore efficient interference management is necessary to enhance the performance of a CDMA system.In this paper,a successive beamforming (spatial filtering),linear decorrelating MultiUser Detection (MUD, temporal filtering) and diversity reception structure for uplink multicarrier Direct Sequence CDMA (DS-CDMA) system with antenna array are proposed.By beamforming,the antenna array suppresses interference according to the distinct array signature.Subsequently,linear decorrelating MUD is ap- plied to separate the signals of different users and eliminate Multiple Access Interference (MAI).Finally, the decorrelated signals at different subcarriers that belong to the same user are combined to achieve frequency diversity.Simulation results show that the proposed structure offers significant Bit Error Rate (BER) performance improvement by successively exploiting the space-time-frequency processing.
基金Supported by the National Natural Science Foundation of China (No.60472104)Doctoral innovative fund of Jiangsu province (xm04-32).
文摘Two blind multiuser detection algorithms for antenna array in Code Division Multiple Access (CDMA) system which apply the linearly constrained condition to the Least Squares Constant Modulus Algorithln (LSCMA) are proposed in this paper. One is the Linearly Constrained LSCMA (LC-LSCMA), the other is the Preprocessing LC-LSCMA (PLC-LSCMA). The two algorithms are compared with the conventional LSCMA. The results show that the two algorithms proposed in this paper are superior to the conventional LSCMA and the best one is PLC-LSCMA.
文摘VHF (Very High Frequency) band antenna array will receive analog signal from universe for storage after digital sampling and adding time scale, and then do the interference analysis of different sub-station digital signal. It requires the time-frequency system with high precision and low drifting. This paper explains a time-frequency system of VHF band antenna, which can produce standard 10 MHz signal and clock signal needed by sampler, to ensure that two computers which sampling data has the same system time and the storage data has the accurate time scale, the system includes time comparison programme based on the GPS network timing two different sampling control computers. Timing strategy uses a time comparison software which based on the Labview graphical programming platform. This software captures the system time of two computers to analyze and determine the time deviation when the two computers occurs time offset, and then grant the GPS time of NTP server to the two computers through local area network in this time deviation. Final results show that this method can automatically calibrate the system time of the computers in the LAN, Precision Can Reach 0.1 s Orless.
文摘The beam scan with variable linear polarization directions of antenna arrays using MM/C transmit-receive (T/R) modules is explored. It is shown that the beam scan and the polarizations of electric fields can be controlled simultaneously if the forms of module arrangement are chosen properly and the amplitudes and the phases of array excitation are determined by the method presented in this article. Moreover, the calculations of the amplitudes and the phases of array excitation are simplified greatly while using the bounded conditions properly, and the desired beam sweep rate is achieved.
基金supported by the National Natural Science Foundation of China (NSFC) [grant number. 61871414]。
文摘In this paper, a novel direction of arrival(DOA) estimation algorithm using directional antennas in cylindrical conformal arrays(CCAs) is proposed. To eliminate the shadow effect, we divide the CCAs into several subarrays to obtain the complete output vector. Considering the anisotropic radiation pattern of a CCA, which cannot be separated from the manifold matrix, an improved interpolation method is investigated to transform the directional subarray into omnidirectional virtual nested arrays without non-orthogonal perturbation on the noise vector. Then, the cross-correlation matrix(CCM) of the subarrays is used to generate the consecutive co-arrays without redundant elements and eliminate the noise vector. Finally, the full-rank equivalent covariance matrix is constructed using the output of co-arrays,and the unitary estimation of the signal parameters via rotational invariance techniques(ESPRIT) is performed on the equivalent covariance matrix to estimate the DOAs with low computational complexity. Numerical simulations verify the superior performance of the proposed algorithm, especially under a low signal-to-noise ratio(SNR) environment.
基金supported partly by the National Natural Science Foundation of China(50805111)the Natural Science Basic Research Plan in Shaanxi Province of China(SJ08E_203.)
文摘The influence of the distorted plane of the active phased array antenna on the electromagnetic performance is of great significance to the research on and development of the high-performance antennas. On the bent and bowl-shape distortion, the model is established of the relationship between the electromagnetic performance and the position error of the radiated elements. The method is presented of analyzing the far-field pattern of the distorted rectangular active phased array antenna. The analysis results of a planar phased array antenna with different distortions grades prove the validity of the model. Therefore, by the method, the antenna designers may set the reasonable requirement on the structural tolerance in manufacturing antenna.
基金supported partially by the 973 Program under the Grant 2012CB316100
文摘Large-scale array aided beamforming improves the spectral efficiency(SE) as a benefit of high angular resolution.When dual-beam downlink beamforming is applied to the train moving towards cell edge,the inter-beam ambiguity(IBA) increases as the directional difference between beams becomes smaller.An adaptive antenna activation based beamforming scheme was proposed to mitigate IBA.In the district near the base station(BS),all antenna elements(AEs) were activated to generate two beams.As the distance from the train to the BS increased,only the minimum number of AEs satisfying the resolution criterion would be activated.At the cell edge,one beam was switched off due to intolerable IBA.The proposed scheme can achieve SE gain to the non-adaptive scheme and show more robustness against the direction-of-arrival(DOA) estimation error.