A series of numerical experiments have been conducted with a perpetual July, nine-level general circulation spectral model to determine the effect of variation of the Arctic sea ice cover extent and the joint effect o...A series of numerical experiments have been conducted with a perpetual July, nine-level general circulation spectral model to determine the effect of variation of the Arctic sea ice cover extent and the joint effect of anomalies of both the Arctic sea ice cover and the Central-eastern Equatorial Pacific sea surface temperature on the summer general circulation. Results show that the two factors,anomalously large extent of the Arctic sea ice cover and anomalously warm sea surface temperature over the Central-eastern Equatorial Pacific Ocean, play substantially the equal role in the effect on the summer general circulation, and either of them can notably induce the atmospheric anomalies. The main dynamical processes determining the effect of the Arctic sea ice and the equatorial SST anomalies are associated with two leading teleconnection patterns, i. e. the Asia North/American and Eurasian patterns observed in atmosphere. The results presented in this paper again prove that the general circulation is fundamentally motivated by the non-uniform heating between the equator and the pole on the rotating earth.展开更多
The technology used to enhance coalbed methane(CBM) recovery by injecting CO_2(CO_2-ECBM) with heat, combining heat injection with CO_2 injection, is still in its infancy; therefore, theoretical studies of this CO_2-E...The technology used to enhance coalbed methane(CBM) recovery by injecting CO_2(CO_2-ECBM) with heat, combining heat injection with CO_2 injection, is still in its infancy; therefore, theoretical studies of this CO_2-ECBM technology should be perused. First, the coupling equations of the di usion–adsorption–seepage–heat transfer fields of gas are established. The displacement processes under di erent pressures and temperatures are simulated by COMSOL. Finally, the displacement effects, a comparison of the CO_2 storage capacity with the CH_4 output and the e ective influencing radius of CO_2 injection are analyzed and discussed. The results show that(1) the displacement pressure and temperature are two key factors influencing the CH_4 output and the CO_2 storage capacity, and the increase in the CO_2 storage capacity is more sensitive to temperature and pressure than the CH_4 output.(2) The gas flow direction is from the injection hole to the discharge hole during the displacement process, and the regions with high velocity are concentrated at the injection hole and the discharge hole.(3) A reduction in the CH_4 concentration and an increase in the CO_2 concentration are obvious during the displacement process.(4) The e ective influencing radius of injecting CO_2 with heat increases with the increase in time and pressure. The relationship between the e ective influencing radius and the injection time of CO_2 has a power exponential function, and there is a linear relationship between the functional coe cient and the injection pressure of CO_2. This numerical simulation study on enhancing CBM recovery by injecting CO_2 with heat can further promote the implementation of CO_2-ECBM project in deep coal seams.展开更多
Previous studies have mostly focused on the effect of anthropogenic heating(AH) on air pollution events. However, few studies have investigated the impact of AH on the warm-sector precipitation over South China. By ...Previous studies have mostly focused on the effect of anthropogenic heating(AH) on air pollution events. However, few studies have investigated the impact of AH on the warm-sector precipitation over South China. By using the Weather Research and Forecasting model(WRF)coupled with an urban canopy model with appropriate AH release values, the warm-sector heavy rainfall event that occurred over the Pearl River Delta(PRD) during 8 May 2014 was investigated.The results show that the warm-sector precipitation of the PRD is sensitive to the impact of AH.By affecting the convection in the initiation of precipitation, AH can reduce the total precipitation of urban areas by approximately 10%. The possible mechanism by which AH influences the warm-sector heavy precipitation is described as follows: AH induced local convergence shifts towards the border of the PRD and intensified the convection and precipitation therein, by rearranging the thermal distributions of the flow field. In addition, AH changed the local convergence within the urban PRD areas, which was weakened by the homogenous urban thermal environment, and thereby decreased the total urban precipitation.展开更多
A precipitation enhancement operation using an aircraft was conducted from 1415 to 1549 LST 14 March 2000 in Shaanxi Province. The NOAA-14 satellite data received at 1535 LST soon after the cloud seeding shows that a ...A precipitation enhancement operation using an aircraft was conducted from 1415 to 1549 LST 14 March 2000 in Shaanxi Province. The NOAA-14 satellite data received at 1535 LST soon after the cloud seeding shows that a vivid cloud track appears on the satellite image. The length, average width and maximum width of the cloud track are 301 km, 8.3 and 11 km, respectively. Using a three-dimensional numerical model of transport and diffusion of seeding material within stratiform clouds, the spatial concentration distribution characteristics of seeding material at different times, especially at the satellite receiving time, are simulated. The model results at the satellite receiving time are compared with the features of the cloud track. The transported position of the cloud seeding material coincides with the position of the track. The width, shape and extent of diffusion of the cloud seeding material are similar to that of the cloud track. The spatial variation of width is consistent with that of the track. The simulated length of each segment of the seeding line accords with the length of every segment of the track. Each segment of the cloud track corresponds to the transport and diffusion of each segment of the seeding line. These results suggest that the cloud track is the direct physical reflection of cloud seeding at the cloud top. The comparison demonstrates that the numerical model of transport and diffusion can simulate the main characteristics of transport and diffusion of seeding material, and the simulated results are sound and trustworthy. The area, volume, vidth, depth, and lateral diffusive rate corresponding to concentrations 1, 4, and 10 L-1are simulated in order to understand the variations of influencing range.展开更多
The seismic disaster presents a zonal distribution along the fault strike.In this paper,rupture zone of ground surface soil caused by the uniform dislocation,inclined dislocation and warped dislocation of buried norma...The seismic disaster presents a zonal distribution along the fault strike.In this paper,rupture zone of ground surface soil caused by the uniform dislocation,inclined dislocation and warped dislocation of buried normal fault are studied by constituting a three-dimensional finite element model in Automatic Dynamic Incremental Nonlinear Analysis(ADINA).According to the critical value of surface rupture,the variational features and influencing factors of width and starting position of the"avoiding zone"in engineering construction are analyzed by using 96 model calculations.The main results are as follows:(1)Since the rupture zone of the ground surface soil from the point of mechanics is different from the"avoidance zone"from the point of engineering safety,the equivalent plastic strain and the total displacement ratio should be considered to evaluate the effect of the seismic ground movement on buildings.(2)During fault dislocation,plastic failure firstly occurred on the ground surface soil of the footwall side,and then the larger deformation gradually moved to the side of the hanging wall of the fault with the increase of fault displacement.(3)When the vertical displacement of buried fault reaches 3 m,the width of"avoiding zone"in engineering construction varies within the range of 10-90 m,which is most affected by the thickness of overlying soil and the dip angle of the fault.展开更多
As the research proposed reservoirs after impact on the surrounding ecological fragile areas of groundwater level and scope, through the proposed reservoir area and its surrounding data collecting, hydrogeology survey...As the research proposed reservoirs after impact on the surrounding ecological fragile areas of groundwater level and scope, through the proposed reservoir area and its surrounding data collecting, hydrogeology survey and related test, for Modflow system simulation platform, through to the boundary conditions, initial conditions and source sink term and related hydrogeological parameters, the model identification and verification, The model of hydrogeological parameters in the study area is constructed. The simulation results show that the groundwater depth near the reservoir area will be higher than the critical value (1.8 m) of secondary salinization of soil. At the same time, according to the investigation and experiment, if the reservoir does not do seepage treatment, the water infiltration in the reservoir will aggravate the environmental hydrogeological problems in the ecologically fragile area.展开更多
Directional expansion of blast-induced crack is always the common purpose for directional controlled blasting. As it has been demonstrated that slot which located at the side of blasthole can function as a guidance fo...Directional expansion of blast-induced crack is always the common purpose for directional controlled blasting. As it has been demonstrated that slot which located at the side of blasthole can function as a guidance for blast energy, let the stress concentration at the direction of water jet slot. Therefore, it is meaningful to investigate the influence factors of directional controlled blasting with water jet assistance. In this paper, the influence on the guiding characteristics of the water jet slot during the propagation of blast-induced crack by the change of length-width of slot was simulated by ANSYS/LS-DYNA. The results indicate that if the distance from blasthole exceeds the limit, the influence on the guiding characteristics by the change length-width of the slot will get smaller and smaller, and when the width of water jet slot remains the same, the stress shows a monotonic increasing trend with the increase of the length of water jet slot, and the stress reaches its maximum value when the length-width of water jet slot is 0.075m×0.0070m. Moreover, based on stress wave theory and rock fracture theory, the influential mechanism for both the law of transmission of stress wave and of crack propagation by natural fracture and water jet slot were analyzed. The criteria for blast-induced crack propagation were established.展开更多
文摘A series of numerical experiments have been conducted with a perpetual July, nine-level general circulation spectral model to determine the effect of variation of the Arctic sea ice cover extent and the joint effect of anomalies of both the Arctic sea ice cover and the Central-eastern Equatorial Pacific sea surface temperature on the summer general circulation. Results show that the two factors,anomalously large extent of the Arctic sea ice cover and anomalously warm sea surface temperature over the Central-eastern Equatorial Pacific Ocean, play substantially the equal role in the effect on the summer general circulation, and either of them can notably induce the atmospheric anomalies. The main dynamical processes determining the effect of the Arctic sea ice and the equatorial SST anomalies are associated with two leading teleconnection patterns, i. e. the Asia North/American and Eurasian patterns observed in atmosphere. The results presented in this paper again prove that the general circulation is fundamentally motivated by the non-uniform heating between the equator and the pole on the rotating earth.
基金financially supported by the National Natural Science Foundation of China(No.41330638)
文摘The technology used to enhance coalbed methane(CBM) recovery by injecting CO_2(CO_2-ECBM) with heat, combining heat injection with CO_2 injection, is still in its infancy; therefore, theoretical studies of this CO_2-ECBM technology should be perused. First, the coupling equations of the di usion–adsorption–seepage–heat transfer fields of gas are established. The displacement processes under di erent pressures and temperatures are simulated by COMSOL. Finally, the displacement effects, a comparison of the CO_2 storage capacity with the CH_4 output and the e ective influencing radius of CO_2 injection are analyzed and discussed. The results show that(1) the displacement pressure and temperature are two key factors influencing the CH_4 output and the CO_2 storage capacity, and the increase in the CO_2 storage capacity is more sensitive to temperature and pressure than the CH_4 output.(2) The gas flow direction is from the injection hole to the discharge hole during the displacement process, and the regions with high velocity are concentrated at the injection hole and the discharge hole.(3) A reduction in the CH_4 concentration and an increase in the CO_2 concentration are obvious during the displacement process.(4) The e ective influencing radius of injecting CO_2 with heat increases with the increase in time and pressure. The relationship between the e ective influencing radius and the injection time of CO_2 has a power exponential function, and there is a linear relationship between the functional coe cient and the injection pressure of CO_2. This numerical simulation study on enhancing CBM recovery by injecting CO_2 with heat can further promote the implementation of CO_2-ECBM project in deep coal seams.
基金supported by the Special Scientific Research Fund of the Meteorological Public Welfare of the Ministry of Sciences and Technology,China(Grant No.GYHY201406003)the National Natural Science Foundation of China(Grant Nos.41375054,41575064,and 41375052)+1 种基金the Applied Basic Research Programs of the Science and Technology Department of Sichuan Province(Grant No.2015JY0109)the Starting Foundation of Civil Aviation University of China(Grant No.2016QD05X)
文摘Previous studies have mostly focused on the effect of anthropogenic heating(AH) on air pollution events. However, few studies have investigated the impact of AH on the warm-sector precipitation over South China. By using the Weather Research and Forecasting model(WRF)coupled with an urban canopy model with appropriate AH release values, the warm-sector heavy rainfall event that occurred over the Pearl River Delta(PRD) during 8 May 2014 was investigated.The results show that the warm-sector precipitation of the PRD is sensitive to the impact of AH.By affecting the convection in the initiation of precipitation, AH can reduce the total precipitation of urban areas by approximately 10%. The possible mechanism by which AH influences the warm-sector heavy precipitation is described as follows: AH induced local convergence shifts towards the border of the PRD and intensified the convection and precipitation therein, by rearranging the thermal distributions of the flow field. In addition, AH changed the local convergence within the urban PRD areas, which was weakened by the homogenous urban thermal environment, and thereby decreased the total urban precipitation.
文摘A precipitation enhancement operation using an aircraft was conducted from 1415 to 1549 LST 14 March 2000 in Shaanxi Province. The NOAA-14 satellite data received at 1535 LST soon after the cloud seeding shows that a vivid cloud track appears on the satellite image. The length, average width and maximum width of the cloud track are 301 km, 8.3 and 11 km, respectively. Using a three-dimensional numerical model of transport and diffusion of seeding material within stratiform clouds, the spatial concentration distribution characteristics of seeding material at different times, especially at the satellite receiving time, are simulated. The model results at the satellite receiving time are compared with the features of the cloud track. The transported position of the cloud seeding material coincides with the position of the track. The width, shape and extent of diffusion of the cloud seeding material are similar to that of the cloud track. The spatial variation of width is consistent with that of the track. The simulated length of each segment of the seeding line accords with the length of every segment of the track. Each segment of the cloud track corresponds to the transport and diffusion of each segment of the seeding line. These results suggest that the cloud track is the direct physical reflection of cloud seeding at the cloud top. The comparison demonstrates that the numerical model of transport and diffusion can simulate the main characteristics of transport and diffusion of seeding material, and the simulated results are sound and trustworthy. The area, volume, vidth, depth, and lateral diffusive rate corresponding to concentrations 1, 4, and 10 L-1are simulated in order to understand the variations of influencing range.
基金This research was supported by National Natural Science Foundation of China(Nos.41877294 and 51421005)Hebei Natural Science Foundation(No.D2017403020).
文摘The seismic disaster presents a zonal distribution along the fault strike.In this paper,rupture zone of ground surface soil caused by the uniform dislocation,inclined dislocation and warped dislocation of buried normal fault are studied by constituting a three-dimensional finite element model in Automatic Dynamic Incremental Nonlinear Analysis(ADINA).According to the critical value of surface rupture,the variational features and influencing factors of width and starting position of the"avoiding zone"in engineering construction are analyzed by using 96 model calculations.The main results are as follows:(1)Since the rupture zone of the ground surface soil from the point of mechanics is different from the"avoidance zone"from the point of engineering safety,the equivalent plastic strain and the total displacement ratio should be considered to evaluate the effect of the seismic ground movement on buildings.(2)During fault dislocation,plastic failure firstly occurred on the ground surface soil of the footwall side,and then the larger deformation gradually moved to the side of the hanging wall of the fault with the increase of fault displacement.(3)When the vertical displacement of buried fault reaches 3 m,the width of"avoiding zone"in engineering construction varies within the range of 10-90 m,which is most affected by the thickness of overlying soil and the dip angle of the fault.
文摘As the research proposed reservoirs after impact on the surrounding ecological fragile areas of groundwater level and scope, through the proposed reservoir area and its surrounding data collecting, hydrogeology survey and related test, for Modflow system simulation platform, through to the boundary conditions, initial conditions and source sink term and related hydrogeological parameters, the model identification and verification, The model of hydrogeological parameters in the study area is constructed. The simulation results show that the groundwater depth near the reservoir area will be higher than the critical value (1.8 m) of secondary salinization of soil. At the same time, according to the investigation and experiment, if the reservoir does not do seepage treatment, the water infiltration in the reservoir will aggravate the environmental hydrogeological problems in the ecologically fragile area.
基金Natural Science Foundation of Southwest University of Science and Technology (18zx7124).
文摘Directional expansion of blast-induced crack is always the common purpose for directional controlled blasting. As it has been demonstrated that slot which located at the side of blasthole can function as a guidance for blast energy, let the stress concentration at the direction of water jet slot. Therefore, it is meaningful to investigate the influence factors of directional controlled blasting with water jet assistance. In this paper, the influence on the guiding characteristics of the water jet slot during the propagation of blast-induced crack by the change of length-width of slot was simulated by ANSYS/LS-DYNA. The results indicate that if the distance from blasthole exceeds the limit, the influence on the guiding characteristics by the change length-width of the slot will get smaller and smaller, and when the width of water jet slot remains the same, the stress shows a monotonic increasing trend with the increase of the length of water jet slot, and the stress reaches its maximum value when the length-width of water jet slot is 0.075m×0.0070m. Moreover, based on stress wave theory and rock fracture theory, the influential mechanism for both the law of transmission of stress wave and of crack propagation by natural fracture and water jet slot were analyzed. The criteria for blast-induced crack propagation were established.