A novel enviromental protective water based metallic coating were prepared on the surface of AZ91D magnesium alloy. The properties and structure of the coating were investigated by adhension test, hardness test, heat ...A novel enviromental protective water based metallic coating were prepared on the surface of AZ91D magnesium alloy. The properties and structure of the coating were investigated by adhension test, hardness test, heat resisting test, neutral salt spray test and scanning electron microscopy (SEM). The results show that the coating has a stepped structure which can achieve good adhesion of first-grade, heat resistance temperature of 400℃, hardness of HV_ 0.50/30210 and anti-corrosion time of 250h in salt spray test. Meanwhile, the film forming and corrosion mechanism of the coating were also put forward based on the results of the Fourier transform infrared spectroscopy (FTIR) test and electrochemical impedance spectroscopy (EIS) test.展开更多
Friction spun core yarn has two components: filament core and staple fiber sheath. Under axial rubbing action, the failure mode of the core yarn is the stripping of the sheath from the core. This paper introduces a me...Friction spun core yarn has two components: filament core and staple fiber sheath. Under axial rubbing action, the failure mode of the core yarn is the stripping of the sheath from the core. This paper introduces a method to test the anti - stripping property of the core yarn. With a modified Universal Testing Machine, the stripping resistance of friction spun core yarn can be continuously measured. Some factors Influencing the measurements are discussed in detail. The testing results are compared with those from a Y731 Yarn Abrasion Tester and fur - ther confirmed by weaving practice.展开更多
Electro-chemical experiment was carded out to test the corrosion rates of aluminium-zinc hot-dip coating. It is shown that 5.3% aluminium-zinc alloy (weight ratio) has superior anti-corrosion property. The determine...Electro-chemical experiment was carded out to test the corrosion rates of aluminium-zinc hot-dip coating. It is shown that 5.3% aluminium-zinc alloy (weight ratio) has superior anti-corrosion property. The determined microstructure has displayed amorphous structure composed of nanometer sized particle of the system. The analysis indicated large negative change of Gibbs energy of 5.3% aluminium-zinc system. Molecular dynamics simulation showed that 5.3% aluminium-zinc system has very different behavior from other systems. A phase transition of this particular system was observed from simulation. The transition temperature was determined around 400 K. The simulation indicated that 5.3% aluminium-zinc system is amorphous over temperature range from 300 to 900 K, supporting the inference from experiments that amorphous solid of aluminium-zinc alloy has special anti-corrosion character.展开更多
文摘A novel enviromental protective water based metallic coating were prepared on the surface of AZ91D magnesium alloy. The properties and structure of the coating were investigated by adhension test, hardness test, heat resisting test, neutral salt spray test and scanning electron microscopy (SEM). The results show that the coating has a stepped structure which can achieve good adhesion of first-grade, heat resistance temperature of 400℃, hardness of HV_ 0.50/30210 and anti-corrosion time of 250h in salt spray test. Meanwhile, the film forming and corrosion mechanism of the coating were also put forward based on the results of the Fourier transform infrared spectroscopy (FTIR) test and electrochemical impedance spectroscopy (EIS) test.
文摘Friction spun core yarn has two components: filament core and staple fiber sheath. Under axial rubbing action, the failure mode of the core yarn is the stripping of the sheath from the core. This paper introduces a method to test the anti - stripping property of the core yarn. With a modified Universal Testing Machine, the stripping resistance of friction spun core yarn can be continuously measured. Some factors Influencing the measurements are discussed in detail. The testing results are compared with those from a Y731 Yarn Abrasion Tester and fur - ther confirmed by weaving practice.
基金Project supported by the National Natural Science Foundation of China (Nos. 20133020 and 20373033).
文摘Electro-chemical experiment was carded out to test the corrosion rates of aluminium-zinc hot-dip coating. It is shown that 5.3% aluminium-zinc alloy (weight ratio) has superior anti-corrosion property. The determined microstructure has displayed amorphous structure composed of nanometer sized particle of the system. The analysis indicated large negative change of Gibbs energy of 5.3% aluminium-zinc system. Molecular dynamics simulation showed that 5.3% aluminium-zinc system has very different behavior from other systems. A phase transition of this particular system was observed from simulation. The transition temperature was determined around 400 K. The simulation indicated that 5.3% aluminium-zinc system is amorphous over temperature range from 300 to 900 K, supporting the inference from experiments that amorphous solid of aluminium-zinc alloy has special anti-corrosion character.