期刊文献+
共找到2,671篇文章
< 1 2 134 >
每页显示 20 50 100
Effects of Bamboo Charcoal-based Biochar on Soil Enzyme Activity and Microbial Community Structure
1
作者 Yizu PAN Sihai ZHANG 《Agricultural Biotechnology》 CAS 2023年第2期84-86,90,共4页
[Objectives]This study was conducted to reveal the effects of bamboo charcoal-based biochar(or bamboo charcoal for short)on soil enzyme activity and microbial community structure.[Methods]The field experiment was carr... [Objectives]This study was conducted to reveal the effects of bamboo charcoal-based biochar(or bamboo charcoal for short)on soil enzyme activity and microbial community structure.[Methods]The field experiment was carried out at the Modern Agriculture Demonstration Base of Gaoping Village,Gaoping Town,Suichang County,Zhejiang Province.Bamboo charcoal was applied at four different levels:T_(0)(no bamboo charcoal),T_(1)(1125 kg/hm^(2)bamboo charcoal),T_(2)(2250 kg/hm^(2)bamboo charcoal)and T_(3)(3375 kg/hm^(2)bamboo charcoal).Soil physicochemical properties and enzyme activities in different treatments were measured.[Results]The soil fungal,bacterial and actinomycete populations increased significantly in the soils surrounding capsicum roots.The bacterial population,fungal population and fungus/bacterium ratio peaked in Treatment T_(2),up to 7.32×10^(6)cfu/g,2.65×10^(4)cfu/g and 0.36×10^(-2),respectively.The effect of bamboo charcoal in promotingβ-glucoside,catalase,acid phosphatase and sucrase activities was T_(2)>T_(3)>T_(1)>T_(0).With bamboo charcoal increasing,the bacterium population,fungus population,fungus/bacterium ratio,β-glucoside,catalase,acid phosphatase and sucrase activities all increased at first and then decreased.T_(2)treatment showed the best effects in improving soil physicochemical properties and microbial community structure.[Conclusions]Bamboo charcoal significantly improves soil enzyme activity and increases soil microbial population,and thus has important positive effects on the soil ecosystem. 展开更多
关键词 Bamboo charcoal-based biochar Soil enzyme activity microbial community structure
下载PDF
The competition between Bidens pilosa and Setaria viridis alters soil microbial composition and soil ecological function
2
作者 Qiao Li Jianying Guo +1 位作者 Han Zhang Mengxin Zhao 《Journal of Integrative Agriculture》 SCIE CSCD 2024年第1期267-282,共16页
Bidens pilosa is recognized as one of the major invasive plants in China.Its invasion has been associated with significant losses in agriculture,forestry,husbandry,and biodiversity.Soil ecosystems play an important ro... Bidens pilosa is recognized as one of the major invasive plants in China.Its invasion has been associated with significant losses in agriculture,forestry,husbandry,and biodiversity.Soil ecosystems play an important role in alien plant invasion.Microorganisms within the soil act as intermediaries between plants and soil ecological functions,playing a role in regulating soil enzyme activities and nutrient dynamics.Understanding the interactions between invasive plants,soil microorganisms,and soil ecological processes is vital for managing and mitigating the impacts of invasive species on the environment.In this study,we conducted a systematic analysis focusing on B.pilosa and Setaria viridis,a common native companion plant in the invaded area.To simulate the invasion process of B.pilosa,we constructed homogeneous plots consisting of B.pilosa and S.viridis grown separately as monocultures,as well as in mixtures.The rhizosphere and bulk soils were collected from the alien plant B.pilosa and the native plant S.viridis.In order to focus on the soil ecological functional mechanisms that contribute to the successful invasion of B.pilosa,we analyzed the effects of B.pilosa on the composition of soil microbial communities and soil ecological functions.The results showed that the biomass of B.pilosa increased by 27.51% and that of S.viridis was significantly reduced by 66.56%.The organic matter contents in the bulk and rhizosphere soils of B.pilosa were approximately 1.30 times those in the native plant soils.The TN and NO_(3)^(-)contents in the rhizosphere soil of B.pilosa were 1.30 to 2.71 times those in the native plant soils.The activities of acid phosphatase,alkaline phosphatase,and urease in the rhizosphere soil of B.pilosa were 1.98-2.25 times higher than in the native plant soils.Using high-throughput sequencing of the16S rRNA gene,we found that B.pilosa altered the composition of the soil microbial community.Specifically,many genera in Actinobacteria and Proteobacteria were enriched in B.pilosa soils.Further correlation analyses verified that these genera had significantly positive relationships with soil nutrients and enzyme activities.Plant biomass,soil p H,and the contents of organic matter,TN,NO_(3)^(-),TP,AP,TK,and AK were the main factors affecting soil microbial communities.This study showed that the invasion of B.pilosa led to significant alterations in the composition of the soil microbial communities.These changes were closely linked to modifications in plant traits as well as soil physical and chemical properties.Some microbial species related to C,N and P cycling were enriched in the soil invaded by B.pilosa.These findings provide additional support for the hypothesis of soil-microbe feedback in the successful invasion of alien plants.They also offer insights into the ecological mechanism by which soil microbes contribute to the successful invasion of B.pilosa.Overall,our research contributes to a better understanding of the complex interactions between invasive plants,soil microbial communities,and ecosystem dynamics. 展开更多
关键词 plant invasion Bidens pilosa soil microbial composition soil properties soil enzyme activities
下载PDF
Changes in enzymes activity, substrate utilization pattern and diversity of soil microbial communities under cadmium pollution 被引量:11
3
作者 Muhammad Akmal WANG Hai-zhen +2 位作者 WU Jian-jun XU Jian-ming XU De-fu 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2005年第5期802-807,共6页
Heavy metal pollution has received increasing attention in recent years mainly because of the public awareness of environmental issues. In this study we have evaluated the effect of cadmium (Cd) on enzymes activity,... Heavy metal pollution has received increasing attention in recent years mainly because of the public awareness of environmental issues. In this study we have evaluated the effect of cadmium (Cd) on enzymes activity, substrate utilization pattern and diversity of microbial communities in soil spiked with 0, 20, 40, 60, 80, and 100 mg/kg Cd, during 60 d of incubation at 25℃. Enzyme activities determined at 0, 15, 30, 45, and 60 d after heavy metal application(DAA) showed marked declines for various Cd treatments, and up to 60 DAA, 100 mg/kg Cd resulted in 50.1%, 47.4%, and 39.8% decreases in soil urease, acid phosphatase and dehydrogenase activities, respectively to control. At 60 DAA, substrate utilization pattern of soil microbial communities determined by inoculating Biolog ECO plates indicated that Cd addition had markedly inhibited the functional activity of soil microbial communities and multivariate analysis of sole carbon source utilization showed significantly different utilization patterns for 80 and 100 mg/kg Cd treatments. The structural diversity of soil microbial communities assessed by PCR-DGGE method at 60 DAA, illustrated that DGGE patterns in soil simplified with increasing Cd concentration, and clustering of DGGE profiles for various Cd treatments revealed that they had more than 50% difference with that of control. 展开更多
关键词 enzyme activity microbial community SOIL CADMIUM
下载PDF
Dynamic changes in microbial activity and community structure during biodegradation of petroleum compounds:A laboratory experiment 被引量:11
4
作者 LI Hui ZHANG Ying +2 位作者 KRAVCHENKO Irina XU Hui ZHANG Cheng-gang 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2007年第8期1003-1013,共11页
With 110-d incubation experiment in laboratory, the responses of microbial quantity, soil enzymatic activity, and bacterial community structure to different amounts of diesel fuel amendments were studied to reveal whe... With 110-d incubation experiment in laboratory, the responses of microbial quantity, soil enzymatic activity, and bacterial community structure to different amounts of diesel fuel amendments were studied to reveal whether certain biological and biochemical characteristics could serve as reliable indicators of petroleum hydrocarbon contamination in meadow-brown soil, and use these indicators to evaluate the actual ecological impacts of 50-year petroleum-refining wastewater irrigation on soil function in Shenfu irrigation area. Results showed that amendments of ~ 1000 mg/kg diesel fuel stimulated the growth of aerobic heterotrophic bacteria, and increased the activity of soil dehydrogenase, hydrogenperoxidase, polyphenol oxidase and substrate-induced respiration. Soil bacterial diversity decreased slightly during the first 15 d of incubation and recovered to the control level on day 30. The significant decrease of the colony forming units of soil actinomyces and filamentous fungi can be taken as the sensitive biological indicators of petroleum contamination when soil was amended with 〉15000 mg/kg diesel fuel. The sharp decrease in urease activity was recommended as the most sensitive biochemical indicator of heavy diesel fuel contamination. The shifts in community structure to a community documented by Sphingomonadaceae within a-subgroup of Proteobacteria could be served as a sensitive and precise indicator of diesel fuel contamination. Based on the results described in this paper, the soil function in Shenfu irrigation area was disturbed to some extent. 展开更多
关键词 petroleum hydrocarbons enzymatic activity bacterial diversity microbial community structure DGGE
下载PDF
Variation of soil enzyme activity and microbial biomass in poplar plantations of different genotypes and stem spacings 被引量:6
5
作者 Ye Li Liping Zhang +2 位作者 Shengzuo Fang Ye Tian Jiao Guo 《Journal of Forestry Research》 SCIE CAS CSCD 2018年第4期958-967,共10页
To improve the productivity of poplar planta- tions, a field experiment of split-plot design with four tree spacings and three poplar clones was established, and four soil enzyme activities and microbial biomass were ... To improve the productivity of poplar planta- tions, a field experiment of split-plot design with four tree spacings and three poplar clones was established, and four soil enzyme activities and microbial biomass were monitored in the trial. Soil enzyme activities, in most cases, were significantly higher in topsoil (0-10 cm) than in lower horizons (10-20 cm). Soil cellulase, catalase and protease activities during the growing season were higher than during the non-growing season, while invertase activity followed the opposite trend. Soil invertase, cellulase and catalase activities varied by poplar clone but soil protease activity did not. Cellulase and protease activities in the plantation at 5 × 5 m spacing were significantly higher than in the other spacings. The highest catalase activity was recorded at 6 × 6 m spacing. At the same planting density, invertase activity was greater in square spacings than in rectangular spacings. Soil microbial biomass was also significantly affected by seedling spacing and poplar clone. The mean soil MBC was significantly lower in topsoil than in the lower horizon, while MBN showed the opposite pattern. Significantly positive correlations were observed among soil cellulase, protease and catalase activities (p 〈0.01), whereas soil invertase activity was negatively and significantly correlated with cellulase, protease and catalase activities (p 〈 0.01). Soil microbial biomass and enzyme activities were not correlated except for a significantly negative correlation between soil MBC and catalase activities. Variations in soil enzyme activity and microbial biomass in different poplar plantations suggest that genotype and planting spacing should be considered when modeling soil nutrient dynamics and managing for long-term site productivity. 展开更多
关键词 microbial activity Nutrient availability Planting density Poplar clone Seasonal variation
下载PDF
Impact of Microbial Inoculants on Microbial Quantity, Enzyme Activity and Available Nutrient Content in Paddy Soil 被引量:3
6
作者 Liu Xiao-jie Duan Xue-jiao +2 位作者 Ma Na Sun Tao Xu Jing-gang 《Journal of Northeast Agricultural University(English Edition)》 CAS 2015年第4期7-14,共8页
The experiment was conducted to study the impact of application of microbial inoculants, compared with no microbial fertilizer, on enzyme activity, microbial biomass and available nutrient contents in paddy soil in He... The experiment was conducted to study the impact of application of microbial inoculants, compared with no microbial fertilizer, on enzyme activity, microbial biomass and available nutrient contents in paddy soil in Heilongjiang Province. The application of soil phosphorus activator was able to increase the quantity of bacteria and fungi in soil, but its effect on actinomycetes in soil was not significant. The application of microbial inoculants increased the urease and sucrase activities in soil over the growing season, but only at the maturing stage soil acid phosphatase activity was enhanced with the applying soil phosphorus activator. The application of soil phosphorus activator increased alkali-hydrolyzable nitrogen and available phosphorus contents in soil, but did not increase available potassium content in soil. The optimal microbial inoculant application rate as applied as soil phosphorus activator was 7.5 kg hm-2. 展开更多
关键词 microbial fertilizer paddy soil soil microorganism soil enzyme activity
下载PDF
Afforestation effects on soil microbial abundance, microbial biomass carbon and enzyme activity in dunes of Horqin Sandy Land, northeastern China 被引量:3
7
作者 ShaoKun Wang XueYong Zhao +4 位作者 TongHui Zhang YuQiang Li Jie Lian WenDa Huang JianYing Yun 《Research in Cold and Arid Regions》 CSCD 2013年第2期184-190,共7页
In order to investigate the effects of afforestation on soil microbial abundance, microbial biomass carbon and enzyme activity in sandy dunes, 20-year-old Pinus sylvestris var. mongolica Litv. (PSM) and Populus simo... In order to investigate the effects of afforestation on soil microbial abundance, microbial biomass carbon and enzyme activity in sandy dunes, 20-year-old Pinus sylvestris var. mongolica Litv. (PSM) and Populus simonii Carri6re (PSC) mature forests were se- lected in Horqin Sandy Land, and mobile dunes was set as a control (CK). Results show that PSM and PSC plantations can im- prove soil physicochemical properties and significantly increase microbiological activity in mobile dunes. Soil microbial abun- dance, microbial biomass carbon and enzyme activity show an order of PS〉PSM〉CK. Total soil microbial abundance in PSM and PSC was respectively 50.16 and 72.48 times more than that in CK, and the differences were significant among PSM, PSC and CK Soil microbial biomass carbon in PSM and PSC was respectively 23.67 and 33.34 times more than that in CK, and the difference was insignificant between PSM and PSC. Soil enzyme activity, including dehydrogenase (DEH), peroxidase (PER), protease (PRO), urease (URE) and cellobiohydrolase (CEL) in PSM and PSC were respectively 19.00 and 27.54, 4.78 and 9.89, 4.05 and 8.67, 29.93 and 37.46, and 9.66 and 13.42 times of that in CK. R sylvestris and P. simonii can effectively improve soil physico- chemical and microbiological properties in sandy dunes and fix mobile dunes in Horqin Sandy Land. The Cmic:C ratio is an appli- cable indicator to estimate soil stability and soil water availability, and based on an overall consideration of plantation stability and sustainability, R sylvestris is better than R simonii in fixing mobile dunes in sandy land. 展开更多
关键词 mobile dune Pinus sylvestris var. mongolica Litv. Populus simonii Carri^re microbial abundance microbial biomasscarbon soil enzyme activity Horqin Sandy Land
下载PDF
Soil microbial activity and community structure as affected by exposure to chloride and chloride-sulfate salts 被引量:2
8
作者 ZHANG Qianqian Steven A WAKELIN +1 位作者 LIANG Yongchao CHU Guixin 《Journal of Arid Land》 SCIE CSCD 2018年第5期737-749,共13页
Mixed or chloride salty ions dominate in saline soils, and exert wide-ranging adversely affect on soil biological processes and soil functions. The objectives of this study were to(1) explore the impacts of mixed(0... Mixed or chloride salty ions dominate in saline soils, and exert wide-ranging adversely affect on soil biological processes and soil functions. The objectives of this study were to(1) explore the impacts of mixed(0, 3, 6, 10, 20 and 40 g Cl–/SO42–salt/kg dry soil) and chloride(0, 1.5, 3, 5, 8 and 15 g Cl– salt/kg dry soil) salts on soil enzyme activities, soil physiological functional(Biolog) profiles and microbial community structure by using soil enzymatic, Biolog-Eco microplates as well as denaturing gradient gel electrophoresis(DEEG) methods, and(2) determine the threshold concentration of soil electronic conductivity(EC1:5) on maintaining the functional and structural diversity of soil microbial community. The addition of either Cl– or mixed Cl–/SO42–salt obviously increased soil EC, but adversely affected soil biological activities including soil invertase activity, soil microbial biomass carbon(MBC) and substrate-induced respiration(SIR). Cl– salt showed a greater deleterious influence than mixed Cl–/SO42–salt on soil enzymes and MBC, e.g., the higher soil MBC consistently appeared with Cl–/SO42–instead of Cl– treated soil. Meanwhile, we found that SIR was more reliable than soil basal respiration(SBR) on explaining the changes of soil biological activity responsive to salt disturbance. In addition, microbial community structures of the soil bacteria, fungi, and Bacillus were obviously affected by both salt types and soil EC levels, and its diversity increased with increasing of mixed Cl–/SO42–salt rates, and then sharply declined down after it reached critical point. Moreover, the diversity of fungal community was more sensitive to the mixed salt addition than other groups. The response of soil physiological profiles(Biolog) followed a dose-response pattern with Cl–(R2=0.83) or mixed Cl–/SO42–(R2=0.89) salt. The critical threshold concentrations of salts for soil physiological function were 0.45 d S/m for Cl– and 1.26 d S/m for Cl–/SO42–, and those for soil microbial community structural diversity were 0.70 d S/m for Cl– and 1.75 d S/m for Cl–/SO42–. 展开更多
关键词 soil biological activity microbial diversit3T chloride salt mixed salt threshold concentration
下载PDF
Effect of transferring lignocellulose-degrading bacteria from termite to rumen fluid of sheep on in vitro gas production, fermentation parameters, microbial populations and enzyme activity 被引量:3
9
作者 Ayoub AZIZI Afrooz SHARIFI +3 位作者 Hasan FAZAELI Arash AZARFAR Arjan JONKER Ali KIANI 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2020年第5期1323-1331,共9页
The digestive tract of termite(Microcerotermes diversus) contains a variety of lignocellulose-degrading bacteria with exocellulases enzyme activity, not found in the rumen, which could potentially improve fiber degrad... The digestive tract of termite(Microcerotermes diversus) contains a variety of lignocellulose-degrading bacteria with exocellulases enzyme activity, not found in the rumen, which could potentially improve fiber degradation in the rumen. The objectives of the current study were to determine the effect of inoculation of rumen fluid(RF) with three species of bacteria isolated from termite digestive tract, Bacillus licheniformis, Ochrobactrum intermedium, and Microbacterium paludicola, on in vitro gas production(IVGP), fermentation parameters, nutrient disappearance, microbial populations, and hydrolytic enzyme activities with fibrous wheat straw(WS) and date leaf(DL) as incubation substrate. Inoculation of RF with either of three termite bacteria increased(P<0.05) ammonia-N concentration compared with the control group(free of termite gut bacteria). Termite bacteria inoculation had no effect(P>0.05) on gas production characteristics, dry matter, organic matter and neutral detergent fiber disappearance, pH, and concentration and composition of volatile fatty acids. Population of proteolytic bacteria and protozoa, but not cellulolytic bacteria, were increased(P<0.05) when RF was inoculated with termite bacteria with both WS and DL substrates. Inoculation of RF with termite bacteria increased protease activity, while activities of carboxymethyl-cellulase, microcrystalline-cellulase, α-amylase and filter paper degrading activity remained unchanged(P>0.05). Overall, the results of this study indicated that transferring lignocellulose-degrading bacteria, isolated from digestive tract of termite, to rumen liquid increased protozoa and proteolytic bacteria population and consequently increased protease activity and ammonia-N concentration in vitro, however, no effect on fermentation and fiber degradation parameters were detected. These results suggest that the termite bacteria might be rapidly lysed by the rumen microbes before beneficial effects on the rumen fermentation process could occur. 展开更多
关键词 ENZYME activity gas production lignocellulose-degrading BACTERIA microbial population TERMITE BACTERIA
下载PDF
Effects of Microbial Inoculums on Soil Enzyme Activity and Microbial Diversity in a Reclaimed Mining Area 被引量:2
10
作者 Gao Chunhua Chang Bo +3 位作者 Li Jianhua Zhang Qiang Lu Chaodong Jin Dongsheng 《Meteorological and Environmental Research》 CAS 2014年第6期23-27,共5页
Through a pot experiment, effects of various microbial inoculums on soil microbial diversity and enzyme activity in a typical reclaimed mining area in Shanxi Province were discussed based on quantitative analysis of P... Through a pot experiment, effects of various microbial inoculums on soil microbial diversity and enzyme activity in a typical reclaimed mining area in Shanxi Province were discussed based on quantitative analysis of PLFA, soil urease, phosphatase and sucrase activity. The results showed that the application of microbial inoculums increased microorganism quantity in rhizosphere of rape by 2.3% -66.4%, and quantities of bac- teria, gram-positive bacteria, gram-negative bacteria, fungi and actinomycetes in the treatments with microbial inoculums were significantly higher than the contrast (P 〈0.05), while there was no obvious change in protist quantity. In comparison with the contrast, the application of various mi- crobial inoculums also improved soil urease, sucrase and phosphatase activity by 4.2% - 61.4%, 18.0% - 32.5% and 64.2% - 199.0% respec- tively. It indicated that the application of microbial inoculums can improve soil microbial diversity and enzyme activity, so it is an effective way to sl^eed UP ecoloQical restoration of soil. 展开更多
关键词 microbial inoculum Mine Reclaimed soil microbial diversity Soil enzyme activity China
下载PDF
Soil macroaggregates and organic-matter content regulate microbial communities and enzymatic activity in a Chinese Mollisol 被引量:1
11
作者 CHEN Xu HAN Xiao-zeng +4 位作者 YOU Meng-yang YAN Jun LU Xin-chun William RHorwath ZOU Wen-xiu 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2019年第11期2605-2618,共14页
The formation and turnover of macroaggregates are critical processes influencing the dynamics and stabilization of soil organic carbon(SOC).Soil aggregate size distribution is directly related to the makeup and activi... The formation and turnover of macroaggregates are critical processes influencing the dynamics and stabilization of soil organic carbon(SOC).Soil aggregate size distribution is directly related to the makeup and activity of microbial communities.We incubated soils managed for>30 years as restored grassland(GL),farmland(FL)and bare fallow(BF)for 60 days using both intact and reduced aggregate size distributions(intact aggregate distribution(IAD)<6 mm;reduced aggregate distribution(RAD)<1 mm),in treatments with added glucose,alanine or inorganic N,to reveal activity and microbial community structure as a function of aggregate size and makeup.Over a 60-day incubation period,the highest phospholipid fatty acid(PLFA)abundance was on day 7 for bacteria and fungi,on day 15 for actinomycete.The majority of the variation in enzymatic activities was likely related to PLFA abundance.GL had higher microbial abundance and enzyme activity.Mechanically reducing macroaggregates(>0.25 mm)by 34.7%in GL soil with no substrate additions increased the abundance of PLFAs(average increase of 15.7%)and activities of β-glucosidase(increase of 17.4%)and N-acetyl-β-glucosaminidase(increase of 7.6%).The addition of C substrates increased PLFA abundance in FL and BF by averages of 18.8 and 33.4%,respectively,but not in GL soil.The results show that the effect of habitat destruction on microorganisms depends on the soil aggregates,due to a release of bioavailable C,and the addition of substrates for soils with limited nutrient availability.The protection of SOC is promoted by larger size soil aggregate structures that are important to different aggregate size classes in affecting soil C stabilization and microbial community structure and activity. 展开更多
关键词 SOIL MACROAGGREGATES SOIL organic carbon PLFAS enzyme activity microbial community Mollisol
下载PDF
Soil Microbial Activity During Secondary Vegetation Succession in Semiarid Abandoned Lands of Loess Plateau 被引量:13
12
作者 JIANG Jin-Ping XIONG You-Cai +3 位作者 JIANG Hong-Mei YE De-You SONG Ya-Jie LI Feng-Min 《Pedosphere》 SCIE CAS CSCD 2009年第6期735-747,共13页
To show the vegetation succession interaction with soil properties, microbial biomass, basal respiration, and enzyme activities in different soil layers (0-60 cm) were determined in six lands, i.e., 2-, 7-, 11-, 20-, ... To show the vegetation succession interaction with soil properties, microbial biomass, basal respiration, and enzyme activities in different soil layers (0-60 cm) were determined in six lands, i.e., 2-, 7-, 11-, 20-, and 43-year-old abandoned lands and one native grassland, in a semiarid hilly area of the Loess Plateau. The results indicated that the successional time and soil depths affected soil microbiological parameters significantly. In 20-cm soil layer, microbial biomass carbon (MBC), microbial biomass nitrogen (MBN), MBC/MBN, MBC to soil organic carbon ratio (MBC/SOC), and soil basal respiration tended to increase with successional stages but decrease with soil depths. In contrast, metabolic quotient (qCO 2 ) tended to decrease with successional stages but increase with soil depths. In addition, the activities of urease, catalase, neutral phosphatase, β-fructofuranosidase, and carboxymethyl cellulose (CMC) enzyme increased with successional stages and soil depths. They were significantly positively correlated with microbial biomass and SOC (P < 0.5), whereas no obvious trend was observed for the polyphenoloxidase activity. The results indicated that natural vegetation succession could improve soil quality and promote ecosystem restoration, but it needed a long time under local climate conditions. 展开更多
关键词 半干旱黄土高原 土壤微生物 植被演替 土地 微生物生物量碳 微生物生物量氮 活动期 Β-呋喃果糖苷酶
下载PDF
Differences in Soil Microbial Biomass and Activity for Six Agroecosystems with a Management Disturbance Gradient 被引量:11
13
作者 ZHANGWei-Jian FENGJin-Xia +1 位作者 J.WU K.PARKER 《Pedosphere》 SCIE CAS CSCD 2004年第4期441-448,共8页
Different management practices in six agroecosystems located near Goldsboro, NC, USA were conducted including a successional field (SU), a plantation woodlot (WO), an integrated cropping system with animals (IN), an o... Different management practices in six agroecosystems located near Goldsboro, NC, USA were conducted including a successional field (SU), a plantation woodlot (WO), an integrated cropping system with animals (IN), an organic farming system (OR), and two cash-grain cropping systems employing either tillage (CT) or no-tillage (NT) to examine if and how microbial biomass and activity differ in response to alterations in disturbance intensity from six land management strategies. Results showed that soil microbial biomass and activity differed, with microbial activity in intermediately disturbed ecosystems (NT, OR, IN) being significantly higher (P < 0.01) than systems with either high or low disturbance intensities. There was also a significant and a highly significant ecosystem effect from the treatments on microbial biomass C (MBC) (P < 0.05) and on microbial activity (respiration) (P < 0.01), respectively. Multiple comparisons of mean respiration rates distinctly separated the six ecosystem types into three groups: CT < NT, SU and WO < OR and IN.Thus, for detecting microbial response to disturbance changes these results indicated that the active component of the soil microbial community was a better indicator than total biomass. 展开更多
关键词 农业系统 碳保持力 干扰强度 单位面积微生物数量 土壤微生物活性
下载PDF
Depth profile exploration of enzyme activity and culturable microbial community from the oxygen-starved soil of Sundarban mangrove forest, India 被引量:1
14
作者 Subhajit Das Tarun Kumar Sarkar +5 位作者 Minati De Dipnarayan Ganguly Tusher Kanti Maiti Abhishek Mukherjee Tapan Kumar Jana Tarun Kumar De 《Open Journal of Ecology》 2011年第3期65-72,共8页
Populations of culturable microbes and activities of dehydrogenase & ?-D glucosidase were found maximum in surface soil and decreased with increase in depth in Sundarban mangrove environment.The maximum (13.529 X ... Populations of culturable microbes and activities of dehydrogenase & ?-D glucosidase were found maximum in surface soil and decreased with increase in depth in Sundarban mangrove environment.The maximum (13.529 X 106 C.F.U g-1 dry weight of soil) and minimum (11.547 X 106 C.F.U g-1 dry weight of soil) total microbial popu- lations in surface soil were recorded during po- st-monsoon and monsoon respectively. At 60 cm depth, the lower (6.396 X 106 C.F.U g-1 dry weight of soil) and higher (8.003 X 106 C.F.U g-1 dry weight of soil) numbers of total microbial populations were observed during monsoon and post-monsoon respectively. A decreasing trend of total microbial load, enzyme activities and nutrient status with organic carbon were found with increase in depth throughout the year. Present study revealed the relationship among depth integrated variations of physico-chemical compo- nents (viz. soil temperature, pH, moisture, orga- nic-C, .nitrogen, and available-P) and microbial populations as well as activity of dehydrogenase and ?-D glucosidase enzymes. 展开更多
关键词 SUNDARBAN MANGROVE Sediment ENZYME activities Depth microbial POPULATIONS
下载PDF
Seasonal Development of Microbial Activity in Soils of Northern Norway 被引量:15
15
作者 M. BLTER N. SOETHE +1 位作者 R. HORN C. UHLIG 《Pedosphere》 SCIE CAS CSCD 2005年第6期716-727,共12页
Seasonal development of soil microbial activity and bacterial biomass in sub-polar regions was investigated to determine the impacts of biotic and abiotic factors, such as organic matter content, temperature and moist... Seasonal development of soil microbial activity and bacterial biomass in sub-polar regions was investigated to determine the impacts of biotic and abiotic factors, such as organic matter content, temperature and moisture. The study was performed during spring thaw from three cultivated meadows and two non-cultivated forest sites near Alta, in northern Norway. Samples from all five sites showed increasing respiration rates directly after the spring thaw with soil respiration activity best related to soil organic matter content. However, distributions of bacteria] biomass showed fewer similarities to these two parameters. This could be explained by variations of litter exploitation through the biomass. Microbial activity started immediately after the thaw while root growth had a longer time lag. An influence of root development on soil microbes was proposed for sites where microorganisms and roots had a tight relationship caused by a more intensive root structure. Also a reduction of microbial activity due to soil compaction in the samples from a wheel track could not be observed under laboratory conditions. New methodological approaches of differential staining for live and dead organisms were applied in order to follow changes within the microbial community. Under laboratory conditions freeze and thaw cycles showed a damaging influence on parts of the soil bacteria. Additionally, different patterns for active vs. non-active bacteria were noticeable after freeze-thaw cycles. 展开更多
关键词 挪威 土壤 微生物 季节变化 细菌 压实作用
下载PDF
Microbial activity and community diversity in a variable charge soil as affected by cadmium exposure levels and time 被引量:4
16
作者 Jia-li SHENTU Zhen-li HE +1 位作者 Xiao-e YANG Ting-qiang LI 《Journal of Zhejiang University-Science B(Biomedicine & Biotechnology)》 SCIE CAS CSCD 2008年第3期250-260,共11页
Effects of cadmium(Cd) on microbial biomass,activity and community diversity were assessed in a representative variable charge soil(Typic Aquult) using an incubation study.Cadmium was added as Cd(NO3)2 to reach a conc... Effects of cadmium(Cd) on microbial biomass,activity and community diversity were assessed in a representative variable charge soil(Typic Aquult) using an incubation study.Cadmium was added as Cd(NO3)2 to reach a concentration range of 0~16 mg Cd/kg soil.Soil extractable Cd generally increased with Cd loading rate,but decreased with incubation time.Soil microbial biomass was enhanced at low Cd levels(0.5~1 mg/kg),but was inhibited consistently with increasing Cd rate.The ratio of microbial biomass C/N varied with Cd treatment levels,decreasing at low Cd rate(<0.7 mg/kg available Cd),but increasing progressively with Cd loading.Soil respiration was restrained at low Cd loading(<1 mg/kg),and enhanced at higher Cd levels.Soil microbial metabolic quotient(MMQ) was generally greater at high Cd loading(1~16 mg/kg).However,the MMQ is also affected by other factors.Cd contamination reduces species diversity of soil microbial communities and their ability to metabolize different C substrates.Soils with higher levels of Cd contamination showed decreases in indicator phospholipids fatty acids(PLFAs) for Gram-negative bacteria and actinomycetes,while the indicator PLFAs for Gram-positive bacteria and fungi increased with increasing levels of Cd contamination. 展开更多
关键词 活性 多样性 环境保护 土壤
下载PDF
Interactive Effect of Copper and Its Mineral Collectors on Soil Microbial Activity—A Microcalorimetric Analysis 被引量:1
17
作者 Prudence Bararunyeretse Howard O. Beckford Hongbing Ji 《Open Journal of Soil Science》 2019年第3期47-64,共18页
Discharge of metals and their mineral flotation collectors into the soil environment causes severe ecological and health impacts, which is still not fully understood. This is of great concern, particularly with regard... Discharge of metals and their mineral flotation collectors into the soil environment causes severe ecological and health impacts, which is still not fully understood. This is of great concern, particularly with regards to their effect on the soil microorganisms whose functions determine not only the soil quality and function but also influence the air and water quality. This study aimed to analyze and compare, microcalorimetrically, the single chemical toxic effect with the combined effect of copper (Cu) and two of its main flotation collectors, potassium amyl xanthate (PAX) and sodium isoamyl xanthate (SIAX), on soil microbial community. All chemicals, individually and as a binary mixture of copper and each of its flotation collectors, exhibited a significant dose-effect relationship, and the highest and lowest microbial activity inhibition being associated with SIAX and Cu, respectively (e.g. IC 50 of 447.5, 158.3 and 83.9 μg·g?1 soil for copper, PAX and SIAX, respectively). For all cases, the microbial activity was more affected by the mixture than by the individual mixture components. Increasing the xanthates dose (from 25 to 100 μg·g?1 soil) in the mixture with a copper dose of 200 μg·g?1 soil led to the increase of the microbial activity inhibition rate, from 23.08 % to 53.85% in case of PAX and from 26.92% to 57.69% in case of SIAX). Similarly, the toxicity level of the mixture of equitoxic components doses increased with the increased mixture doses. Since the observed activity level can be attributed to the surviving microbes, capable of adapting to both chemical and their mixture, a genetically based analysis should be conducted to allow identifying and characterizing the potentially resistant strains that can be useful for the remediation of the pollution by copper and xanthates and for the sustainability of copper mining and flotation, and for all soil, water, and air quality and function interest. 展开更多
关键词 COPPER MINERAL Collectors Soil microbial activity Single TOXICITY MIXTURE TOXICITY MICROCALORIMETRY
下载PDF
Dynamics of Microbial Activity Related to N Cycling in Cd-Contaminated Soil During Growth of Soybean 被引量:1
18
作者 YANG Ye CHEN Ying-Xu +1 位作者 TIAN Guang-Ming ZHANG Zi-Jian 《Pedosphere》 SCIE CAS CSCD 2007年第3期383-388,共6页
The potential influences of cadmium (Cd) on the biochemical processes of the soil nitrogen (N) cycle, along with the dynamics of ammonification, nitrification, and denitrification processes in the rhizosphere and non-... The potential influences of cadmium (Cd) on the biochemical processes of the soil nitrogen (N) cycle, along with the dynamics of ammonification, nitrification, and denitrification processes in the rhizosphere and non-rhizosphere (bulk soil), respectively, were investigated in a Cd-stressed system during an entire soybean growing season. In terms of Cd pollution at the seedling stage, the ammonifying bacteria proved to be the most sensitive microorganisms, whereas the effects of Cd on denitrification were not obvious. Following the growth of soybeans, the influences of Cd on ammonification in the bulk soil were: toxic impacts at the seedling stage, stimulatory effects during the early flowering stage, and adaptation to the pollutant during the podding and ripening stages. Although nitrification and denitrification in the bulk soil decreased throughout the entire growth cycle, positive adaptation to Cd stress was observed during the ripening stage. Moreover, during the ripening stage, denitrification in the bulk soil under high Cd treatment (20 mg kg-1) was even higher than that in the control, indicating a probable change in the ecology of the denitrifying microbes in the Cd-stressed system. Changes in the activity of microbes in the rhizosphere following plant growth were similar to those in the non-rhizosphere in Cd treatments; however, the tendency of change in the rhizosphere seemed to be more moderate. This suggested that there was some mitigation of Cd stress in the rhizosphere. 展开更多
关键词 镉污染土壤 氮循环 微生物活动 大豆 生长期 根际细菌
下载PDF
Changes in Soil Microbial Activity and Community Composition as a Result of Selected Agricultural Practices 被引量:2
19
作者 Martyna Glodowska Malgorzata Wozniak 《Agricultural Sciences》 2019年第3期330-351,共22页
For a constantly growing human population, healthy and productive soil is critical for sustainable delivery of agricultural products. The soil microorganisms play a crucial role in soil structure and functioning. They... For a constantly growing human population, healthy and productive soil is critical for sustainable delivery of agricultural products. The soil microorganisms play a crucial role in soil structure and functioning. They are responsible for soil formation, ecosystem biogeochemistry, cycling of nutrients and degradation of plant residues and xenobiotics. Certain agricultural treatments, such as fertilizers and pesticides applications, crop rotation, or soil amendment addition, influence the composition, abundance and function of bacteria and fungi in the soil ecosystems. Some of these practices have rather negative effects;others can help soil microorganisms by creating a friendlier habitat or providing nutrients. The changes in microbial community structure cannot be fully captured with traditional methods that are limited only to culturable organisms, which represent less than 1% of the whole population. The use of new molecular techniques such as metagenomics offers the possibility to better understand how agriculture affects soil microbiota. Therefore, the main goal of this review is to discuss how common farming practices influence microbial activity in the soil, with a special focus on pesticides, fertilizers, heavy metals and crop rotation. Furthermore, potential practices to mitigate the negative effects of some treatments are suggested and treatments that can beneficially influence soil microbiota are pointed out. Finally, application of metagenomics technique in agriculture and perspectives of developing efficient molecular tools in order to assess soil condition in the context of microbial activities are underlined. 展开更多
关键词 Agricultural Practices microbial activity Soil Microorganisms
下载PDF
Anti-inflammation Activities of Essential Oil and Anti-microbial Activities Of Ethanol Extraction from China's Rosemary 被引量:1
20
作者 Jingbo ZHOU Ruqiang HUANG +1 位作者 Jihong HUANG Junwei FENG 《Agricultural Science & Technology》 CAS 2015年第5期1034-1037,1047,共5页
Rosemary(Rosmarius officinalis L.), an endemic plant species in south region of China, is traditionally used as a spice. In this research, the anti-inflammatory activities of essential oil and the antibacterial activi... Rosemary(Rosmarius officinalis L.), an endemic plant species in south region of China, is traditionally used as a spice. In this research, the anti-inflammatory activities of essential oil and the antibacterial activities of ethanol extraction were determined, respectively. Results showed that based on the GC-MS analysis there were 35 kinds of active ingredients in the essential oil in totally, mainly including D-limonene(24.158 ml/L), α-Pinene(23.325 ml/L), Camphor(9.855 ml/L),Camphene(7.076 ml/L), Verbenone(6.685 ml/L), Borneol(5.580 ml/L), etc. The LCUV determination indicated that the main components in the ethanol extractionwere rosmarinic acid(3 910 mg/kg) and carnosic acid(2 970 mg/kg). By mice peritoneal macrophage phagocytosis of chicken erythrocytes experiment, the essential oil of rosemary was shown having a significant role in anti-inflammation. And the ethanol extraction had broad-spectrum antibacterial effects, but had no effect on mold by the agar diffusion method of 8 bacteria. As a result, both rosemary essential oil and ethanol extraction had good potential medicinal values. 展开更多
关键词 乙醇提取物 中国南部地区 迷迭香酸 香精油 微生物活动 GC-MS分析 广谱抗菌作用 活性成分
下载PDF
上一页 1 2 134 下一页 到第
使用帮助 返回顶部