[Objective] This study was conducted to discuss influence factors for safety full heading of machine-transplanted rice seedlings in cool-warm rice area. [Method] Effects of variety, seedling age and nitrogen fertilize...[Objective] This study was conducted to discuss influence factors for safety full heading of machine-transplanted rice seedlings in cool-warm rice area. [Method] Effects of variety, seedling age and nitrogen fertilizer dosage and strategy of machine-transplanted seedlings on safety full heading of machine-transplanted seedlings were investigated. [Result] During mechanized rice production in coolwarm rice area, mid-early-maturing cold-resistant varieties with growth periods no longer than 180 d could selected, and seedling age could controlled within 30-35 d; and the total amount of pure nitrogen should be less than 300 kg/hm^2, and the proportion of nitrogen fertilizer applied in later stages should be properly reduced. [Conclusion] Under this condition, safety full heading of rice is ensured, and the target yield is realized.展开更多
Objective:To provide real-world evidence for the application of first-line dacomitinib treatment for epidermal growth factor receptor(EGFR)21L858R mutant non-small cell lung cancer(NSCLC)patients in China and to explo...Objective:To provide real-world evidence for the application of first-line dacomitinib treatment for epidermal growth factor receptor(EGFR)21L858R mutant non-small cell lung cancer(NSCLC)patients in China and to explore the factors influencing the efficacy and safety.Methods:A longitudinal,consecutive case-series,multicenter study with mixed prospective and retrospective data was conducted.The primary endpoint was progression-free survival(PFS),and the secondary endpoints included duration of treatment(DOT),overall survival(OS),objective response rate(ORR),disease control rate(DCR)and safety.Results:A total of 155 EGFR 21L858R mutant patients treated with first-line dacomitinib were included.The median follow-up time for these patients was 20.4 months.Among 134 patients with evaluable lesions,the ORR was 70.9%and the DCR was 96.3%.The median PFS was 16.3[95%confidence interval(95%CI),13.7−18.9]months.Multivariate Cox regression analysis suggested that the baseline brain metastasis(BM)status[with vs.without BM:hazard ratio(HR),1.331;95%CI,0.720−2.458;P=0.361]and initial doses(45 mg vs.30 mg:HR,0.837;95%CI,0.427−1.641;P=0.604)did not significantly affect the median PFS.The median DOT was 21.0(95%CI,17.5−24.6)months and the median OS was not reached.Genetic tests were performed in 64 patients after progression,among whom 29(45.3%)patients developed the EGFR 20T790M mutation.In addition,among the 46 patients who discontinued dacomitinib treatment after progression,31(67.4%)patients received subsequent third-generation EGFR-tyrosine kinase inhibitors.The most common grade 3−4 adverse events were rash(10.4%),diarrhea(9.1%),stomatitis(7.1%)and paronychia(4.5%).The incidence of grade 3−4 rash was significantly higher in the 45 mg group than that in the 30 mg group(21.9%vs.7.5%,P=0.042).Conclusions:First-line dacomitinib treatment demonstrated promising efficacy and tolerable adverse events among EGFR 21L858R mutant NSCLC patients in China.展开更多
Human factors in the delivery of service are considered in many occupations of high impact on others such as airline industry and nuclear power industry, but not sufficiently in healthcare delivery. A common administr...Human factors in the delivery of service are considered in many occupations of high impact on others such as airline industry and nuclear power industry, but not sufficiently in healthcare delivery. A common administrative framework of healthcare involves focus upon costs, quality and patient satisfaction (The Triple Aim). Many industries which support healthcare and healthcare administrators do not have firsthand knowledge of the complexities in delivering care. As a result, the experience and human factors of providing care are often overlooked at high level decision-making unless incorporated into the healthcare delivery framework, proposed as the fourth aim of The Quadruple Aim framework. Research is pointing to consequent negative effects on quality, safety, joy, meaning and sustainability of healthcare practice. High acute occupational stress and chronic occupational stress can cause direct and indirect effects on safety and quality of care. The biological, psychological and social consequences of burnout from excessive acute and chronic occupational stress are more of a threat to healthcare than commonly acknowledged. Patient safety, quality of care and clinician well-being are inextricably linked. This report will describe the process of transition from The Triple Aim to The Quadruple Aim administrative framework of healthcare delivery at the University of Rochester Medical Center. Developing the fourth aim of improving the experience of providing care, had high acceptability and aligned with other health system goals of optimization of safety, quality, and performance by applying a human factors/ergonomic (HFE) framework that considers human capabilities and human limitations. The goal of HFE is to fit the healthcare system to the human instead of the human to the healthcare system. Concepts include removal of extraneous cognitive load, using clinician neural resource (brain power) optimally for highest order decision making in patient care. An integrative model of patient safety and clinician wellbeing is a product of this effort.展开更多
Many magnetohydrodynamic stability analyses require generation of a set of equilibria with a fixed safety factor q-profile while varying other plasma parameters.A neural network(NN)-based approach is investigated that...Many magnetohydrodynamic stability analyses require generation of a set of equilibria with a fixed safety factor q-profile while varying other plasma parameters.A neural network(NN)-based approach is investigated that facilitates such a process.Both multilayer perceptron(MLP)-based NN and convolutional neural network(CNN)models are trained to map the q-profile to the plasma current density J-profile,and vice versa,while satisfying the Grad–Shafranov radial force balance constraint.When the initial target models are trained,using a database of semianalytically constructed numerical equilibria,an initial CNN with one convolutional layer is found to perform better than an initial MLP model.In particular,a trained initial CNN model can also predict the q-or J-profile for experimental tokamak equilibria.The performance of both initial target models is further improved by fine-tuning the training database,i.e.by adding realistic experimental equilibria with Gaussian noise.The fine-tuned target models,referred to as fine-tuned MLP and fine-tuned CNN,well reproduce the target q-or J-profile across multiple tokamak devices.As an important application,these NN-based equilibrium profile convertors can be utilized to provide a good initial guess for iterative equilibrium solvers,where the desired input quantity is the safety factor instead of the plasma current density.展开更多
In recent years,marine pilotage accidents occurring on a worldwide basis as a result of human error have not been ceased to transpire,despite advances in technology and a significant set of international conventions,r...In recent years,marine pilotage accidents occurring on a worldwide basis as a result of human error have not been ceased to transpire,despite advances in technology and a significant set of international conventions,regulations,and recommendations to reduce them.This paper aims to investigate the effect of human factors on the safety of maritime pilotage operations.The human factors that affect the operators who are performing ships’berthing operations have also been examined in detail.In this study,in order to determine the causes of human-related errors occurred in maritime pilotage accidents,a comprehensive literature review is carried out,and a considerable number of real past case examples and an analysis of the maritime accident investigation reports regarding pilotage operations events that occurred between 1995 and 2015 have been reviewed.To validate the identified humanrelated risk factors(HCFs)and explore other contributory factors,survey questionnaires and semi-structured interviews with domain experts have been conducted.A structural hierarchy diagram for the identified risk factors(HCFs)has been developed and validated through experienced experts belonging to the maritime sector.A questionnaire for pair-wise comparison is carried out and analysed using the analytic hierarchy process(AHP)approach to evaluate the weight and rank the importance of the identified human causal factors.The findings of this study will benefit the maritime industry,by identifying a new database on causal factors that are contributing to the occurrence of maritime pilotage disasters.The database can be used as a stand-alone reference or help implement effective risk reduction strategies to reduce the human error,that might occur during pilotage operations.展开更多
When a patient falls within a hospital setting,there is a significant increase in the risk of severe injury or health complications.Recognizing factors associated with such falls is crucial to mitigate their impact on...When a patient falls within a hospital setting,there is a significant increase in the risk of severe injury or health complications.Recognizing factors associated with such falls is crucial to mitigate their impact on patient safety.This review seeks to analyze the factors contributing to patient falls in hospitals.The main goal is to enhance our understanding of the reasons behind these falls,enabling hospitals to devise more effective prevention strategies.This study reviewed literature published from 2013 to 2022,using the Arksey and O’Malley methodology for a scoping review.The research literature was searched from seven databases,namely,PubMed,ScienceDirect,Wiley Library,Garuda,Global Index Medicus,Emerald Insight,and Google Scholar.The inclusion criteria comprised both qualitative and quantitative primary and secondary data studies centered on hospitalized patients.Out of the 893 studies analyzed,23 met the criteria and were included in this review.Although there is not an abundance of relevant literature,this review identified several factors associated with falls in hospitals.These encompass environmental,patient,staff,and medical factors.This study offers valuable insights for hospitals and medical personnel aiming to enhance fall prevention practices.Effective prevention efforts should prioritize early identification of patient risk factors,enhancement of the care environment,thorough training for care staff,and vigilant supervision of high-risk patients.By comprehending the factors that contribute to patient falls,hospitals can bolster patient safety and mitigate the adverse effects of falls within the health-care setting.展开更多
This study aims to thoroughly investigate the axial power peaking factors (PPF) within the low-enriched uranium (LEU) core of the Ghana Research Reactor-1 (GHARR-1). This study uses advanced simulation tools, like the...This study aims to thoroughly investigate the axial power peaking factors (PPF) within the low-enriched uranium (LEU) core of the Ghana Research Reactor-1 (GHARR-1). This study uses advanced simulation tools, like the MCNPX code for analysing neutron behavior and the PARET/ANL code for understanding power variations, to get a clearer picture of the reactor’s performance. The analysis covers the initial six years of GHARR-1’s operation and includes projections for its whole 60-year lifespan. We closely observed the patterns of both the highest and average PPFs at 21 axial nodes, with measurements taken every ten years. The findings of this study reveal important patterns in power distribution within the core, which are essential for improving the safety regulations and fuel management techniques of the reactor. We provide a meticulous approach, extensive data, and an analysis of the findings, highlighting the significance of continuous monitoring and analysis for proactive management of nuclear reactors. The findings of this study not only enhance our comprehension of nuclear reactor safety but also carry significant ramifications for sustainable energy progress in Ghana and the wider global context. Nuclear engineering is essential in tackling global concerns, such as the demand for clean and dependable energy sources. Research on optimising nuclear reactors, particularly in terms of safety and efficiency, is crucial for the ongoing advancement and acceptance of nuclear energy.展开更多
Our healthcare delivery system has accumulated complexity of payment, regulation systems, expectations and requirements. Often these are not designed to align with clinical thinking process flow of patient care. As a ...Our healthcare delivery system has accumulated complexity of payment, regulation systems, expectations and requirements. Often these are not designed to align with clinical thinking process flow of patient care. As a result, clinicians are utilizing enormous mental (cognitive) resource to comply with these complexities, over and above the baseline mental effort required to give good care to the patient. Recent studies suggest a significant number of physicians, advanced practice providers and nurses no longer want to stay in healthcare due to difficult work expectations and conditions that have become unreasonable. Technology has benefitted healthcare delivery, but also is a conduit of many expectations that have been grafted upon clinician workloads, exceeding the resources provided to accomplish them. Cognitive load is a measure of mental effort and is divided into Intrinsic, Germane and Extraneous Cognitive Load. Extraneous Cognitive Load (ECL) is what is not necessary and can be removed by better design. High cognitive load is associated with increased risk of both medical error and clinician burnout. Chronic high level occupational stress occurs from dealing with this job/resource imbalance and is showing serious personal health impact upon clinicians and the quality of the work they can provide for patients. Since organizational systems have become more complex, leadership methods, clinician wellbeing and patient safety efforts need to adjust to adapt and succeed. Safety efforts have tended to predominantly follow methods of a few decades ago with predominant focus upon how things go wrong (Safety I) but are now being encouraged to include more of the study of how things go right (Safety II). Human Factors/Ergonomics (HFE) science has been used in many industries to preserve worker wellbeing and improve system performance. Patient safety is a product of good system performance. HFE science helps inform mechanisms behind Safety I and II approach. HFE concepts augment existing burnout and safety interventions by providing a conceptual roadmap to follow that can inform how to improve the multiple human/technology, human/system, and human/work environment interfaces that comprise healthcare delivery. Healthcare leaders, by their influence over culture, resource allocation, and implementation of requirements and workflows are uniquely poised to be effective mitigators of the conditions leading to clinician burnout and latent medical error. Basic knowledge of HFE science is a strategic advantage to leaders and individuals tasked with achieving quality of care, controlling costs, and improving the experiences of receiving and providing care.展开更多
More than 32,000 motorists are killed on U.S. roads and streets annually, and approximately 54% of the accidents occur on rural roads. In an attempt to address and reduce these fatalities, the current transportation a...More than 32,000 motorists are killed on U.S. roads and streets annually, and approximately 54% of the accidents occur on rural roads. In an attempt to address and reduce these fatalities, the current transportation act, the Safe, Accountable, Flexible, Efficient Transportation Equality Act: A Legacy for Users (SAFETY-LU), elevated the Highway Safety Improvement Program (HSIP) to a core program and included a $90,000,000 High-Risk Rural Road Program (HRRRP) to address and significantly reduce traffic fatalities and incapacitating injuries on rural major or minor collectors, and/or rural local roads. While there were many challenges to properly implement the HRRRP in counties, this study provided important information that was needed to identify the predominant crash types on HRRRP-eligible roads and compiled a list of countermeasures for the predominant crash types that were identified on Kansas’ high-risk rural roads. For the gathered countermeasures, crash reduction factors (CRFs) were also provided from the literature review, and their values were validated by conducting interviews with Kansas county engineers/officials. This study provided valuable information for the county engineers and local government officials while they worked on improving the safety of high-risk rural roads using HRRRP funds.展开更多
Objective Airway-related patient safety incident(PSI)has always been the top concern of anesthesiologists because this type of incidents could severely threaten patient safety if not treated immediately and properly.T...Objective Airway-related patient safety incident(PSI)has always been the top concern of anesthesiologists because this type of incidents could severely threaten patient safety if not treated immediately and properly.This study intends to reveal the composition,prognosis,and to identify risk factors for airway related incidents reported by anesthesiologists.Methods All airway related PSIs reported by anesthesiologists in a Chinese academic hospital between September 2009 and May 2022 were collected from the PSI reporting system.Patients with airway incidents reported were matched 1:1 with controls based on sex and type of surgery.Univariable and multivariable analysis were performed to find risk factors associated with airway incident occurrence,and to evaluate influence of airway PSIs on patient prognosis.Results Among 1,038 PSIs voluntarily reported by anesthesiologists during the study period,281 cases(27.1%)were airway-related incidents,with an overall reporting incidence of 4.74 per 10,000 among 592,884 anesthesia care episodes.Only ASA physical status was found to be significant independent predictor of these airway PSIs(P=0.020).Patients with airway PSIs reported had longer extubation time(0.72±1.56 d vs.0.16±0.77 d,95%CI:0.29 to 0.82,P<0.001),longer ICU length of stay(LOS)(1.63±5.71 d vs.0.19±0.84 d,95%CI:0.57 to 2.32,P=0.001),longer post operative LOS(10.56±13.09 d vs.7.59±10.76 d,95%CI:0.41 to 5.53,P=0.023),and longer total in-hospital LOS(14.99±15.18 d vs.11.62±11.88 d,95%CI:0.46 to 6.27,P=0.024).Conclusions This single-center retrospective case-control study describes the composition of airway-related PSIs reported by anesthesiologists within thirteen years.Airway incidents might influence patient prognosis by elongating extubation time and LOS.Airway PSI data were worth analyzing to improve patient safety.展开更多
There are several thousand piping components in a nuclear power plant. These components are affected by degradation mechanisms such as FAC (Flow-Accelerated Corrosion), cavitation, flashing, and LDI (Liquid Droplet Im...There are several thousand piping components in a nuclear power plant. These components are affected by degradation mechanisms such as FAC (Flow-Accelerated Corrosion), cavitation, flashing, and LDI (Liquid Droplet Impingement). Therefore, nuclear power plants implement inspection programs to detect and control damages caused by such mechanisms. UT (Ultrasonic Test), one of the non-destructive tests, is the most commonly used method for inspecting the integrity of piping components. According to the management plan, several hundred components, being composed of as many as 100 to 300 inspection data points, are inspected during every RFO (Re-Fueling Outage). To acquire UT data of components, a large amount of expense is incurred. It is, however, difficult to find a proper method capable of verifying the reliability of UT data prior to the wear rate evaluation. This study describes the review of UT evaluation process and the influence of UT measurement error. It is explored that SAM (Square Average Method), which was suggested as a method for reliability analysis in the previous study, is found to be suitable for the determination whether the measured thickness is acceptable or not. And, safety factors are proposed herein through the statistical analysis taking into account the components’ type.展开更多
Up to date,in literature,it is still debated the role of anti-tumor necrosis factors(TNF)-α treatments in hepatitis C virus(HCV) patients.TNF-α performs a lot of functions,it is an important pro-inflammatory cytokin...Up to date,in literature,it is still debated the role of anti-tumor necrosis factors(TNF)-α treatments in hepatitis C virus(HCV) patients.TNF-α performs a lot of functions,it is an important pro-inflammatory cytokine and it is involved in the host's immunity.Since TNF-α is implicated in the apoptotic signaling pathway of hepatocytes infected by HCV,anti TNF-α therapy may increase the risk of viral replication or their reactivation.However the treatment of anti TNF-α could have a healthful role because TNF-α appears to be engaged in the pathogenesis of liver fibrosis,inducing apoptotic pathways.We describe the case of a patient with plaquetype psoriasis and concomitant chronic HCV,who was treated successfully with anti-TNF agents simultaneously to cyclosporine without sign of reactivation of HCV and increase of liver enzymes.Our personal experience shows that anti-TNF-α agents are not only effective but also safe.Furthermore the combination therapy of cyclosporine and anti-TNF-α appears to be well-tolerated and able to reduce the amount of liver enzymes as well as HCV-viral-load.However systematic,large-scale studies with long follow-ups will be needed to confirm our results,in association with close liver function monitoring.展开更多
The paper introduces automotive safety cost formula, which defines the concept of private costs, technology costs and social costs and analyzes the impact of economic externalities in individual purchase decisions on ...The paper introduces automotive safety cost formula, which defines the concept of private costs, technology costs and social costs and analyzes the impact of economic externalities in individual purchase decisions on urban traffic safety in the private costs and discusses the concept of hard and soft technology and its function to improve vehicle safety. Take people, vehicles and the environment as the main line and points out the promoting role of the relevant state departments, policy, research institutions and transportation infrastructure in the social cost for the entire transportation system security. Finally, about the security of car crash in low speed on urban roads, the paper gives some recommendations as for private costs, technology costs and social costs factor.展开更多
Based on the analysis on the infection degree,infection law and influencing factors of the main diseases on asparagus and the analysis on the pollution factors in asparagus production such as blind pesticide use,atmos...Based on the analysis on the infection degree,infection law and influencing factors of the main diseases on asparagus and the analysis on the pollution factors in asparagus production such as blind pesticide use,atmospheric pollution and acid rain,the pollution of soil and fertilizer,this article proposes asparagus safety production technologies which include the selection of disease-resistant variety and suitable planting field,scientific and reasonable disease control,balanced fertilization,rational irrigation,making a good job of field management, etc.,to reduce pathogenic factors.展开更多
Objective To investigate feasibility and safety of anterior pedicle screw fixation tunnel in the axis so as to provide theoretic evidence for further clinical application.Methods Thirty-two dry axis specimens were use...Objective To investigate feasibility and safety of anterior pedicle screw fixation tunnel in the axis so as to provide theoretic evidence for further clinical application.Methods Thirty-two dry axis specimens were used foranterior展开更多
The reliability expression of dynamic driving behavior is derived from the driving shaping behavioural model; and then, in accordance with the combination of computer simulation and mathematical expression of driving ...The reliability expression of dynamic driving behavior is derived from the driving shaping behavioural model; and then, in accordance with the combination of computer simulation and mathematical expression of driving reliability, an approach for assessing the effect of driving erroneous actions on the dynamic performance of the driver vehicle system is presented. The analysis of driving erroneous actions in the driver vehicle system has been performed to show that the reliability during perception with variety widely could result in the incidents and/or accidents in traffic system.展开更多
Many years experience of the operation of high stress (>72% specified minimum yield strength, SMYS) gas pipelines and statistical analysis results of pipeline incidents showed that the operating pipelines at stress...Many years experience of the operation of high stress (>72% specified minimum yield strength, SMYS) gas pipelines and statistical analysis results of pipeline incidents showed that the operating pipelines at stress levels over 72% SMYS have not presented problems in USA and Canada, and design factor does not control incidents or the safety of pipelines. Enhancing pipeline safety management level is most important for decreasing incident rate. The application history of higher design factors in the U.S and Canada was reviewed. And the effect of higher factors to the critical flaw size, puncture resistance, change of reliability with time, risk level and the arrest toughness requirements of pipeline were analyzed here. The comparison of pipeline failure rates and risk levels between two design factors (0.72 and 0.8) has shown that a change in design factor from 0.72 to 0.8 would bring little effect on failure rates and risk levels. On the basis of the analysis result, the application feasibility of design factor of 0.8 in China was discussed and the related suggestions were proposed. When an operator wishes to apply design factor 0.8 to gas pipeline, the following process is recommended: stress level of line pipe hydro test should be up to 100% SMYS, reliability and risk assessment at the design feasibility or conceptual stage should be conducted, Charpy impact energy should meet the need of pipeline crack arrest; and establish and execute risk based integrity management plan. The technology of pipeline steel metallurgy, line pipe fabrication and pipeline construction, and line pipe quality control level in China achieved tremendous progresses, and line pipe product standards and property indexes have come up to international advanced level. Furthermore, pipeline safety management has improved greatly in China. Consequently, the research for the feasibility of application of design factor of 0.8 in China has fundamental basis.展开更多
The safety factor of roof under deep high stress is a quantitative index for evaluating roof stability.Based on the failure mode of surrounding rock of stope roof,the mechanics model of goaf roof is constructed,and th...The safety factor of roof under deep high stress is a quantitative index for evaluating roof stability.Based on the failure mode of surrounding rock of stope roof,the mechanics model of goaf roof is constructed,and the internal force of roof is deduced by the theory of hingeless arch.The calculation method of roof safety factor(K)under the environment of deep mining is proposed in view of compression failure and shear failure of roof.The calculation formulas of shear safety factor(K1),compression safety factor(K2)and comprehensive safety factor(K)of roof are given.The influence of stope span and roof thickness on roof stability is considered in this paper.The results show that when the roof thickness remains constant,the roof safety factor decreases with the increasing of the stope span;when the stope span remains constant,the roof safety factor increases with the increasing of the roof thickness.The deep mining example shows that when the stope span is 30 m and the roof thickness is 10 m,the roof comprehensive safety factor is 1.12,which indicates the roof is in a stable state.展开更多
Unlike the limit equilibrium method(LEM), with which only the global safety factor of the landslide can be calculated, a local safety factor(LSF) method is proposed to evaluate the stability of different sections of a...Unlike the limit equilibrium method(LEM), with which only the global safety factor of the landslide can be calculated, a local safety factor(LSF) method is proposed to evaluate the stability of different sections of a landslide in this paper. Based on three-dimensional(3D) numerical simulation results, the local safety factor is defined as the ratio of the shear strength of the soil at an element on the slip zone to the shear stress parallel to the sliding direction at that element. The global safety factor of the landslide is defined as the weighted average of all local safety factors based on the area of the slip surface. Some example analyses show that the results computed by the LSF method agree well with those calculated by the General Limit Equilibrium(GLE) method in two-dimensional(2D) models and the distribution of the LSF in the 3D slip zone is consistent with that indicated by the observed deformation pattern of an actual landslide in China.展开更多
Stability analysis of strain-softening slopes is carried out using the shear strength reduction method and Mohr-Coulomb model with degrading cohesion and friction angle.The e ffect of strain-softening behavior on the ...Stability analysis of strain-softening slopes is carried out using the shear strength reduction method and Mohr-Coulomb model with degrading cohesion and friction angle.The e ffect of strain-softening behavior on the slope factor of safety is investigated by performing a series of analyses for various slope geometries and strength properties.Stability charts and equations are developed to estimate the factor of safety of strain-softe ning slopes from the results of traditional stability analysis based on perfectly-plastic behavior.Two example applications including an open pit mine in weak rock and clay shale slope with daylighting bedding planes are presented.The results of limit equilibrium analysis and shear strength reduction method with perfectly-plastic models were in close agreement.Using perfectly-plastic models with peak strength properties led to overly optimistic results while adopting residual strength properties gave excessively conservative outcomes.The shear strength reduction method with a strain-softening model gave realistic factors of safety while accounting for the process of strength degradation.展开更多
文摘[Objective] This study was conducted to discuss influence factors for safety full heading of machine-transplanted rice seedlings in cool-warm rice area. [Method] Effects of variety, seedling age and nitrogen fertilizer dosage and strategy of machine-transplanted seedlings on safety full heading of machine-transplanted seedlings were investigated. [Result] During mechanized rice production in coolwarm rice area, mid-early-maturing cold-resistant varieties with growth periods no longer than 180 d could selected, and seedling age could controlled within 30-35 d; and the total amount of pure nitrogen should be less than 300 kg/hm^2, and the proportion of nitrogen fertilizer applied in later stages should be properly reduced. [Conclusion] Under this condition, safety full heading of rice is ensured, and the target yield is realized.
文摘Objective:To provide real-world evidence for the application of first-line dacomitinib treatment for epidermal growth factor receptor(EGFR)21L858R mutant non-small cell lung cancer(NSCLC)patients in China and to explore the factors influencing the efficacy and safety.Methods:A longitudinal,consecutive case-series,multicenter study with mixed prospective and retrospective data was conducted.The primary endpoint was progression-free survival(PFS),and the secondary endpoints included duration of treatment(DOT),overall survival(OS),objective response rate(ORR),disease control rate(DCR)and safety.Results:A total of 155 EGFR 21L858R mutant patients treated with first-line dacomitinib were included.The median follow-up time for these patients was 20.4 months.Among 134 patients with evaluable lesions,the ORR was 70.9%and the DCR was 96.3%.The median PFS was 16.3[95%confidence interval(95%CI),13.7−18.9]months.Multivariate Cox regression analysis suggested that the baseline brain metastasis(BM)status[with vs.without BM:hazard ratio(HR),1.331;95%CI,0.720−2.458;P=0.361]and initial doses(45 mg vs.30 mg:HR,0.837;95%CI,0.427−1.641;P=0.604)did not significantly affect the median PFS.The median DOT was 21.0(95%CI,17.5−24.6)months and the median OS was not reached.Genetic tests were performed in 64 patients after progression,among whom 29(45.3%)patients developed the EGFR 20T790M mutation.In addition,among the 46 patients who discontinued dacomitinib treatment after progression,31(67.4%)patients received subsequent third-generation EGFR-tyrosine kinase inhibitors.The most common grade 3−4 adverse events were rash(10.4%),diarrhea(9.1%),stomatitis(7.1%)and paronychia(4.5%).The incidence of grade 3−4 rash was significantly higher in the 45 mg group than that in the 30 mg group(21.9%vs.7.5%,P=0.042).Conclusions:First-line dacomitinib treatment demonstrated promising efficacy and tolerable adverse events among EGFR 21L858R mutant NSCLC patients in China.
文摘Human factors in the delivery of service are considered in many occupations of high impact on others such as airline industry and nuclear power industry, but not sufficiently in healthcare delivery. A common administrative framework of healthcare involves focus upon costs, quality and patient satisfaction (The Triple Aim). Many industries which support healthcare and healthcare administrators do not have firsthand knowledge of the complexities in delivering care. As a result, the experience and human factors of providing care are often overlooked at high level decision-making unless incorporated into the healthcare delivery framework, proposed as the fourth aim of The Quadruple Aim framework. Research is pointing to consequent negative effects on quality, safety, joy, meaning and sustainability of healthcare practice. High acute occupational stress and chronic occupational stress can cause direct and indirect effects on safety and quality of care. The biological, psychological and social consequences of burnout from excessive acute and chronic occupational stress are more of a threat to healthcare than commonly acknowledged. Patient safety, quality of care and clinician well-being are inextricably linked. This report will describe the process of transition from The Triple Aim to The Quadruple Aim administrative framework of healthcare delivery at the University of Rochester Medical Center. Developing the fourth aim of improving the experience of providing care, had high acceptability and aligned with other health system goals of optimization of safety, quality, and performance by applying a human factors/ergonomic (HFE) framework that considers human capabilities and human limitations. The goal of HFE is to fit the healthcare system to the human instead of the human to the healthcare system. Concepts include removal of extraneous cognitive load, using clinician neural resource (brain power) optimally for highest order decision making in patient care. An integrative model of patient safety and clinician wellbeing is a product of this effort.
基金supported by National Natural Science Foundation of China (Nos. 12205033, 12105317, 11905022 and 11975062)Dalian Youth Science and Technology Project (No. 2022RQ039)+1 种基金the Fundamental Research Funds for the Central Universities (No. 3132023192)the Young Scientists Fund of the Natural Science Foundation of Sichuan Province (No. 2023NSFSC1291)
文摘Many magnetohydrodynamic stability analyses require generation of a set of equilibria with a fixed safety factor q-profile while varying other plasma parameters.A neural network(NN)-based approach is investigated that facilitates such a process.Both multilayer perceptron(MLP)-based NN and convolutional neural network(CNN)models are trained to map the q-profile to the plasma current density J-profile,and vice versa,while satisfying the Grad–Shafranov radial force balance constraint.When the initial target models are trained,using a database of semianalytically constructed numerical equilibria,an initial CNN with one convolutional layer is found to perform better than an initial MLP model.In particular,a trained initial CNN model can also predict the q-or J-profile for experimental tokamak equilibria.The performance of both initial target models is further improved by fine-tuning the training database,i.e.by adding realistic experimental equilibria with Gaussian noise.The fine-tuned target models,referred to as fine-tuned MLP and fine-tuned CNN,well reproduce the target q-or J-profile across multiple tokamak devices.As an important application,these NN-based equilibrium profile convertors can be utilized to provide a good initial guess for iterative equilibrium solvers,where the desired input quantity is the safety factor instead of the plasma current density.
文摘In recent years,marine pilotage accidents occurring on a worldwide basis as a result of human error have not been ceased to transpire,despite advances in technology and a significant set of international conventions,regulations,and recommendations to reduce them.This paper aims to investigate the effect of human factors on the safety of maritime pilotage operations.The human factors that affect the operators who are performing ships’berthing operations have also been examined in detail.In this study,in order to determine the causes of human-related errors occurred in maritime pilotage accidents,a comprehensive literature review is carried out,and a considerable number of real past case examples and an analysis of the maritime accident investigation reports regarding pilotage operations events that occurred between 1995 and 2015 have been reviewed.To validate the identified humanrelated risk factors(HCFs)and explore other contributory factors,survey questionnaires and semi-structured interviews with domain experts have been conducted.A structural hierarchy diagram for the identified risk factors(HCFs)has been developed and validated through experienced experts belonging to the maritime sector.A questionnaire for pair-wise comparison is carried out and analysed using the analytic hierarchy process(AHP)approach to evaluate the weight and rank the importance of the identified human causal factors.The findings of this study will benefit the maritime industry,by identifying a new database on causal factors that are contributing to the occurrence of maritime pilotage disasters.The database can be used as a stand-alone reference or help implement effective risk reduction strategies to reduce the human error,that might occur during pilotage operations.
文摘When a patient falls within a hospital setting,there is a significant increase in the risk of severe injury or health complications.Recognizing factors associated with such falls is crucial to mitigate their impact on patient safety.This review seeks to analyze the factors contributing to patient falls in hospitals.The main goal is to enhance our understanding of the reasons behind these falls,enabling hospitals to devise more effective prevention strategies.This study reviewed literature published from 2013 to 2022,using the Arksey and O’Malley methodology for a scoping review.The research literature was searched from seven databases,namely,PubMed,ScienceDirect,Wiley Library,Garuda,Global Index Medicus,Emerald Insight,and Google Scholar.The inclusion criteria comprised both qualitative and quantitative primary and secondary data studies centered on hospitalized patients.Out of the 893 studies analyzed,23 met the criteria and were included in this review.Although there is not an abundance of relevant literature,this review identified several factors associated with falls in hospitals.These encompass environmental,patient,staff,and medical factors.This study offers valuable insights for hospitals and medical personnel aiming to enhance fall prevention practices.Effective prevention efforts should prioritize early identification of patient risk factors,enhancement of the care environment,thorough training for care staff,and vigilant supervision of high-risk patients.By comprehending the factors that contribute to patient falls,hospitals can bolster patient safety and mitigate the adverse effects of falls within the health-care setting.
文摘This study aims to thoroughly investigate the axial power peaking factors (PPF) within the low-enriched uranium (LEU) core of the Ghana Research Reactor-1 (GHARR-1). This study uses advanced simulation tools, like the MCNPX code for analysing neutron behavior and the PARET/ANL code for understanding power variations, to get a clearer picture of the reactor’s performance. The analysis covers the initial six years of GHARR-1’s operation and includes projections for its whole 60-year lifespan. We closely observed the patterns of both the highest and average PPFs at 21 axial nodes, with measurements taken every ten years. The findings of this study reveal important patterns in power distribution within the core, which are essential for improving the safety regulations and fuel management techniques of the reactor. We provide a meticulous approach, extensive data, and an analysis of the findings, highlighting the significance of continuous monitoring and analysis for proactive management of nuclear reactors. The findings of this study not only enhance our comprehension of nuclear reactor safety but also carry significant ramifications for sustainable energy progress in Ghana and the wider global context. Nuclear engineering is essential in tackling global concerns, such as the demand for clean and dependable energy sources. Research on optimising nuclear reactors, particularly in terms of safety and efficiency, is crucial for the ongoing advancement and acceptance of nuclear energy.
文摘Our healthcare delivery system has accumulated complexity of payment, regulation systems, expectations and requirements. Often these are not designed to align with clinical thinking process flow of patient care. As a result, clinicians are utilizing enormous mental (cognitive) resource to comply with these complexities, over and above the baseline mental effort required to give good care to the patient. Recent studies suggest a significant number of physicians, advanced practice providers and nurses no longer want to stay in healthcare due to difficult work expectations and conditions that have become unreasonable. Technology has benefitted healthcare delivery, but also is a conduit of many expectations that have been grafted upon clinician workloads, exceeding the resources provided to accomplish them. Cognitive load is a measure of mental effort and is divided into Intrinsic, Germane and Extraneous Cognitive Load. Extraneous Cognitive Load (ECL) is what is not necessary and can be removed by better design. High cognitive load is associated with increased risk of both medical error and clinician burnout. Chronic high level occupational stress occurs from dealing with this job/resource imbalance and is showing serious personal health impact upon clinicians and the quality of the work they can provide for patients. Since organizational systems have become more complex, leadership methods, clinician wellbeing and patient safety efforts need to adjust to adapt and succeed. Safety efforts have tended to predominantly follow methods of a few decades ago with predominant focus upon how things go wrong (Safety I) but are now being encouraged to include more of the study of how things go right (Safety II). Human Factors/Ergonomics (HFE) science has been used in many industries to preserve worker wellbeing and improve system performance. Patient safety is a product of good system performance. HFE science helps inform mechanisms behind Safety I and II approach. HFE concepts augment existing burnout and safety interventions by providing a conceptual roadmap to follow that can inform how to improve the multiple human/technology, human/system, and human/work environment interfaces that comprise healthcare delivery. Healthcare leaders, by their influence over culture, resource allocation, and implementation of requirements and workflows are uniquely poised to be effective mitigators of the conditions leading to clinician burnout and latent medical error. Basic knowledge of HFE science is a strategic advantage to leaders and individuals tasked with achieving quality of care, controlling costs, and improving the experiences of receiving and providing care.
文摘More than 32,000 motorists are killed on U.S. roads and streets annually, and approximately 54% of the accidents occur on rural roads. In an attempt to address and reduce these fatalities, the current transportation act, the Safe, Accountable, Flexible, Efficient Transportation Equality Act: A Legacy for Users (SAFETY-LU), elevated the Highway Safety Improvement Program (HSIP) to a core program and included a $90,000,000 High-Risk Rural Road Program (HRRRP) to address and significantly reduce traffic fatalities and incapacitating injuries on rural major or minor collectors, and/or rural local roads. While there were many challenges to properly implement the HRRRP in counties, this study provided important information that was needed to identify the predominant crash types on HRRRP-eligible roads and compiled a list of countermeasures for the predominant crash types that were identified on Kansas’ high-risk rural roads. For the gathered countermeasures, crash reduction factors (CRFs) were also provided from the literature review, and their values were validated by conducting interviews with Kansas county engineers/officials. This study provided valuable information for the county engineers and local government officials while they worked on improving the safety of high-risk rural roads using HRRRP funds.
基金This research was supported by the Education Reform Project Foundation for the Central Universities of Peking Union Medical College(2020zlgc0105).
文摘Objective Airway-related patient safety incident(PSI)has always been the top concern of anesthesiologists because this type of incidents could severely threaten patient safety if not treated immediately and properly.This study intends to reveal the composition,prognosis,and to identify risk factors for airway related incidents reported by anesthesiologists.Methods All airway related PSIs reported by anesthesiologists in a Chinese academic hospital between September 2009 and May 2022 were collected from the PSI reporting system.Patients with airway incidents reported were matched 1:1 with controls based on sex and type of surgery.Univariable and multivariable analysis were performed to find risk factors associated with airway incident occurrence,and to evaluate influence of airway PSIs on patient prognosis.Results Among 1,038 PSIs voluntarily reported by anesthesiologists during the study period,281 cases(27.1%)were airway-related incidents,with an overall reporting incidence of 4.74 per 10,000 among 592,884 anesthesia care episodes.Only ASA physical status was found to be significant independent predictor of these airway PSIs(P=0.020).Patients with airway PSIs reported had longer extubation time(0.72±1.56 d vs.0.16±0.77 d,95%CI:0.29 to 0.82,P<0.001),longer ICU length of stay(LOS)(1.63±5.71 d vs.0.19±0.84 d,95%CI:0.57 to 2.32,P=0.001),longer post operative LOS(10.56±13.09 d vs.7.59±10.76 d,95%CI:0.41 to 5.53,P=0.023),and longer total in-hospital LOS(14.99±15.18 d vs.11.62±11.88 d,95%CI:0.46 to 6.27,P=0.024).Conclusions This single-center retrospective case-control study describes the composition of airway-related PSIs reported by anesthesiologists within thirteen years.Airway incidents might influence patient prognosis by elongating extubation time and LOS.Airway PSI data were worth analyzing to improve patient safety.
文摘There are several thousand piping components in a nuclear power plant. These components are affected by degradation mechanisms such as FAC (Flow-Accelerated Corrosion), cavitation, flashing, and LDI (Liquid Droplet Impingement). Therefore, nuclear power plants implement inspection programs to detect and control damages caused by such mechanisms. UT (Ultrasonic Test), one of the non-destructive tests, is the most commonly used method for inspecting the integrity of piping components. According to the management plan, several hundred components, being composed of as many as 100 to 300 inspection data points, are inspected during every RFO (Re-Fueling Outage). To acquire UT data of components, a large amount of expense is incurred. It is, however, difficult to find a proper method capable of verifying the reliability of UT data prior to the wear rate evaluation. This study describes the review of UT evaluation process and the influence of UT measurement error. It is explored that SAM (Square Average Method), which was suggested as a method for reliability analysis in the previous study, is found to be suitable for the determination whether the measured thickness is acceptable or not. And, safety factors are proposed herein through the statistical analysis taking into account the components’ type.
文摘Up to date,in literature,it is still debated the role of anti-tumor necrosis factors(TNF)-α treatments in hepatitis C virus(HCV) patients.TNF-α performs a lot of functions,it is an important pro-inflammatory cytokine and it is involved in the host's immunity.Since TNF-α is implicated in the apoptotic signaling pathway of hepatocytes infected by HCV,anti TNF-α therapy may increase the risk of viral replication or their reactivation.However the treatment of anti TNF-α could have a healthful role because TNF-α appears to be engaged in the pathogenesis of liver fibrosis,inducing apoptotic pathways.We describe the case of a patient with plaquetype psoriasis and concomitant chronic HCV,who was treated successfully with anti-TNF agents simultaneously to cyclosporine without sign of reactivation of HCV and increase of liver enzymes.Our personal experience shows that anti-TNF-α agents are not only effective but also safe.Furthermore the combination therapy of cyclosporine and anti-TNF-α appears to be well-tolerated and able to reduce the amount of liver enzymes as well as HCV-viral-load.However systematic,large-scale studies with long follow-ups will be needed to confirm our results,in association with close liver function monitoring.
文摘The paper introduces automotive safety cost formula, which defines the concept of private costs, technology costs and social costs and analyzes the impact of economic externalities in individual purchase decisions on urban traffic safety in the private costs and discusses the concept of hard and soft technology and its function to improve vehicle safety. Take people, vehicles and the environment as the main line and points out the promoting role of the relevant state departments, policy, research institutions and transportation infrastructure in the social cost for the entire transportation system security. Finally, about the security of car crash in low speed on urban roads, the paper gives some recommendations as for private costs, technology costs and social costs factor.
基金Supported by Antagonistic Bacteria Control and Basic Research Foundation on Asparagus Disease of Shanxi Province(200603021)
文摘Based on the analysis on the infection degree,infection law and influencing factors of the main diseases on asparagus and the analysis on the pollution factors in asparagus production such as blind pesticide use,atmospheric pollution and acid rain,the pollution of soil and fertilizer,this article proposes asparagus safety production technologies which include the selection of disease-resistant variety and suitable planting field,scientific and reasonable disease control,balanced fertilization,rational irrigation,making a good job of field management, etc.,to reduce pathogenic factors.
文摘Objective To investigate feasibility and safety of anterior pedicle screw fixation tunnel in the axis so as to provide theoretic evidence for further clinical application.Methods Thirty-two dry axis specimens were used foranterior
文摘The reliability expression of dynamic driving behavior is derived from the driving shaping behavioural model; and then, in accordance with the combination of computer simulation and mathematical expression of driving reliability, an approach for assessing the effect of driving erroneous actions on the dynamic performance of the driver vehicle system is presented. The analysis of driving erroneous actions in the driver vehicle system has been performed to show that the reliability during perception with variety widely could result in the incidents and/or accidents in traffic system.
基金supported by China National Petroleum Corporation Application Fundamental Research Foundation (Grant No. 07A40401)
文摘Many years experience of the operation of high stress (>72% specified minimum yield strength, SMYS) gas pipelines and statistical analysis results of pipeline incidents showed that the operating pipelines at stress levels over 72% SMYS have not presented problems in USA and Canada, and design factor does not control incidents or the safety of pipelines. Enhancing pipeline safety management level is most important for decreasing incident rate. The application history of higher design factors in the U.S and Canada was reviewed. And the effect of higher factors to the critical flaw size, puncture resistance, change of reliability with time, risk level and the arrest toughness requirements of pipeline were analyzed here. The comparison of pipeline failure rates and risk levels between two design factors (0.72 and 0.8) has shown that a change in design factor from 0.72 to 0.8 would bring little effect on failure rates and risk levels. On the basis of the analysis result, the application feasibility of design factor of 0.8 in China was discussed and the related suggestions were proposed. When an operator wishes to apply design factor 0.8 to gas pipeline, the following process is recommended: stress level of line pipe hydro test should be up to 100% SMYS, reliability and risk assessment at the design feasibility or conceptual stage should be conducted, Charpy impact energy should meet the need of pipeline crack arrest; and establish and execute risk based integrity management plan. The technology of pipeline steel metallurgy, line pipe fabrication and pipeline construction, and line pipe quality control level in China achieved tremendous progresses, and line pipe product standards and property indexes have come up to international advanced level. Furthermore, pipeline safety management has improved greatly in China. Consequently, the research for the feasibility of application of design factor of 0.8 in China has fundamental basis.
基金Projects(51974135,51704094)supported by the National Natural Science Foundation of ChinaProject(2016YFC0600802)supported by the National Key Research and Development Program of ChinaProject(2020M672226)supported by the China Postdoctoral Science Foundation。
文摘The safety factor of roof under deep high stress is a quantitative index for evaluating roof stability.Based on the failure mode of surrounding rock of stope roof,the mechanics model of goaf roof is constructed,and the internal force of roof is deduced by the theory of hingeless arch.The calculation method of roof safety factor(K)under the environment of deep mining is proposed in view of compression failure and shear failure of roof.The calculation formulas of shear safety factor(K1),compression safety factor(K2)and comprehensive safety factor(K)of roof are given.The influence of stope span and roof thickness on roof stability is considered in this paper.The results show that when the roof thickness remains constant,the roof safety factor decreases with the increasing of the stope span;when the stope span remains constant,the roof safety factor increases with the increasing of the roof thickness.The deep mining example shows that when the stope span is 30 m and the roof thickness is 10 m,the roof comprehensive safety factor is 1.12,which indicates the roof is in a stable state.
基金financially supported by the National Natural Science Foundation of China(Grant No.51178402,10902112)Department of Transportation Technology Projects(Grant No.2011318740240)the Fundamental Research Funds for the Central Universities(Grant No.2682014CX074)
文摘Unlike the limit equilibrium method(LEM), with which only the global safety factor of the landslide can be calculated, a local safety factor(LSF) method is proposed to evaluate the stability of different sections of a landslide in this paper. Based on three-dimensional(3D) numerical simulation results, the local safety factor is defined as the ratio of the shear strength of the soil at an element on the slip zone to the shear stress parallel to the sliding direction at that element. The global safety factor of the landslide is defined as the weighted average of all local safety factors based on the area of the slip surface. Some example analyses show that the results computed by the LSF method agree well with those calculated by the General Limit Equilibrium(GLE) method in two-dimensional(2D) models and the distribution of the LSF in the 3D slip zone is consistent with that indicated by the observed deformation pattern of an actual landslide in China.
基金financially supported by the Natural Sciences and Engineering Research Council of Canada(NSERC:RES0014117).
文摘Stability analysis of strain-softening slopes is carried out using the shear strength reduction method and Mohr-Coulomb model with degrading cohesion and friction angle.The e ffect of strain-softening behavior on the slope factor of safety is investigated by performing a series of analyses for various slope geometries and strength properties.Stability charts and equations are developed to estimate the factor of safety of strain-softe ning slopes from the results of traditional stability analysis based on perfectly-plastic behavior.Two example applications including an open pit mine in weak rock and clay shale slope with daylighting bedding planes are presented.The results of limit equilibrium analysis and shear strength reduction method with perfectly-plastic models were in close agreement.Using perfectly-plastic models with peak strength properties led to overly optimistic results while adopting residual strength properties gave excessively conservative outcomes.The shear strength reduction method with a strain-softening model gave realistic factors of safety while accounting for the process of strength degradation.