In order to control the silver content in the preparation process of platinum group anti-cancer drugs, we put two kinds of color reagent to color in the production process of the platinum anti-cancer drugs by UV spect...In order to control the silver content in the preparation process of platinum group anti-cancer drugs, we put two kinds of color reagent to color in the production process of the platinum anti-cancer drugs by UV spectra measurement to control drugs production of platinum anticancer, thus we could control the silver content in the drugs so that it meets the pharmacopoeia standards of US and展开更多
RP215 is one of the three thousand monoclonal antibodies (Mabs) which were generated against the OC-3-VGH ovarian cancer cell line. RP215 was shown to react with a carbohydrate-associated epitope located specifically ...RP215 is one of the three thousand monoclonal antibodies (Mabs) which were generated against the OC-3-VGH ovarian cancer cell line. RP215 was shown to react with a carbohydrate-associated epitope located specifically on glycoproteins, known as CA215, from cancer cells. Further molecular analysis by matrix adsorption laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) revealed that CA215 consists mainly of immunoglobulin super-family (IgSF) proteins, including immunoglobulins, T-cell receptors, and cell adhesion molecules, as well as several other unrelated proteins. Peptide mappings and glycoanalysis were performed with CA215 and revealed high-mannose and complex bisecting structures with terminal sialic acid in N-glycans. As many as ten O-glycans, which are structurally similar to those of mucins, were also identified. In addition, two additional O-linked glycans were exclusively detected in cancerous immunoglobulins but not in normal B cell-derived immunoglobulins. Immunizations of mice with purified CA215 resulted in the predominant generation of RP215-related Mabs, indicating the immunodominance of this carbohydrate-associated epitope. Anti-idiotype (anti-id) Mabs of RP215, which were generated in the rat, were shown to contain the internal images of the carbohydrate-associated epitope. Following immunizations of these anti-id Mabs in mice, the resulting anti-anti-id (Ab3) responses in mice were found to be immunologically similar to that of RP215. Judging from these observations, anti-id Mabs, which carry the internal image of the RP215-specific epitope, may be suitable candidates for anticancer vaccine development in humans.展开更多
Cancer-beating molecules (CBMs) are abundant in many types of food and potentially anti-cancer therapeutic agents. In the previous work, researchers introduced a network-based machine learning platform to identify the...Cancer-beating molecules (CBMs) are abundant in many types of food and potentially anti-cancer therapeutic agents. In the previous work, researchers introduced a network-based machine learning platform to identify the cancer-beating molecules, for example,?comparing the similarities in the molecular network between approved anticancer drug and food molecules. Herein, we aim to build on this work to enhance the accuracy of predicting food molecules. In this project, we improve supervised learning approaches by applying Soft Voting algorithm to seven machine learning algorithms: Support Vector Machine with Radial Basis Function (SVM with RBF kernel), multilayer perceptron neural network?(MLP), Random forest, Decision trees,?Gaussian Naive Bayes, Adaboosting, and Bagging. As a result, the accuracy in the dataset of 50 food molecules utilized increased from 82% to 87%, achieving a significant improvement in the precision of?predicting anti-cancer molecules.展开更多
In the last few decades numbers of review and research articles have been published on niosomes. This shows the relevant interest of academias & researchers in niosomes because of the advantages sponsored by them ...In the last few decades numbers of review and research articles have been published on niosomes. This shows the relevant interest of academias & researchers in niosomes because of the advantages sponsored by them over other colloidal drug delivery systems. Niosomes formation occurs when non-ionic surfactant vesicles assemble themselves. Various antineoplastic agents are used in chemotherapy, but they have some drawbacks that these agents cause cell death in normal tissues as well. There are two approaches to overcome this limitation. First, to modify the structure of existing drugs, but this will not possible because it changes the properties of drugs. Second, the development of nano-carriers like liposomes, dendrimers, nanoparticles, niosomes et al. Among all, niosomes (non-ionic surfactant vesicles) have more advantages besides all nano-carriers. Drugs either hydrophilic in nature or hydrophobic in nature, both can be incorporated in niosomes. And by embedding specific ligands over vesicular surface enables us to target the drug to specific cancer cells.展开更多
Sterile α motif and histidine/aspartic acid domain containing protein 1 (SAMHD1) is a deoxynucleoside triphosphate (dNTPs) triphosphohydrolase that can hydrolyze dNTPs into deoxynucleosides and triphosphates to keep ...Sterile α motif and histidine/aspartic acid domain containing protein 1 (SAMHD1) is a deoxynucleoside triphosphate (dNTPs) triphosphohydrolase that can hydrolyze dNTPs into deoxynucleosides and triphosphates to keep the balance of the intracellular dNTPs pool. Moreover, it has been reported that SAMHD1 plays a role in regulating cell proliferation and the cell cycle, maintaining genome stability and inhibiting innate immune responses. SAMHD1 activity is regulated by phosphorylation, oxidation, SUMOylation, and O-GlcNAcylation. SAMHD1 mutations have been reported to cause diseases, including chronic lymphocytic leukemia and mantle cell lymphoma. SAMHD1 expression in acute myeloid leukemia predicts inferior prognosis. Recently, it has been revealed that SAMHD1 mediates the resistance to anti-cancer drugs. This review will focus on SAMHD1 function and regulation, the association between SAMHD1 and hematological malignancies and will provide updated information on SAMHD1 mediating resistance to nucleoside analogue antimetabolites, topoisomerase inhibitors, platinum-derived agents and DNA hypomethylating agents. Furthermore, histone deacetylase inhibitors and tyrosine kinase inhibitors indirectly increase anti-cancer drug resistance by increasing SAMDH1 activity. We herein highlight the importance of the development of novel agents targeting SAMHD1 to overcome treatment resistance of hematological malignancies, which would be an opportunity to improve the outcome of patients with refractory hematological malignancies.展开更多
The use of traditional herbal drugs derived from natural sources is on the rise due to their minimal side effects and numerous health benefits.However,a major limitation is the lack of standardized knowledge for ident...The use of traditional herbal drugs derived from natural sources is on the rise due to their minimal side effects and numerous health benefits.However,a major limitation is the lack of standardized knowledge for identifying and mapping the quality of these herbal medicines.This article aims to provide practical insights into the application of artificial intelligence for quality-based commercialization of raw herbal drugs.It focuses on feature extraction methods,image processing techniques,and the preparation of herbal images for compatibility with machine learning models.The article discusses commonly used image processing tools such as normalization,slicing,cropping,and augmentation to prepare images for artificial intelligence-based models.It also provides an overview of global herbal image databases and the models employed for herbal plant/drug identification.Readers will gain a comprehensive understanding of the potential application of various machine learning models,including artificial neural networks and convolutional neural networks.The article delves into suitable validation parameters like true positive rates,accuracy,precision,and more for the development of artificial intelligence-based identification and authentication techniques for herbal drugs.This article offers valuable insights and a conclusive platform for the further exploration of artificial intelligence in the field of herbal drugs,paving the way for smarter identification and authentication methods.展开更多
Nano-drug delivery systems(nanoDDS)have been extensively investigated clinically to improve the therapeutic effect of anticancer drugs.However,the complicated synthesis during the preparation as well as the potential ...Nano-drug delivery systems(nanoDDS)have been extensively investigated clinically to improve the therapeutic effect of anticancer drugs.However,the complicated synthesis during the preparation as well as the potential drug leakage during transportation has greatly limited their general application.In this work,a calixarene-integrated nanoDDS(CanD)that achieves tumor-targeted delivery and tracking of anti-cancer drugs in vivo is presented.The hypoxia-responsive calixarene(SAC4A)exhibits high binding affinity to a series of anti-cancer drugs and rhodamine B(RhB)under normoxic condition while decreasing the binding affinity under hypoxic condition,which leads to the drug release and fluorescence recovery simultaneously.Furthermore,the hypoxia-responsiveness of SAC4A conveys CanD with tumor-targeting ability,resulting in the enrichment of the drug in tumors and enhancement in tumor suppression in mice.Moreover,CanD could become a general platform allowing the delivery of a wide scope of anti-cancer drugs that have strong host-guest interaction with SAC4A.展开更多
Pancreatic cancer is highly aggressive and lethal.Due to the lack of effective methods for detecting the disease at an early stage,pancreatic cancer is frequently diagnosed late.Gemcitabine has been the standard chemo...Pancreatic cancer is highly aggressive and lethal.Due to the lack of effective methods for detecting the disease at an early stage,pancreatic cancer is frequently diagnosed late.Gemcitabine has been the standard chemotherapy drug for patients with pancreatic cancer for over 20 years,but its anti-tumor effect is limited.Therefore,FOLFIRINOX(leucovorin,fluorouracil,irinotecan,oxaliplatin)as well as combination therapies using gemcitabine and conventional agents,such as cisplatin and capecitabine,has also been administered;however,these have not resulted in complete remission.Therefore,there is a need to develop novel and effective therapies for pancreatic cancer.Recently,some studies have reported that combinations of gemcitabine and targeted drugs have had significant antitumor effects on pancreatic cancer cells.As gemcitabine induced DNA damage response,the proteins related to DNA damage response can be suitable additional targets for novel gemcitabine-based combination therapy.Furthermore,KRAS/RAF/MEK/ERK signaling triggered by oncogenic mutated KRAS and autophagy are frequently activated in pancreatic cancer.Therefore,these characteristics of pancreatic cancer are potential targets for developing effective novel therapies.In this minireview,combinations of gemcitabine and targeted drugs to these characteristics,combinations of targeted drugs,combinations of natural products and anti-cancer agents,including gemcitabine,and combinations among natural products are discussed.展开更多
Cancer immunotherapy has emerged as a promising approach in cancer treatment and is considered a major advancement after surgical interventions, radiotherapy, chemotherapy, and targeted therapy. The clinical use of im...Cancer immunotherapy has emerged as a promising approach in cancer treatment and is considered a major advancement after surgical interventions, radiotherapy, chemotherapy, and targeted therapy. The clinical use of immunotherapeutic drugs, particularly antibody-based drugs that target immune checkpoints, has notably increased~1.展开更多
Background:Choosing the appropriate antipsychotic drug(APD)treatment for patients with schizophrenia(SCZ)can be challenging,as the treatment response to APD is highly variable and difficult to predict due to the lack ...Background:Choosing the appropriate antipsychotic drug(APD)treatment for patients with schizophrenia(SCZ)can be challenging,as the treatment response to APD is highly variable and difficult to predict due to the lack of effective biomarkers.Previous studies have indicated the association between treatment response and genetic and epigenetic factors,but no effective biomarkers have been identified.Hence,further research is imperative to enhance precision medicine in SCZ treatment.Methods:Participants with SCZ were recruited from two randomized trials.The discovery cohort was recruited from the CAPOC trial(n=2307)involved 6 weeks of treatment and equally randomized the participants to the Olanzapine,Risperidone,Quetiapine,Aripiprazole,Ziprasidone,and Haloperidol/Perphenazine(subsequently equally assigned to one or the other)groups.The external validation cohort was recruited from the CAPEC trial(n=1379),which involved 8 weeks of treatment and equally randomized the participants to the Olanzapine,Risperidone,and Aripiprazole groups.Additionally,healthy controls(n=275)from the local community were utilized as a genetic/epigenetic reference.The genetic and epigenetic(DNA methylation)risks of SCZ were assessed using the polygenic risk score(PRS)and polymethylation score,respectively.The study also examined the genetic-epigenetic interactions with treatment response through differential methylation analysis,methylation quantitative trait loci,colocalization,and promoteranchored chromatin interaction.Machine learning was used to develop a prediction model for treatment response,which was evaluated for accuracy and clinical benefit using the area under curve(AUC)for classification,R^(2) for regression,and decision curve analysis.Results:Six risk genes for SCZ(LINC01795,DDHD2,SBNO1,KCNG2,SEMA7A,and RUFY1)involved in cortical morphology were identified as having a genetic-epigenetic interaction associated with treatment response.The developed and externally validated prediction model,which incorporated clinical information,PRS,genetic risk score(GRS),and proxy methylation level(proxyDNAm),demonstrated positive benefits for a wide range of patients receiving different APDs,regardless of sex[discovery cohort:AUC=0.874(95%CI 0.867-0.881),R^(2)=0.478;external validation cohort:AUC=0.851(95%CI 0.841-0.861),R^(2)=0.507].Conclusions:This study presents a promising precision medicine approach to evaluate treatment response,which has the potential to aid clinicians in making informed decisions about APD treatment for patients with SCZ.Trial registration Chinese Clinical Trial Registry(https://www.chictr.org.cn/),18 Aug 2009 retrospectively registered:CAPOC-ChiCTR-RNC-09000521(https://www.chictr.org.cn/showproj.aspx?proj=9014),CAPEC-ChiCTRRNC-09000522(https://www.chictr.org.cn/showproj.aspx?proj=9013).展开更多
BACKGROUND Various non-steroidal anti-inflammatory drugs(NSAIDs)have been used for juvenile idiopathic arthritis(JIA).However,the optimal method for JIA has not yet been developed.AIM To perform a systematic review an...BACKGROUND Various non-steroidal anti-inflammatory drugs(NSAIDs)have been used for juvenile idiopathic arthritis(JIA).However,the optimal method for JIA has not yet been developed.AIM To perform a systematic review and network meta-analysis to determine the optimal instructions.METHODS We searched for randomized controlled trials(RCTs)from PubMed,EMBASE,Google Scholar,CNKI,and Wanfang without restriction for publication date or language at August,2023.Any RCTs that comparing the effectiveness of NSAIDs with each other or placebo for JIA were included in this network meta-analysis.The surface under the cumulative ranking curve(SUCRA)analysis was used to rank the treatments.P value less than 0.05 was identified as statistically significant.RESULTS We included 8 RCTs(1127 patients)comparing 8 different instructions including meloxicam(0.125 qd and 0.250 qd),Celecoxib(3 mg/kg bid and 6 mg/kg bid),piroxicam,Naproxen(5.0 mg/kg/d,7.5 mg/kg/d and 12.5 mg/kg/d),inuprofen(30-40 mg/kg/d),Aspirin(60-80 mg/kg/d,75 mg/kg/d,and 55 mg/kg/d),Tolmetin(15 mg/kg/d),Rofecoxib,and placebo.There were no significant differences between any two NSAIDs regarding ACR Pedi 30 response.The SUCRA shows that celecoxib(6 mg/kg bid)ranked first(SUCRA,88.9%),rofecoxib ranked second(SUCRA,68.1%),Celecoxib(3 mg/kg bid)ranked third(SUCRA,51.0%).There were no significant differences between any two NSAIDs regarding adverse events.The SUCRA shows that placebo ranked first(SUCRA,88.2%),piroxicam ranked second(SUCRA,60.5%),rofecoxib(0.6 mg/kg qd)ranked third(SUCRA,56.1%),meloxicam(0.125 mg/kg qd)ranked fourth(SUCRA,56.1%),and rofecoxib(0.3 mg/kg qd)ranked fifth(SUCRA,56.1%).CONCLUSION In summary,celecoxib(6 mg/kg bid)was found to be the most effective NSAID for treating JIA.Rofecoxib,piroxicam,and meloxicam may be safer options,but further research is needed to confirm these findings in larger trials with higher quality studies.展开更多
Background:Gastroesophageal variceal bleeding is one of the most severe complications of patients with cirrhosis.Although primary prevention drugs,including non-selectiveβ-blockers,have effectively reduced the incide...Background:Gastroesophageal variceal bleeding is one of the most severe complications of patients with cirrhosis.Although primary prevention drugs,including non-selectiveβ-blockers,have effectively reduced the incidence of bleeding,their efficacy is limited due to side effects and related contraindications.With recent advances in precision medicine,precise drug treatment provides better treatment efficacy.Data sources:Literature search was conducted in PubMed,MEDLINE and Web of Science for relevant articles published up to May 2022.Information on clinical trials was obtained from https://clinicaltrials.gov/and http://www.chictr.org.cn/.Results:The in-depth understanding of the pathogenesis and advances of portal hypertension has enabled the discovery of multiple molecular targets for promising drugs.According to the site of action,these drugs could be classified into four classes:intrahepatic,extrahepatic,both intrahepatic and extrahepatic targets and others.All these classes of drugs offer advantages over traditional treatments in prevention of gastroesophageal variceal bleeding in patients with cirrhotic portal hypertension.Conclusions:This review classified and summarized the promising drugs,which prevent gastroesophageal variceal bleeding by targeting specific markers of pathogenesis of portal hypertension,demonstrating the significance of using the precision medicine strategy to discover and develop promising drugs for the primary prevention of gastroesophageal variceal bleeding in patients with cirrhotic portal hypertension.展开更多
Purpose: To establish a HPLC testing method of the content of bulk picoplatin and its impurities. Method: the separation was perform on a C18 column(4.6 mm×250 mm, 5 m) with potassium dihydrogen phosphate-aceton-...Purpose: To establish a HPLC testing method of the content of bulk picoplatin and its impurities. Method: the separation was perform on a C18 column(4.6 mm×250 mm, 5 m) with potassium dihydrogen phosphate-aceton-itrile as the mobile phase at a flow rate of 1.0 mL/min. The detecting wavelength was set at 210 nm, and the column temperature was set at 30℃. Result: in the method validation, the linear relationship modulus of picoplatin is 0.9999, the systemic precision is 0.44%, the method precision is 0.74%, the average recovery rate is 99.62%, the LOD and LOQ of picoplatin is 0.2 ng and 1.0 ng. The average resolution of picoplatin and its impurities is more than 2. Conclusion: The established method is good specificity, high sensitivity, and good repeatability which could provide scientific evidence for the quality control of picoplatin and its impurities.展开更多
BACKGROUND Diabetes and thyroiditis are closely related.They occur in combination and cause significant damage to the body.There is no clear treatment for type-2 diabetes mellitus(T2DM)with Hashimoto's thyroiditis...BACKGROUND Diabetes and thyroiditis are closely related.They occur in combination and cause significant damage to the body.There is no clear treatment for type-2 diabetes mellitus(T2DM)with Hashimoto's thyroiditis(HT).While single symptomatic drug treatment of the two diseases is less effective,combined drug treatment may improve efficacy.AIM To investigate the effect of a combination of vitamin D,selenium,and hypoglycemic agents in T2DM with HT.METHODS This retrospective study included 150 patients with T2DM and HT treated at The Central Hospital of Shaoyang from March 2020 to February 2023.Fifty patients were assigned to the control group,test group A,and test group B according to different treatment methods.The control group received low-iodine diet guidance and hypoglycemic drug treatment.Test group A received the control treatment plus vitamin D treatment.Test group B received the group A treatment plus selenium.Blood levels of markers of thyroid function[free T3(FT3),thyroid stimulating hormone(TSH),free T4(FT4)],autoantibodies[thyroid peroxidase antibody(TPOAB)and thyroid globulin antibody(TGAB)],blood lipid index[low-density lipoprotein cholesterol(LDL-C),total cholesterol(TC),triacylglycerol(TG)],blood glucose index[fasting blood glucose(FBG),and hemoglobin A1c(HbA1c)]were measured pre-treatment and 3 and 6 months after treatment.The relationships between serum 25-hydroxyvitamin D3[25(OH)D3]level and each of these indices were analyzed.RESULTS The levels of 25(OH)D3,FT3,FT4,and LDL-C increased in the order of the control group,test group A,and test group B(all P<0.05).The TPOAB,TGAB,TC,TG,FBG,HbA1c,and TSH levels increased in the order of test groups B,A,and the control group(all P<0.05).All the above indices were compared after 3 and 6 months of treatment.Pre-treatment,there was no divergence in serum 25(OH)D3 level,thyroid function-related indexes,autoantibodies level,blood glucose,and blood lipid index between the control group,test groups A and B(all P>0.05).The 25(OH)D3 levels in test groups A and B were negatively correlated with FT4 and TGAB(all P<0.05).CONCLUSION The combination drug treatment for T2DM with HT significantly improved thyroid function,autoantibody,and blood glucose and lipid levels.展开更多
Immune checkpoint inhibitors(ICIs)are used to relieve and refuel anti-tumor immunity by blocking the interaction,transcription,and translation of co-inhibitory immune checkpoints or degrading co-inhibitory immune chec...Immune checkpoint inhibitors(ICIs)are used to relieve and refuel anti-tumor immunity by blocking the interaction,transcription,and translation of co-inhibitory immune checkpoints or degrading co-inhibitory immune checkpoints.Thousands of small molecule drugs or biological materials,especially antibody-based ICIs,are actively being studied and antibodies are currently widely used.Limitations,such as anti-tumor efficacy,poor membrane permeability,and unneglected tolerance issues of antibody-based ICIs,remain evident but are thought to be overcome by small molecule drugs.Recent structural studies have broadened the scope of candidate immune checkpoint molecules,as well as innovative chemical inhibitors.By way of comparison,small molecule drug-based ICIs represent superior oral bioavailability and favorable pharmacokinetic features.Several ongoing clinical trials are exploring the synergetic effect of ICIs and other therapeutic strategies based on multiple ICI functions,including immune regulation,anti-angiogenesis,and cell cycle regulation.In this review we summarized the current progression of small molecule ICIs and the mechanism underlying immune checkpoint proteins,which will lay the foundation for further exploration.展开更多
Cancer constitutes a heterogenic cellular system with a high level of spatio-temporal complexity.Recent discoveries by systems biologists have provided emerging evidence that cellular responses to anti-cancer modaliti...Cancer constitutes a heterogenic cellular system with a high level of spatio-temporal complexity.Recent discoveries by systems biologists have provided emerging evidence that cellular responses to anti-cancer modalities are stochastic in nature.To uncover the intricacies of cell-to-cell variability and its relevance to cancer therapy,new analytical screening technologies are needed.The last decade has brought forth spectacular innovations in the field of cytometry and single cell cytomics,opening new avenues for systems oncology and high-throughput real-time drug screening routines.The up-and-coming microfluidic Lab-on-a-Chip(LOC)technology and micrototal analysis systems(μTAS)are arguably the most promising platforms to address the inherent complexity of cellular systems with massive experimental parallelization and 4D analysis on a single cell level.The vast miniaturization of LOC systems and multiplexing enables innovative strategies to reduce drug screening expenditures while increasing throughput and content of information from a given sample.Small cell numbers and operational reagent volumes are sufficient for microfluidic analyzers and,as such,they enable next generation high-throughput and high-content screening of anticancer drugs on patient-derived specimens.Herein we highlight the selected advancements in this emerging field of bioengineering,and provide a snapshot of developments with relevance to anti-cancer drug screening routines.展开更多
Antibody-drug conjugates(ADCs)are a new type of targeting antibodies that conjugate with highly toxic anticancer drugs via chemical linkers to exert high specificity and efficient killing of tumor cells,thereby attrac...Antibody-drug conjugates(ADCs)are a new type of targeting antibodies that conjugate with highly toxic anticancer drugs via chemical linkers to exert high specificity and efficient killing of tumor cells,thereby attracting considerable attention in precise oncology therapy.Cetuximab(Cet)is a typical antibody that offers the benefits of good targeting and safety for individuals with advanced and inoperable cutaneous squamous cell carcinoma(cSCC);however,its anti-tumor activity is limited to a single use.Cisplatin(CisPt)shows good curative effects;however,its adverse effects and non-tumor-targeting ability are major drawbacks.In this study,we designed and developed a new ADC based on a new cytotoxic platinum(IV)prodrug(C8Pt(IV))and Cet.The so-called antibody-platinum(IV)prodrugs conjugates,named Cet-C8Pt(IV),showed excellent tumor targeting in cSCC.Specifically,it accurately delivered C8Pt(IV)into tumor cells to exert the combined anti-tumor effect of Cet and CisPt.Herein,metabolomic analysis showed that Cet-C8Pt(IV)promoted cellular apoptosis and increased DNA damage in cSCC cells by affecting the vitamin B6 metabolic pathway in tumor cells,thereby further enhancing the tumor-killing ability and providing a new strategy for clinical cancer treatment using antibody-platinum(IV)prodrugs conjugates.展开更多
Rhodiola rosea,a perennial herb of the genus Rhodiola in the Crassulaceae family,is commonly used to treat depression,fatigue,cancer and cardiovascular diseases.Herbacetin is a natural flavonol compound extracted from...Rhodiola rosea,a perennial herb of the genus Rhodiola in the Crassulaceae family,is commonly used to treat depression,fatigue,cancer and cardiovascular diseases.Herbacetin is a natural flavonol compound extracted from R.rosea plant,with many pharmacological effects such as anti-cancer effect,anti-oxidant effect and anti-inflammatory effect.In this paper,the pharmacological effects and molecular mechanisms of herbacetin were summarized by consulting domestic and foreign literature,in order to provide a theoretical basis for the development and utilization of herbacetin.展开更多
Some bacteria have the ability to co-exist, proliferate and survive in a multicellular community, biofilm. Each participating bacteria can form its colonies and encases itself by a self-produced insoluble extracellula...Some bacteria have the ability to co-exist, proliferate and survive in a multicellular community, biofilm. Each participating bacteria can form its colonies and encases itself by a self-produced insoluble extracellular matrix substance (EPS). Microcolonies within biofilm are held together by interactions and bonding of the substances present in the EPS with their separation from the water channels. Similar to insoluble EPS, bacterial microcolonies release soluble exofactors that have direct impacts on the survivability, growth and antibacterial resistivity of other microcolonies made of single- or multi-species bacteria in the same biofilm. How the exofactors of microcolonies of one-type bacteria impact on microcolonies of other-type bacteria is still unclear. We studied about the role of exofactors released from Escherichia coli, Staphylococcus aureus and Pseudomonas aeruginosa, which are common biofilm-forming pathogenic bacteria. Exofactors facilitate to transform the microenvironment where bacteria can acquire alternative lifestyle with a long survival period and resistivity to certain antimicrobial drugs.展开更多
[Objectives]To establish a new management model for rational use of perioperative antibacterial drugs in surgical departments.[Methods]Based on evidence-based medicine,the department s drug pathway was formulated,and ...[Objectives]To establish a new management model for rational use of perioperative antibacterial drugs in surgical departments.[Methods]Based on evidence-based medicine,the department s drug pathway was formulated,and the new mode of rational drug use control was established by using fine pharmaceutical technology intervention,and the intervention effect was evaluated by the intensity of antibacterial drug use,per capita drug costs and the proportion of drugs.[Results]After adopting drug pathway in departments,the intensity of antibacterial drug use,per capita drug costs and the proportion of drugs decreased significantly,and the effect of rational drug use control was remarkable.[Conclusions]The drug pathway provides a new management and control mode for the rational use of perioperative antibacterial drugs in surgical departments of hospitals.Thus,it is worthy of popularization and application.展开更多
文摘In order to control the silver content in the preparation process of platinum group anti-cancer drugs, we put two kinds of color reagent to color in the production process of the platinum anti-cancer drugs by UV spectra measurement to control drugs production of platinum anticancer, thus we could control the silver content in the drugs so that it meets the pharmacopoeia standards of US and
文摘RP215 is one of the three thousand monoclonal antibodies (Mabs) which were generated against the OC-3-VGH ovarian cancer cell line. RP215 was shown to react with a carbohydrate-associated epitope located specifically on glycoproteins, known as CA215, from cancer cells. Further molecular analysis by matrix adsorption laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) revealed that CA215 consists mainly of immunoglobulin super-family (IgSF) proteins, including immunoglobulins, T-cell receptors, and cell adhesion molecules, as well as several other unrelated proteins. Peptide mappings and glycoanalysis were performed with CA215 and revealed high-mannose and complex bisecting structures with terminal sialic acid in N-glycans. As many as ten O-glycans, which are structurally similar to those of mucins, were also identified. In addition, two additional O-linked glycans were exclusively detected in cancerous immunoglobulins but not in normal B cell-derived immunoglobulins. Immunizations of mice with purified CA215 resulted in the predominant generation of RP215-related Mabs, indicating the immunodominance of this carbohydrate-associated epitope. Anti-idiotype (anti-id) Mabs of RP215, which were generated in the rat, were shown to contain the internal images of the carbohydrate-associated epitope. Following immunizations of these anti-id Mabs in mice, the resulting anti-anti-id (Ab3) responses in mice were found to be immunologically similar to that of RP215. Judging from these observations, anti-id Mabs, which carry the internal image of the RP215-specific epitope, may be suitable candidates for anticancer vaccine development in humans.
文摘Cancer-beating molecules (CBMs) are abundant in many types of food and potentially anti-cancer therapeutic agents. In the previous work, researchers introduced a network-based machine learning platform to identify the cancer-beating molecules, for example,?comparing the similarities in the molecular network between approved anticancer drug and food molecules. Herein, we aim to build on this work to enhance the accuracy of predicting food molecules. In this project, we improve supervised learning approaches by applying Soft Voting algorithm to seven machine learning algorithms: Support Vector Machine with Radial Basis Function (SVM with RBF kernel), multilayer perceptron neural network?(MLP), Random forest, Decision trees,?Gaussian Naive Bayes, Adaboosting, and Bagging. As a result, the accuracy in the dataset of 50 food molecules utilized increased from 82% to 87%, achieving a significant improvement in the precision of?predicting anti-cancer molecules.
文摘In the last few decades numbers of review and research articles have been published on niosomes. This shows the relevant interest of academias & researchers in niosomes because of the advantages sponsored by them over other colloidal drug delivery systems. Niosomes formation occurs when non-ionic surfactant vesicles assemble themselves. Various antineoplastic agents are used in chemotherapy, but they have some drawbacks that these agents cause cell death in normal tissues as well. There are two approaches to overcome this limitation. First, to modify the structure of existing drugs, but this will not possible because it changes the properties of drugs. Second, the development of nano-carriers like liposomes, dendrimers, nanoparticles, niosomes et al. Among all, niosomes (non-ionic surfactant vesicles) have more advantages besides all nano-carriers. Drugs either hydrophilic in nature or hydrophobic in nature, both can be incorporated in niosomes. And by embedding specific ligands over vesicular surface enables us to target the drug to specific cancer cells.
基金supported by the funding of National Natural Science Foundation of China (No. 81770209).
文摘Sterile α motif and histidine/aspartic acid domain containing protein 1 (SAMHD1) is a deoxynucleoside triphosphate (dNTPs) triphosphohydrolase that can hydrolyze dNTPs into deoxynucleosides and triphosphates to keep the balance of the intracellular dNTPs pool. Moreover, it has been reported that SAMHD1 plays a role in regulating cell proliferation and the cell cycle, maintaining genome stability and inhibiting innate immune responses. SAMHD1 activity is regulated by phosphorylation, oxidation, SUMOylation, and O-GlcNAcylation. SAMHD1 mutations have been reported to cause diseases, including chronic lymphocytic leukemia and mantle cell lymphoma. SAMHD1 expression in acute myeloid leukemia predicts inferior prognosis. Recently, it has been revealed that SAMHD1 mediates the resistance to anti-cancer drugs. This review will focus on SAMHD1 function and regulation, the association between SAMHD1 and hematological malignancies and will provide updated information on SAMHD1 mediating resistance to nucleoside analogue antimetabolites, topoisomerase inhibitors, platinum-derived agents and DNA hypomethylating agents. Furthermore, histone deacetylase inhibitors and tyrosine kinase inhibitors indirectly increase anti-cancer drug resistance by increasing SAMDH1 activity. We herein highlight the importance of the development of novel agents targeting SAMHD1 to overcome treatment resistance of hematological malignancies, which would be an opportunity to improve the outcome of patients with refractory hematological malignancies.
文摘The use of traditional herbal drugs derived from natural sources is on the rise due to their minimal side effects and numerous health benefits.However,a major limitation is the lack of standardized knowledge for identifying and mapping the quality of these herbal medicines.This article aims to provide practical insights into the application of artificial intelligence for quality-based commercialization of raw herbal drugs.It focuses on feature extraction methods,image processing techniques,and the preparation of herbal images for compatibility with machine learning models.The article discusses commonly used image processing tools such as normalization,slicing,cropping,and augmentation to prepare images for artificial intelligence-based models.It also provides an overview of global herbal image databases and the models employed for herbal plant/drug identification.Readers will gain a comprehensive understanding of the potential application of various machine learning models,including artificial neural networks and convolutional neural networks.The article delves into suitable validation parameters like true positive rates,accuracy,precision,and more for the development of artificial intelligence-based identification and authentication techniques for herbal drugs.This article offers valuable insights and a conclusive platform for the further exploration of artificial intelligence in the field of herbal drugs,paving the way for smarter identification and authentication methods.
基金National Key Research and Development Programs of China(No.2018YFA0209700)National Natural Science Foundation of China(NSFC,No.22077073)+1 种基金Frontiers Science Center for New Organic Matter(No.63181206)Fundamental Research Funds for the Central Universities(Nankai University,No.63206015).
文摘Nano-drug delivery systems(nanoDDS)have been extensively investigated clinically to improve the therapeutic effect of anticancer drugs.However,the complicated synthesis during the preparation as well as the potential drug leakage during transportation has greatly limited their general application.In this work,a calixarene-integrated nanoDDS(CanD)that achieves tumor-targeted delivery and tracking of anti-cancer drugs in vivo is presented.The hypoxia-responsive calixarene(SAC4A)exhibits high binding affinity to a series of anti-cancer drugs and rhodamine B(RhB)under normoxic condition while decreasing the binding affinity under hypoxic condition,which leads to the drug release and fluorescence recovery simultaneously.Furthermore,the hypoxia-responsiveness of SAC4A conveys CanD with tumor-targeting ability,resulting in the enrichment of the drug in tumors and enhancement in tumor suppression in mice.Moreover,CanD could become a general platform allowing the delivery of a wide scope of anti-cancer drugs that have strong host-guest interaction with SAC4A.
文摘Pancreatic cancer is highly aggressive and lethal.Due to the lack of effective methods for detecting the disease at an early stage,pancreatic cancer is frequently diagnosed late.Gemcitabine has been the standard chemotherapy drug for patients with pancreatic cancer for over 20 years,but its anti-tumor effect is limited.Therefore,FOLFIRINOX(leucovorin,fluorouracil,irinotecan,oxaliplatin)as well as combination therapies using gemcitabine and conventional agents,such as cisplatin and capecitabine,has also been administered;however,these have not resulted in complete remission.Therefore,there is a need to develop novel and effective therapies for pancreatic cancer.Recently,some studies have reported that combinations of gemcitabine and targeted drugs have had significant antitumor effects on pancreatic cancer cells.As gemcitabine induced DNA damage response,the proteins related to DNA damage response can be suitable additional targets for novel gemcitabine-based combination therapy.Furthermore,KRAS/RAF/MEK/ERK signaling triggered by oncogenic mutated KRAS and autophagy are frequently activated in pancreatic cancer.Therefore,these characteristics of pancreatic cancer are potential targets for developing effective novel therapies.In this minireview,combinations of gemcitabine and targeted drugs to these characteristics,combinations of targeted drugs,combinations of natural products and anti-cancer agents,including gemcitabine,and combinations among natural products are discussed.
基金supported by grants from the National Natural Science Foundation of China (Grant No. U20A20369)GuangDong Basic and Applied Basic Research Foundation (Grant No. 2022B1515120085)。
文摘Cancer immunotherapy has emerged as a promising approach in cancer treatment and is considered a major advancement after surgical interventions, radiotherapy, chemotherapy, and targeted therapy. The clinical use of immunotherapeutic drugs, particularly antibody-based drugs that target immune checkpoints, has notably increased~1.
基金supported by the National Natural Science Foundation of China(81825009,82071505,81901358)the Chinese Academy of Medical Sciences Innovation Fund for Medical Sciences(2021-I2MC&T-B-099,2019-I2M-5–006)+2 种基金the Program of Chinese Institute for Brain Research Beijing(2020-NKX-XM-12)the King’s College London-Peking University Health Science Center Joint Institute for Medical Research(BMU2020KCL001,BMU2019LCKXJ012)the National Key R&D Program of China(2021YFF1201103,2016YFC1307000).
文摘Background:Choosing the appropriate antipsychotic drug(APD)treatment for patients with schizophrenia(SCZ)can be challenging,as the treatment response to APD is highly variable and difficult to predict due to the lack of effective biomarkers.Previous studies have indicated the association between treatment response and genetic and epigenetic factors,but no effective biomarkers have been identified.Hence,further research is imperative to enhance precision medicine in SCZ treatment.Methods:Participants with SCZ were recruited from two randomized trials.The discovery cohort was recruited from the CAPOC trial(n=2307)involved 6 weeks of treatment and equally randomized the participants to the Olanzapine,Risperidone,Quetiapine,Aripiprazole,Ziprasidone,and Haloperidol/Perphenazine(subsequently equally assigned to one or the other)groups.The external validation cohort was recruited from the CAPEC trial(n=1379),which involved 8 weeks of treatment and equally randomized the participants to the Olanzapine,Risperidone,and Aripiprazole groups.Additionally,healthy controls(n=275)from the local community were utilized as a genetic/epigenetic reference.The genetic and epigenetic(DNA methylation)risks of SCZ were assessed using the polygenic risk score(PRS)and polymethylation score,respectively.The study also examined the genetic-epigenetic interactions with treatment response through differential methylation analysis,methylation quantitative trait loci,colocalization,and promoteranchored chromatin interaction.Machine learning was used to develop a prediction model for treatment response,which was evaluated for accuracy and clinical benefit using the area under curve(AUC)for classification,R^(2) for regression,and decision curve analysis.Results:Six risk genes for SCZ(LINC01795,DDHD2,SBNO1,KCNG2,SEMA7A,and RUFY1)involved in cortical morphology were identified as having a genetic-epigenetic interaction associated with treatment response.The developed and externally validated prediction model,which incorporated clinical information,PRS,genetic risk score(GRS),and proxy methylation level(proxyDNAm),demonstrated positive benefits for a wide range of patients receiving different APDs,regardless of sex[discovery cohort:AUC=0.874(95%CI 0.867-0.881),R^(2)=0.478;external validation cohort:AUC=0.851(95%CI 0.841-0.861),R^(2)=0.507].Conclusions:This study presents a promising precision medicine approach to evaluate treatment response,which has the potential to aid clinicians in making informed decisions about APD treatment for patients with SCZ.Trial registration Chinese Clinical Trial Registry(https://www.chictr.org.cn/),18 Aug 2009 retrospectively registered:CAPOC-ChiCTR-RNC-09000521(https://www.chictr.org.cn/showproj.aspx?proj=9014),CAPEC-ChiCTRRNC-09000522(https://www.chictr.org.cn/showproj.aspx?proj=9013).
基金Supported by the Science and Technology Plan Project of Jingmen Science and Technology Bureau,No.2018YFZD025。
文摘BACKGROUND Various non-steroidal anti-inflammatory drugs(NSAIDs)have been used for juvenile idiopathic arthritis(JIA).However,the optimal method for JIA has not yet been developed.AIM To perform a systematic review and network meta-analysis to determine the optimal instructions.METHODS We searched for randomized controlled trials(RCTs)from PubMed,EMBASE,Google Scholar,CNKI,and Wanfang without restriction for publication date or language at August,2023.Any RCTs that comparing the effectiveness of NSAIDs with each other or placebo for JIA were included in this network meta-analysis.The surface under the cumulative ranking curve(SUCRA)analysis was used to rank the treatments.P value less than 0.05 was identified as statistically significant.RESULTS We included 8 RCTs(1127 patients)comparing 8 different instructions including meloxicam(0.125 qd and 0.250 qd),Celecoxib(3 mg/kg bid and 6 mg/kg bid),piroxicam,Naproxen(5.0 mg/kg/d,7.5 mg/kg/d and 12.5 mg/kg/d),inuprofen(30-40 mg/kg/d),Aspirin(60-80 mg/kg/d,75 mg/kg/d,and 55 mg/kg/d),Tolmetin(15 mg/kg/d),Rofecoxib,and placebo.There were no significant differences between any two NSAIDs regarding ACR Pedi 30 response.The SUCRA shows that celecoxib(6 mg/kg bid)ranked first(SUCRA,88.9%),rofecoxib ranked second(SUCRA,68.1%),Celecoxib(3 mg/kg bid)ranked third(SUCRA,51.0%).There were no significant differences between any two NSAIDs regarding adverse events.The SUCRA shows that placebo ranked first(SUCRA,88.2%),piroxicam ranked second(SUCRA,60.5%),rofecoxib(0.6 mg/kg qd)ranked third(SUCRA,56.1%),meloxicam(0.125 mg/kg qd)ranked fourth(SUCRA,56.1%),and rofecoxib(0.3 mg/kg qd)ranked fifth(SUCRA,56.1%).CONCLUSION In summary,celecoxib(6 mg/kg bid)was found to be the most effective NSAID for treating JIA.Rofecoxib,piroxicam,and meloxicam may be safer options,but further research is needed to confirm these findings in larger trials with higher quality studies.
基金This work was supported by grants from the National Natural Science Foundation of China(81902484)China Postdoctoral Science Foundation(2020M670864)+2 种基金Youth Support Project of Jilin Association for Science and Technology(202028)Jilin Provincial Health Special Project(2020SCZT039)Jilin Health and Healthy Youth Science and Technology Training Plan(2020Q017).
文摘Background:Gastroesophageal variceal bleeding is one of the most severe complications of patients with cirrhosis.Although primary prevention drugs,including non-selectiveβ-blockers,have effectively reduced the incidence of bleeding,their efficacy is limited due to side effects and related contraindications.With recent advances in precision medicine,precise drug treatment provides better treatment efficacy.Data sources:Literature search was conducted in PubMed,MEDLINE and Web of Science for relevant articles published up to May 2022.Information on clinical trials was obtained from https://clinicaltrials.gov/and http://www.chictr.org.cn/.Results:The in-depth understanding of the pathogenesis and advances of portal hypertension has enabled the discovery of multiple molecular targets for promising drugs.According to the site of action,these drugs could be classified into four classes:intrahepatic,extrahepatic,both intrahepatic and extrahepatic targets and others.All these classes of drugs offer advantages over traditional treatments in prevention of gastroesophageal variceal bleeding in patients with cirrhotic portal hypertension.Conclusions:This review classified and summarized the promising drugs,which prevent gastroesophageal variceal bleeding by targeting specific markers of pathogenesis of portal hypertension,demonstrating the significance of using the precision medicine strategy to discover and develop promising drugs for the primary prevention of gastroesophageal variceal bleeding in patients with cirrhotic portal hypertension.
文摘Purpose: To establish a HPLC testing method of the content of bulk picoplatin and its impurities. Method: the separation was perform on a C18 column(4.6 mm×250 mm, 5 m) with potassium dihydrogen phosphate-aceton-itrile as the mobile phase at a flow rate of 1.0 mL/min. The detecting wavelength was set at 210 nm, and the column temperature was set at 30℃. Result: in the method validation, the linear relationship modulus of picoplatin is 0.9999, the systemic precision is 0.44%, the method precision is 0.74%, the average recovery rate is 99.62%, the LOD and LOQ of picoplatin is 0.2 ng and 1.0 ng. The average resolution of picoplatin and its impurities is more than 2. Conclusion: The established method is good specificity, high sensitivity, and good repeatability which could provide scientific evidence for the quality control of picoplatin and its impurities.
基金Supported by Science and Technology Plan Project of Shaoyang City,No.2022GX4139.
文摘BACKGROUND Diabetes and thyroiditis are closely related.They occur in combination and cause significant damage to the body.There is no clear treatment for type-2 diabetes mellitus(T2DM)with Hashimoto's thyroiditis(HT).While single symptomatic drug treatment of the two diseases is less effective,combined drug treatment may improve efficacy.AIM To investigate the effect of a combination of vitamin D,selenium,and hypoglycemic agents in T2DM with HT.METHODS This retrospective study included 150 patients with T2DM and HT treated at The Central Hospital of Shaoyang from March 2020 to February 2023.Fifty patients were assigned to the control group,test group A,and test group B according to different treatment methods.The control group received low-iodine diet guidance and hypoglycemic drug treatment.Test group A received the control treatment plus vitamin D treatment.Test group B received the group A treatment plus selenium.Blood levels of markers of thyroid function[free T3(FT3),thyroid stimulating hormone(TSH),free T4(FT4)],autoantibodies[thyroid peroxidase antibody(TPOAB)and thyroid globulin antibody(TGAB)],blood lipid index[low-density lipoprotein cholesterol(LDL-C),total cholesterol(TC),triacylglycerol(TG)],blood glucose index[fasting blood glucose(FBG),and hemoglobin A1c(HbA1c)]were measured pre-treatment and 3 and 6 months after treatment.The relationships between serum 25-hydroxyvitamin D3[25(OH)D3]level and each of these indices were analyzed.RESULTS The levels of 25(OH)D3,FT3,FT4,and LDL-C increased in the order of the control group,test group A,and test group B(all P<0.05).The TPOAB,TGAB,TC,TG,FBG,HbA1c,and TSH levels increased in the order of test groups B,A,and the control group(all P<0.05).All the above indices were compared after 3 and 6 months of treatment.Pre-treatment,there was no divergence in serum 25(OH)D3 level,thyroid function-related indexes,autoantibodies level,blood glucose,and blood lipid index between the control group,test groups A and B(all P>0.05).The 25(OH)D3 levels in test groups A and B were negatively correlated with FT4 and TGAB(all P<0.05).CONCLUSION The combination drug treatment for T2DM with HT significantly improved thyroid function,autoantibody,and blood glucose and lipid levels.
基金supported by the National Natural Science Foundation of China(Grant Nos.82203539 and 92259102)Provincial Cooperation Project of Science and Technology Department of Sichuan Province(Grant No.2023YFSY0043)the National Key Research and Development Program of China(Grant No.2023YFC3402100).
文摘Immune checkpoint inhibitors(ICIs)are used to relieve and refuel anti-tumor immunity by blocking the interaction,transcription,and translation of co-inhibitory immune checkpoints or degrading co-inhibitory immune checkpoints.Thousands of small molecule drugs or biological materials,especially antibody-based ICIs,are actively being studied and antibodies are currently widely used.Limitations,such as anti-tumor efficacy,poor membrane permeability,and unneglected tolerance issues of antibody-based ICIs,remain evident but are thought to be overcome by small molecule drugs.Recent structural studies have broadened the scope of candidate immune checkpoint molecules,as well as innovative chemical inhibitors.By way of comparison,small molecule drug-based ICIs represent superior oral bioavailability and favorable pharmacokinetic features.Several ongoing clinical trials are exploring the synergetic effect of ICIs and other therapeutic strategies based on multiple ICI functions,including immune regulation,anti-angiogenesis,and cell cycle regulation.In this review we summarized the current progression of small molecule ICIs and the mechanism underlying immune checkpoint proteins,which will lay the foundation for further exploration.
文摘Cancer constitutes a heterogenic cellular system with a high level of spatio-temporal complexity.Recent discoveries by systems biologists have provided emerging evidence that cellular responses to anti-cancer modalities are stochastic in nature.To uncover the intricacies of cell-to-cell variability and its relevance to cancer therapy,new analytical screening technologies are needed.The last decade has brought forth spectacular innovations in the field of cytometry and single cell cytomics,opening new avenues for systems oncology and high-throughput real-time drug screening routines.The up-and-coming microfluidic Lab-on-a-Chip(LOC)technology and micrototal analysis systems(μTAS)are arguably the most promising platforms to address the inherent complexity of cellular systems with massive experimental parallelization and 4D analysis on a single cell level.The vast miniaturization of LOC systems and multiplexing enables innovative strategies to reduce drug screening expenditures while increasing throughput and content of information from a given sample.Small cell numbers and operational reagent volumes are sufficient for microfluidic analyzers and,as such,they enable next generation high-throughput and high-content screening of anticancer drugs on patient-derived specimens.Herein we highlight the selected advancements in this emerging field of bioengineering,and provide a snapshot of developments with relevance to anti-cancer drug screening routines.
基金the National Natural Science Foundation of China(Grant No.:51803120).
文摘Antibody-drug conjugates(ADCs)are a new type of targeting antibodies that conjugate with highly toxic anticancer drugs via chemical linkers to exert high specificity and efficient killing of tumor cells,thereby attracting considerable attention in precise oncology therapy.Cetuximab(Cet)is a typical antibody that offers the benefits of good targeting and safety for individuals with advanced and inoperable cutaneous squamous cell carcinoma(cSCC);however,its anti-tumor activity is limited to a single use.Cisplatin(CisPt)shows good curative effects;however,its adverse effects and non-tumor-targeting ability are major drawbacks.In this study,we designed and developed a new ADC based on a new cytotoxic platinum(IV)prodrug(C8Pt(IV))and Cet.The so-called antibody-platinum(IV)prodrugs conjugates,named Cet-C8Pt(IV),showed excellent tumor targeting in cSCC.Specifically,it accurately delivered C8Pt(IV)into tumor cells to exert the combined anti-tumor effect of Cet and CisPt.Herein,metabolomic analysis showed that Cet-C8Pt(IV)promoted cellular apoptosis and increased DNA damage in cSCC cells by affecting the vitamin B6 metabolic pathway in tumor cells,thereby further enhancing the tumor-killing ability and providing a new strategy for clinical cancer treatment using antibody-platinum(IV)prodrugs conjugates.
基金Supported by Talent Training Project of Central Support for the Reform and Development Fund of Local Colleges and Universities(2020GSP16)Heilongjiang Provincial Key R&D Plan Guidance Project(GZ20220039)Daqing Guiding Science and Technology Project(zdy-2024-91).
文摘Rhodiola rosea,a perennial herb of the genus Rhodiola in the Crassulaceae family,is commonly used to treat depression,fatigue,cancer and cardiovascular diseases.Herbacetin is a natural flavonol compound extracted from R.rosea plant,with many pharmacological effects such as anti-cancer effect,anti-oxidant effect and anti-inflammatory effect.In this paper,the pharmacological effects and molecular mechanisms of herbacetin were summarized by consulting domestic and foreign literature,in order to provide a theoretical basis for the development and utilization of herbacetin.
文摘Some bacteria have the ability to co-exist, proliferate and survive in a multicellular community, biofilm. Each participating bacteria can form its colonies and encases itself by a self-produced insoluble extracellular matrix substance (EPS). Microcolonies within biofilm are held together by interactions and bonding of the substances present in the EPS with their separation from the water channels. Similar to insoluble EPS, bacterial microcolonies release soluble exofactors that have direct impacts on the survivability, growth and antibacterial resistivity of other microcolonies made of single- or multi-species bacteria in the same biofilm. How the exofactors of microcolonies of one-type bacteria impact on microcolonies of other-type bacteria is still unclear. We studied about the role of exofactors released from Escherichia coli, Staphylococcus aureus and Pseudomonas aeruginosa, which are common biofilm-forming pathogenic bacteria. Exofactors facilitate to transform the microenvironment where bacteria can acquire alternative lifestyle with a long survival period and resistivity to certain antimicrobial drugs.
基金Supported by Science and Technology Innovation Plan for Medical Workers in Shandong Province(SDYWZGKCJH2023095)Clinical Pharmacy Research Project of Shandong Provincial Medical Association(YXH2022ZX010)+1 种基金Traditional Chinese Medicine Science and Technology Development Project of Shandong Province(2019-0400&2021Q097)Traditional Chinese Medicine Research Program of Qingdao City(2020-zyy031)Medical Research Guidance Plan of Qingdao City(2020-WJZD087).
文摘[Objectives]To establish a new management model for rational use of perioperative antibacterial drugs in surgical departments.[Methods]Based on evidence-based medicine,the department s drug pathway was formulated,and the new mode of rational drug use control was established by using fine pharmaceutical technology intervention,and the intervention effect was evaluated by the intensity of antibacterial drug use,per capita drug costs and the proportion of drugs.[Results]After adopting drug pathway in departments,the intensity of antibacterial drug use,per capita drug costs and the proportion of drugs decreased significantly,and the effect of rational drug use control was remarkable.[Conclusions]The drug pathway provides a new management and control mode for the rational use of perioperative antibacterial drugs in surgical departments of hospitals.Thus,it is worthy of popularization and application.