We study electromechanical felds in the anti-plane deformation of an infnite medium of piezoelectric materials of 6 mm symmetry with a circular cylindrical hole. The theory of electro- elastic dielectrics with electri...We study electromechanical felds in the anti-plane deformation of an infnite medium of piezoelectric materials of 6 mm symmetry with a circular cylindrical hole. The theory of electro- elastic dielectrics with electric feld gradient in the constitutive relations is used. Special attention is paid to the felds near the surface of the hole.展开更多
The special case of a crack under mode Ⅲ conditions was treated, lying parallel to the edges of an infinite strip with finite width and with the shear modulus varying exponentially perpendicular to the edges. By usin...The special case of a crack under mode Ⅲ conditions was treated, lying parallel to the edges of an infinite strip with finite width and with the shear modulus varying exponentially perpendicular to the edges. By using Fourier transforms the problem was formulated in terms of a singular integral equation. It was numerically solved by representing the unknown dislocation density by a truncated series of Chebyshev polynomials leading to a linear system of equations. The stress intensity factor (SIF) results were discussed with respect to the influences of different geometric parameters and the strength of the non-homogeneity. It was indicated that the SIF increases with the increase of the crack length and decreases with the increase of the rigidity of the material in the vicinity of crack. The SIF of narrow strip is very sensitive to the change of the non-homogeneity parameter and its variation is complicated. With the increase of the non-homogeneity parameter, the stress intensity factor may increase, decrease or keep constant, which is mainly determined by the strip width and the relative crack location. If the crack is located at the midline of the strip or if the strip is wide, the stress intensity factor is not sensitive to the material non-homogeneity parameter.展开更多
A high-entropy alloy–ceramic gradient composite of TiC–TiB_2/75vol% Al_(0.3) CoCrFe Ni was successfully prepared by combustion synthesis under an ultra-high gravity field, which is a low-cost method with high effici...A high-entropy alloy–ceramic gradient composite of TiC–TiB_2/75vol% Al_(0.3) CoCrFe Ni was successfully prepared by combustion synthesis under an ultra-high gravity field, which is a low-cost method with high efficiency. The ceramic particles were gradient distributed in the Al_(0.3) CoCrFe Ni matrix, and the hardness of the composite material gradually decreased along the thickness direction. The anti-penetration performance of the gradient composites was simulated using the ANSYS/LS-DYNA explicit simulation program. The results demonstrate that the distribution of the ceramic particles strongly affected the mechanical properties and the anti-penetration performance of the composites. With the same total ceramic volume fraction, the gradient composites exhibit better anti-penetration performance than the corresponding ceramic–metal interlayer composites. The more uneven the ceramic distribution, the greater the elastic modulus and yield stress of the surface layer and, thus, the better the anti-penetration performance.展开更多
A novel space-borne antenna adaptive anti-jamming method based on the genetic algorithm (GA), which is combined with gradient-like reproduction operators is presented, to search for the best weight for pattern synth...A novel space-borne antenna adaptive anti-jamming method based on the genetic algorithm (GA), which is combined with gradient-like reproduction operators is presented, to search for the best weight for pattern synthesis in radio frequency (RF). Combined, the GA's the capability of the whole searching is, but not limited by selection of the initial parameter, with the gradient algorithm's advantage of fast searching. The proposed method requires a smaller sized initial population and lower computational complexity. Therefore, it is flexible to implement this method in the real-time systems. By using the proposed algorithm, the designer can efficiently control both main-lobe shaping and side-lobe level. Simulation results based on the spot survey data show that the algorithm proposed is efficient and feasible.展开更多
This work investigates the potential of combining hardness gradient with surface texture (an example of bionic coupling) to improve anti-wear properties. The bionic coupling of hardness gradient and Hexagonal Textu...This work investigates the potential of combining hardness gradient with surface texture (an example of bionic coupling) to improve anti-wear properties. The bionic coupling of hardness gradient and Hexagonal Texture (HT) was achieved by laser heat treatment on steel specimens with pre-engraved hexagonal surface texture. The successful establishment of decreasing hardness from surface to internal bulk was verified by hardness measurements along the depth of cross-sectioned specimens and corre- lated with the observations from metallurgical microscopy. The tribological performance of bionic coupling specimens (HT-L) was examined under dry contact condition, together with respective control specimens of individual bionic features, e.g. HT-H (of similar surface hardness generated by conventional heat treatment but without hardness gradient) and SS-L (of smooth surface treated by the same laser processing as for HT-L). It is found that HT-L not only exhibits lower friction coefficient and less friction fluctuation than HT-H and SS-L, but also demonstrates a 〉50% reduction of wear loss compared to HT-H and SS-L (0.0343 g for HT-L vs. 0.0723 g for HT-H, P〈0.001; 0.0343 g for HT-L vs. 0.0817 g for SS-L, P〈0.001). Corroboratively, observations with scanning electron microscopy revealed a relatively smooth surface for worn HT-L specimen, contrasting with the rugged and grooved surfaces of worn HT-H and SS-L specimens. These results indicate that the bionic coupling of hardness gradient to hexagonal texture can indeed improve anti-wear properties, affording a new strategy to wear and friction manage- ment.展开更多
A gradient nano-grained (GNG) surface layer was fabricated on an AIS1316L stainless steel (SS) by using the surface mechanical rolling treatment (SMRT). Reciprocating dry and oil-lubricated sliding tests of the ...A gradient nano-grained (GNG) surface layer was fabricated on an AIS1316L stainless steel (SS) by using the surface mechanical rolling treatment (SMRT). Reciprocating dry and oil-lubricated sliding tests of the GNG 316L SS in air at room temperature were conducted in comparison with the coarse-grained (CG) counterpart. Worn surface morphologies and subsurface microstructures were investigated for both 316L SS samples. 316L SS with a GNG surface layer shows a significantly improved wear resistance, especially under oil-lubricated condition. The notably wear resistance enhancement of the GNG 316L SS is attributed to the GNG surface layer with high strain accommodation ability and high hardness, which can reduce the wear volume in the running-in stage effectively.展开更多
基金Project supported by the Scientific Research Foundation for the Returned Overseas Chinese Scholars,State EducationMinistry.
文摘We study electromechanical felds in the anti-plane deformation of an infnite medium of piezoelectric materials of 6 mm symmetry with a circular cylindrical hole. The theory of electro- elastic dielectrics with electric feld gradient in the constitutive relations is used. Special attention is paid to the felds near the surface of the hole.
基金Project supported by the National Natural Science Foundation of China (No.90305023)
文摘The special case of a crack under mode Ⅲ conditions was treated, lying parallel to the edges of an infinite strip with finite width and with the shear modulus varying exponentially perpendicular to the edges. By using Fourier transforms the problem was formulated in terms of a singular integral equation. It was numerically solved by representing the unknown dislocation density by a truncated series of Chebyshev polynomials leading to a linear system of equations. The stress intensity factor (SIF) results were discussed with respect to the influences of different geometric parameters and the strength of the non-homogeneity. It was indicated that the SIF increases with the increase of the crack length and decreases with the increase of the rigidity of the material in the vicinity of crack. The SIF of narrow strip is very sensitive to the change of the non-homogeneity parameter and its variation is complicated. With the increase of the non-homogeneity parameter, the stress intensity factor may increase, decrease or keep constant, which is mainly determined by the strip width and the relative crack location. If the crack is located at the midline of the strip or if the strip is wide, the stress intensity factor is not sensitive to the material non-homogeneity parameter.
基金financially supported by the Fundamental Research Funds for the Central Universities of China (FRF-GF-17-B21)
文摘A high-entropy alloy–ceramic gradient composite of TiC–TiB_2/75vol% Al_(0.3) CoCrFe Ni was successfully prepared by combustion synthesis under an ultra-high gravity field, which is a low-cost method with high efficiency. The ceramic particles were gradient distributed in the Al_(0.3) CoCrFe Ni matrix, and the hardness of the composite material gradually decreased along the thickness direction. The anti-penetration performance of the gradient composites was simulated using the ANSYS/LS-DYNA explicit simulation program. The results demonstrate that the distribution of the ceramic particles strongly affected the mechanical properties and the anti-penetration performance of the composites. With the same total ceramic volume fraction, the gradient composites exhibit better anti-penetration performance than the corresponding ceramic–metal interlayer composites. The more uneven the ceramic distribution, the greater the elastic modulus and yield stress of the surface layer and, thus, the better the anti-penetration performance.
基金the National Natural Science Foundation of China (60502045).
文摘A novel space-borne antenna adaptive anti-jamming method based on the genetic algorithm (GA), which is combined with gradient-like reproduction operators is presented, to search for the best weight for pattern synthesis in radio frequency (RF). Combined, the GA's the capability of the whole searching is, but not limited by selection of the initial parameter, with the gradient algorithm's advantage of fast searching. The proposed method requires a smaller sized initial population and lower computational complexity. Therefore, it is flexible to implement this method in the real-time systems. By using the proposed algorithm, the designer can efficiently control both main-lobe shaping and side-lobe level. Simulation results based on the spot survey data show that the algorithm proposed is efficient and feasible.
基金This work was supported by National Natural Science Foundation of China (51375204), Jilin Provin- cial Science & Technology Department (20140101056JC), and Project "985" on Engineering Bionics of Jilin University. We thank Prof. Yan Shi and Dr. Jia Liu from Changchun University of Science and Technology for their help on laser heat treatment.
文摘This work investigates the potential of combining hardness gradient with surface texture (an example of bionic coupling) to improve anti-wear properties. The bionic coupling of hardness gradient and Hexagonal Texture (HT) was achieved by laser heat treatment on steel specimens with pre-engraved hexagonal surface texture. The successful establishment of decreasing hardness from surface to internal bulk was verified by hardness measurements along the depth of cross-sectioned specimens and corre- lated with the observations from metallurgical microscopy. The tribological performance of bionic coupling specimens (HT-L) was examined under dry contact condition, together with respective control specimens of individual bionic features, e.g. HT-H (of similar surface hardness generated by conventional heat treatment but without hardness gradient) and SS-L (of smooth surface treated by the same laser processing as for HT-L). It is found that HT-L not only exhibits lower friction coefficient and less friction fluctuation than HT-H and SS-L, but also demonstrates a 〉50% reduction of wear loss compared to HT-H and SS-L (0.0343 g for HT-L vs. 0.0723 g for HT-H, P〈0.001; 0.0343 g for HT-L vs. 0.0817 g for SS-L, P〈0.001). Corroboratively, observations with scanning electron microscopy revealed a relatively smooth surface for worn HT-L specimen, contrasting with the rugged and grooved surfaces of worn HT-H and SS-L specimens. These results indicate that the bionic coupling of hardness gradient to hexagonal texture can indeed improve anti-wear properties, affording a new strategy to wear and friction manage- ment.
基金the financial supports of the National Key R&D Program of China(No.2017YFA0204401)the National Natural Science Foundation(No.51231006)the Key Research Program of Chinese Academy of Sciences(No.KGZD-EW-T06)
文摘A gradient nano-grained (GNG) surface layer was fabricated on an AIS1316L stainless steel (SS) by using the surface mechanical rolling treatment (SMRT). Reciprocating dry and oil-lubricated sliding tests of the GNG 316L SS in air at room temperature were conducted in comparison with the coarse-grained (CG) counterpart. Worn surface morphologies and subsurface microstructures were investigated for both 316L SS samples. 316L SS with a GNG surface layer shows a significantly improved wear resistance, especially under oil-lubricated condition. The notably wear resistance enhancement of the GNG 316L SS is attributed to the GNG surface layer with high strain accommodation ability and high hardness, which can reduce the wear volume in the running-in stage effectively.