This paper presents measurements techniques of wearable antennas and RF medical systems in vicinity of human body. The antennas radiation characteristics on human body have been measured by using a phantom. The phanto...This paper presents measurements techniques of wearable antennas and RF medical systems in vicinity of human body. The antennas radiation characteristics on human body have been measured by using a phantom. The phantom electrical characteristics represent the human body electrical characteristics. The phantom has a cylindrical shape with a 40 cm diameter and a length of 1.5 m. The phantom electrical characteristics are similar to the human body electrical characteristics. The antenna under test was placed on the phantom during the measurements of the antennas radiation characteristics. The phantom was employed to compare the electrical performance of several new wearable antennas. The phantom was also employed to measure the electrical performance of several antenna belts in vicinity of human body. The results of antenna with thinner belt are better than the results of the same antenna array with thicker belt.展开更多
As antennas are inherently included recommended in Over-The-Air (OTA) testing, it is important to also consider realistic channel models for the multiple-input multiple-output (MIMO) device performance evaluation. Thi...As antennas are inherently included recommended in Over-The-Air (OTA) testing, it is important to also consider realistic channel models for the multiple-input multiple-output (MIMO) device performance evaluation. This paper aims to emulate realistic multi-Path propagation channels in terms of angles of arrivals (AoA) and cross-polarization ratio (XPR) with Rayleigh fading, inside an anechoic chamber, for antenna diversity measurements. In this purpose, a practical multi-probe anechoic chamber measurement system (MPAC) with 24 probe antennas (SATIMO SG24) has been used. However, the actual configuration of this system is not able to reproduce realistic channels. Therefore, a new method based on the control of the SG24 probes has been developed. At first time, this method has been validated numerically through the comparison of simulated and analytical AoA probability density distributions. At the second time, the performance of an antenna diversity system inside the SG24 has been performed in terms of the correlation coefficient and diversity gain (DG) using an antenna reference system. Simulated and measurements results have shown a good agreement.展开更多
Vehicle-to-Everything(V2X) communications will be an essential part of the technology in future autonomous drive decision systems.A fundamental procedure is to establish a robust communication channel between end-to-e...Vehicle-to-Everything(V2X) communications will be an essential part of the technology in future autonomous drive decision systems.A fundamental procedure is to establish a robust communication channel between end-to-end devices.Due to the antenna placed at different positions on vehicles,the existing cellular electro-magnetic(EM) wave propagation modelling does not fit properly for V2X direct communication application.In order to figure out a feasible understanding of this problem,this paper focuses on the propagation channel analysis in a rural Vehicle-to-Vehicle(V2V) scenario for vehicular communication with antenna position experiments at different heights.By adopting the ray-tracing algorithm,a rural scenario simulation model is built up via the use of a commercial-off-the-shelf(COTS) EM modelling software package,that computes the path loss received power and delay spread for a given propagation channel.Next,a real-world vehicle measurement campaign was performed to verify the simulation results.The simulated and measured receiver power was in good agreement with each other,and the results of this study considered two antenna types located at three different relative heights between the two vehicles.This research provides constructive guidance for the V2V antenna characteristics,antenna placement and vehicle communication channel analysis.展开更多
Anechoic chambers are used for indoor antenna measurements. The common method of constructing an anechoic chamber is to cover all inside walls by the electromagnetic absorbers. In this paper, a fully metallic spherica...Anechoic chambers are used for indoor antenna measurements. The common method of constructing an anechoic chamber is to cover all inside walls by the electromagnetic absorbers. In this paper, a fully metallic spherical chamber structure is presented in which the propagation of the electromagnetic waves inside the chamber is controlled and they are guided to an absorber. In the proposed method, an appropriate quiet zone is obtained, and unlike ordinary anechoic chambers, the absorber usage amount is reduced greatly. The performance of the chamber is evaluated by simulation. The results show that the proposed method could provide a useful technique for the indoor antenna measurements.展开更多
Antenna mechanical pose measurement has always been a crucial issue for radio frequency(RF)engineers,owning to the need for mechanical pose adjustment to satisfy the changing surroundings.Traditionally,the pose is est...Antenna mechanical pose measurement has always been a crucial issue for radio frequency(RF)engineers,owning to the need for mechanical pose adjustment to satisfy the changing surroundings.Traditionally,the pose is estimated in the contact way with the help of many kinds of measuring equipment,but the measurement accuracy cannot be well assured in this way.We propose a non-contact measuring system based on Structure from Motion(SfM)in the field of photogrammetry.The accurate pose would be estimated by only taking several images of the antenna and after some easy interaction on the smartphone.Extensive experiments show that the error ranges of antenna’s downtilt and heading are within 2degrees and 5 degrees respectively,with the shooting distance in 25 m.The GPS error is also under 5 meters with this shooting distance.We develop the measuring applications both in PC and android smartphones and the results can be computed within 3 minutes on both platforms.The proposed system is quite safe,convenient and efficient for engineers to use in their daily work.To the best of our knowledge,this is the first pipeline that solves the antenna pose measuring problem by the photogrammetry method on the mobile platform.展开更多
This work provides the design and analysis of a single layer,linearly polarized millimeter wave reflectarray antenna with mutual coupling optimization.Detailed analysis was carried out at 26GHz design frequency using ...This work provides the design and analysis of a single layer,linearly polarized millimeter wave reflectarray antenna with mutual coupling optimization.Detailed analysis was carried out at 26GHz design frequency using the simulations of the reflectarray unit cells as well as the periodic reflectarray antenna.The simulated results were verified by the scattering parameter and far-fieldmeasurements of the unit cell and periodic arrays,respectively.Aclose agreement between the simulated and measured results was observed in all the cases.Apart from the unit cells and reflectarray,the waveguide and horn antenna were also fabricated to be used in the measurements.The measured scattering parameter results of the proposed circular ring unit cells provided a maximum reflection loss of 2.8 dB with phase errors below 10°.On the other hand,the measured far-field results of the 20×20 reflectarray antenna provided a maximum gain of 26.45 dB with a maximum 3 dB beam width of 12°and 1 dB gain drop bandwidth of 13.1%.The performance demonstrated by the proposed reflectarray antenna makes it a potential candidate to be used in modern-day applications such as 5th Generation(5G)and 6th Generation(6G)communication systems.展开更多
Comprehensive radiation characteristics of polarized antenna are crucial in creating practical channel coefficients for next generation wireless communication system designs.Being currently supported within3 D geometr...Comprehensive radiation characteristics of polarized antenna are crucial in creating practical channel coefficients for next generation wireless communication system designs.Being currently supported within3 D geometry-based stochastic channel models(GSCM),field patterns are technically obtained by chamber measurement(or by its best fitting).However,in some channel related performance analysis scenarios,design insight can be crystallized better by starting the derivations with theoretical co-polarization and cross-polarization components.Specifically,these two components are mathematically linked with field patterns through the proposed polarization projection algorithm.In this manuscript,we focus on revealing the transformation criterion of polarization states between the antenna plane and the propagation plane.In practice,it makes retrieving the field patterns by electromagnetic computation possible.Meanwhile,the impact imposed by distinct antenna orientations is geometrically illustrated and consequently incorporated into the proposed algorithm.This will further facilitate flexible performance evaluation of related radio transmission technologies.Our conclusions are verified by the closed-form expression of the dipole field pattern(via an analytical approach) and by chamber measurement results.Moreover,we find that its 2D degenerative case is aligned with the definitions in 3^(rd) generation partnership project(3GPP)technical report 25.996.The most obvious benefit of the proposed algorithm is to significantly reduce the cost on generating channel coefficients in GSCM simulation.展开更多
文摘This paper presents measurements techniques of wearable antennas and RF medical systems in vicinity of human body. The antennas radiation characteristics on human body have been measured by using a phantom. The phantom electrical characteristics represent the human body electrical characteristics. The phantom has a cylindrical shape with a 40 cm diameter and a length of 1.5 m. The phantom electrical characteristics are similar to the human body electrical characteristics. The antenna under test was placed on the phantom during the measurements of the antennas radiation characteristics. The phantom was employed to compare the electrical performance of several new wearable antennas. The phantom was also employed to measure the electrical performance of several antenna belts in vicinity of human body. The results of antenna with thinner belt are better than the results of the same antenna array with thicker belt.
文摘As antennas are inherently included recommended in Over-The-Air (OTA) testing, it is important to also consider realistic channel models for the multiple-input multiple-output (MIMO) device performance evaluation. This paper aims to emulate realistic multi-Path propagation channels in terms of angles of arrivals (AoA) and cross-polarization ratio (XPR) with Rayleigh fading, inside an anechoic chamber, for antenna diversity measurements. In this purpose, a practical multi-probe anechoic chamber measurement system (MPAC) with 24 probe antennas (SATIMO SG24) has been used. However, the actual configuration of this system is not able to reproduce realistic channels. Therefore, a new method based on the control of the SG24 probes has been developed. At first time, this method has been validated numerically through the comparison of simulated and analytical AoA probability density distributions. At the second time, the performance of an antenna diversity system inside the SG24 has been performed in terms of the correlation coefficient and diversity gain (DG) using an antenna reference system. Simulated and measurements results have shown a good agreement.
文摘Vehicle-to-Everything(V2X) communications will be an essential part of the technology in future autonomous drive decision systems.A fundamental procedure is to establish a robust communication channel between end-to-end devices.Due to the antenna placed at different positions on vehicles,the existing cellular electro-magnetic(EM) wave propagation modelling does not fit properly for V2X direct communication application.In order to figure out a feasible understanding of this problem,this paper focuses on the propagation channel analysis in a rural Vehicle-to-Vehicle(V2V) scenario for vehicular communication with antenna position experiments at different heights.By adopting the ray-tracing algorithm,a rural scenario simulation model is built up via the use of a commercial-off-the-shelf(COTS) EM modelling software package,that computes the path loss received power and delay spread for a given propagation channel.Next,a real-world vehicle measurement campaign was performed to verify the simulation results.The simulated and measured receiver power was in good agreement with each other,and the results of this study considered two antenna types located at three different relative heights between the two vehicles.This research provides constructive guidance for the V2V antenna characteristics,antenna placement and vehicle communication channel analysis.
文摘Anechoic chambers are used for indoor antenna measurements. The common method of constructing an anechoic chamber is to cover all inside walls by the electromagnetic absorbers. In this paper, a fully metallic spherical chamber structure is presented in which the propagation of the electromagnetic waves inside the chamber is controlled and they are guided to an absorber. In the proposed method, an appropriate quiet zone is obtained, and unlike ordinary anechoic chambers, the absorber usage amount is reduced greatly. The performance of the chamber is evaluated by simulation. The results show that the proposed method could provide a useful technique for the indoor antenna measurements.
基金supported by ZTE Industry-Academia-Research Cooperation Funds
文摘Antenna mechanical pose measurement has always been a crucial issue for radio frequency(RF)engineers,owning to the need for mechanical pose adjustment to satisfy the changing surroundings.Traditionally,the pose is estimated in the contact way with the help of many kinds of measuring equipment,but the measurement accuracy cannot be well assured in this way.We propose a non-contact measuring system based on Structure from Motion(SfM)in the field of photogrammetry.The accurate pose would be estimated by only taking several images of the antenna and after some easy interaction on the smartphone.Extensive experiments show that the error ranges of antenna’s downtilt and heading are within 2degrees and 5 degrees respectively,with the shooting distance in 25 m.The GPS error is also under 5 meters with this shooting distance.We develop the measuring applications both in PC and android smartphones and the results can be computed within 3 minutes on both platforms.The proposed system is quite safe,convenient and efficient for engineers to use in their daily work.To the best of our knowledge,this is the first pipeline that solves the antenna pose measuring problem by the photogrammetry method on the mobile platform.
基金The authors extend their appreciation to the Deanship of Scientific Research at Imam Mohammad Ibn Saud Islamic University for funding this work through Research Group No.RG-21-12-08.
文摘This work provides the design and analysis of a single layer,linearly polarized millimeter wave reflectarray antenna with mutual coupling optimization.Detailed analysis was carried out at 26GHz design frequency using the simulations of the reflectarray unit cells as well as the periodic reflectarray antenna.The simulated results were verified by the scattering parameter and far-fieldmeasurements of the unit cell and periodic arrays,respectively.Aclose agreement between the simulated and measured results was observed in all the cases.Apart from the unit cells and reflectarray,the waveguide and horn antenna were also fabricated to be used in the measurements.The measured scattering parameter results of the proposed circular ring unit cells provided a maximum reflection loss of 2.8 dB with phase errors below 10°.On the other hand,the measured far-field results of the 20×20 reflectarray antenna provided a maximum gain of 26.45 dB with a maximum 3 dB beam width of 12°and 1 dB gain drop bandwidth of 13.1%.The performance demonstrated by the proposed reflectarray antenna makes it a potential candidate to be used in modern-day applications such as 5th Generation(5G)and 6th Generation(6G)communication systems.
基金supported in part by the Natural Science Basic Research Plan in Shaanxi Province(No.2015JQ6221,No. 2015JQ6259,No.2015JM6341)the Fundamental Research Funds for the Central Universities(No.JB140109)+8 种基金the National Natural Science Foundation of China(No. 61401321,No.61372067)the National Hightech R&D Program of China(No. 2014AA01A704,No.2015AA7124058)the National Basic Research Program of China(No.2014CB340206)the National Key Technology R&D Program of China(No. 2012BAH16B00)the Next Generation Internet Program of China(No.CNGI1203003)the Research Culture Funds of Xi'an University of Science and Technology(No.201357)the Open Project of State Key Laboratory of Integrated Service Networks(No.ISN1601)the Open Research Fund of National Mobile Communications Research Laboratory (No.2015D01)the Science and Technology R&D Program of Shaanxi Province(No. 2014KJXX-49)
文摘Comprehensive radiation characteristics of polarized antenna are crucial in creating practical channel coefficients for next generation wireless communication system designs.Being currently supported within3 D geometry-based stochastic channel models(GSCM),field patterns are technically obtained by chamber measurement(or by its best fitting).However,in some channel related performance analysis scenarios,design insight can be crystallized better by starting the derivations with theoretical co-polarization and cross-polarization components.Specifically,these two components are mathematically linked with field patterns through the proposed polarization projection algorithm.In this manuscript,we focus on revealing the transformation criterion of polarization states between the antenna plane and the propagation plane.In practice,it makes retrieving the field patterns by electromagnetic computation possible.Meanwhile,the impact imposed by distinct antenna orientations is geometrically illustrated and consequently incorporated into the proposed algorithm.This will further facilitate flexible performance evaluation of related radio transmission technologies.Our conclusions are verified by the closed-form expression of the dipole field pattern(via an analytical approach) and by chamber measurement results.Moreover,we find that its 2D degenerative case is aligned with the definitions in 3^(rd) generation partnership project(3GPP)technical report 25.996.The most obvious benefit of the proposed algorithm is to significantly reduce the cost on generating channel coefficients in GSCM simulation.