A multi-beam chirp sonar based on IP connections and DSP processing nodes was proposed and designed to provide an expandable system with high-speed processing and mass-storage of real-time signals for multi-beam profi...A multi-beam chirp sonar based on IP connections and DSP processing nodes was proposed and designed to provide an expandable system with high-speed processing and mass-storage of real-time signals for multi-beam profiling sonar.The system was designed for seabed petroleum pipeline detection and orientation,and can receive echo signals and process the data in real time,refreshing the display 10 times per second.Every node of the chirp sonar connects with data processing nodes through TCP/IP. Merely by adding nodes,the system’s processing ability can be increased proportionately without changing the software.System debugging and experimental testing proved the system to be practical and stable.This design provides a new method for high speed active sonar.展开更多
This report presents the design and implementation of a Distributed Data Acquisition、 Monitoring and Processing System (DDAMAP)。It is assumed that operations of a factory are organized into two-levels: client machin...This report presents the design and implementation of a Distributed Data Acquisition、 Monitoring and Processing System (DDAMAP)。It is assumed that operations of a factory are organized into two-levels: client machines at plant-level collect real-time raw data from sensors and measurement instrumentations and transfer them to a central processor over the Ethernets, and the central processor handles tasks of real-time data processing and monitoring. This system utilizes the computation power of Intel T2300 dual-core processor and parallel computations supported by multi-threading techniques. Our experiments show that these techniques can significantly improve the system performance and are viable solutions to real-time high-speed data processing.展开更多
These days' smart buildings have high intensive information and massive operational parameters, not only extensive power consumption. With the development of computation capability and future 5 G, the ACP theory(i...These days' smart buildings have high intensive information and massive operational parameters, not only extensive power consumption. With the development of computation capability and future 5 G, the ACP theory(i.e., artificial systems,computational experiments, and parallel computing) will play a much more crucial role in modeling and control of complex systems like commercial and academic buildings. The necessity of making accurate predictions of energy consumption out of a large number of operational parameters has become a crucial problem in smart buildings. Previous attempts have been made to seek energy consumption predictions based on historical data in buildings. However, there are still questions about parallel building consumption prediction mechanism using a large number of operational parameters. This article proposes a novel hybrid deep learning prediction approach that utilizes long short-term memory as an encoder and gated recurrent unit as a decoder in conjunction with ACP theory. The proposed approach is tested and validated by real-world dataset, and the results outperformed traditional predictive models compared in this paper.展开更多
Oil and gas seismic exploration have to adopt irregular seismic acquisition due to the increasingly complex exploration conditions to adapt to complex geological conditions and environments.However,the irregular seism...Oil and gas seismic exploration have to adopt irregular seismic acquisition due to the increasingly complex exploration conditions to adapt to complex geological conditions and environments.However,the irregular seismic acquisition is accompanied by the lack of acquisition data,which requires high-precision regularization.The sparse signal feature in the transform domain in compressed sensing theory is used in this paper to recover the missing signal,involving sparse transform base optimization and threshold modeling.First,this paper analyzes and compares the effects of six sparse transformation bases on the reconstruction accuracy and efficiency of irregular seismic data and establishes the quantitative relationship between sparse transformation and reconstruction accuracy and efficiency.Second,an adaptive threshold modeling method based on sparse coefficient is provided to improve the reconstruction accuracy.Test results show that the method has good adaptability to different seismic data and sparse transform bases.The f-x domain reconstruction method of effective frequency samples is studied to address the problem of low computational efficiency.The parallel computing strategy of curvelet transform combined with OpenMP is further proposed,which substantially improves the computational efficiency under the premise of ensuring the reconstruction accuracy.Finally,the actual acquisition data are used to verify the proposed method.The results indicate that the proposed method strategy can solve the regularization problem of irregular seismic data in production and improve the imaging quality of the target layer economically and efficiently.展开更多
基金the National High Technology Project of China Foundation under Grant No.2002AA602230-1
文摘A multi-beam chirp sonar based on IP connections and DSP processing nodes was proposed and designed to provide an expandable system with high-speed processing and mass-storage of real-time signals for multi-beam profiling sonar.The system was designed for seabed petroleum pipeline detection and orientation,and can receive echo signals and process the data in real time,refreshing the display 10 times per second.Every node of the chirp sonar connects with data processing nodes through TCP/IP. Merely by adding nodes,the system’s processing ability can be increased proportionately without changing the software.System debugging and experimental testing proved the system to be practical and stable.This design provides a new method for high speed active sonar.
文摘This report presents the design and implementation of a Distributed Data Acquisition、 Monitoring and Processing System (DDAMAP)。It is assumed that operations of a factory are organized into two-levels: client machines at plant-level collect real-time raw data from sensors and measurement instrumentations and transfer them to a central processor over the Ethernets, and the central processor handles tasks of real-time data processing and monitoring. This system utilizes the computation power of Intel T2300 dual-core processor and parallel computations supported by multi-threading techniques. Our experiments show that these techniques can significantly improve the system performance and are viable solutions to real-time high-speed data processing.
文摘These days' smart buildings have high intensive information and massive operational parameters, not only extensive power consumption. With the development of computation capability and future 5 G, the ACP theory(i.e., artificial systems,computational experiments, and parallel computing) will play a much more crucial role in modeling and control of complex systems like commercial and academic buildings. The necessity of making accurate predictions of energy consumption out of a large number of operational parameters has become a crucial problem in smart buildings. Previous attempts have been made to seek energy consumption predictions based on historical data in buildings. However, there are still questions about parallel building consumption prediction mechanism using a large number of operational parameters. This article proposes a novel hybrid deep learning prediction approach that utilizes long short-term memory as an encoder and gated recurrent unit as a decoder in conjunction with ACP theory. The proposed approach is tested and validated by real-world dataset, and the results outperformed traditional predictive models compared in this paper.
基金supported by the National Science and Technology Major project(No.2016ZX05024001003)the Innovation Consortium Project of China Petroleum,and the Southwest Petroleum University(No.2020CX010201).
文摘Oil and gas seismic exploration have to adopt irregular seismic acquisition due to the increasingly complex exploration conditions to adapt to complex geological conditions and environments.However,the irregular seismic acquisition is accompanied by the lack of acquisition data,which requires high-precision regularization.The sparse signal feature in the transform domain in compressed sensing theory is used in this paper to recover the missing signal,involving sparse transform base optimization and threshold modeling.First,this paper analyzes and compares the effects of six sparse transformation bases on the reconstruction accuracy and efficiency of irregular seismic data and establishes the quantitative relationship between sparse transformation and reconstruction accuracy and efficiency.Second,an adaptive threshold modeling method based on sparse coefficient is provided to improve the reconstruction accuracy.Test results show that the method has good adaptability to different seismic data and sparse transform bases.The f-x domain reconstruction method of effective frequency samples is studied to address the problem of low computational efficiency.The parallel computing strategy of curvelet transform combined with OpenMP is further proposed,which substantially improves the computational efficiency under the premise of ensuring the reconstruction accuracy.Finally,the actual acquisition data are used to verify the proposed method.The results indicate that the proposed method strategy can solve the regularization problem of irregular seismic data in production and improve the imaging quality of the target layer economically and efficiently.