For the aqueous Zn-ion battery,dendrite formation,corrosion,and interfacial parasitic reactions are major issues,which greatly inhibits their practical application.How to develop a method of Zn construction or treatme...For the aqueous Zn-ion battery,dendrite formation,corrosion,and interfacial parasitic reactions are major issues,which greatly inhibits their practical application.How to develop a method of Zn construction or treatment to solve these issues for Zn anodes are still great challenges.Herein,a simple and cheap metal passivation technique is proposed for Zn anodes from a corrosion science perspective.Similar to the metal anticorrosion engineering,the formed interfacial protective layer in a chemical way can sufficiently solve the corrosion issues.Furthermore,the proposed passivity approach can reconstruct Zn surface-preferred crystal planes,exposing more(002)planes and improving surface hydrophilicity,which inhibits the formation of Zn dendrites and hydrogen evolution effectively.As expected,the passivated Zn achieves outstanding cycling life(1914 h)with low voltage polarization(<40 mV).Even at 6 mA cm^(−2) and 3 mA h cm^(−2),it can achieve stable Zn deposition over 460 h.The treated Zn anode coupled with MnO_(2) cathode shows prominently reinforced full batteries service life,making it a potential Zn anode candidate for excellent performance aqueous Zn-ion batteries.The proposed passivation approach provides a guideline for other metal electrodes preparation in various batteries and establishes the connections between corrosion science and batteries.展开更多
Developing highly efficient magnetic microwave absorb-ers(MAs)is crucial,and yet challenging for anti-corrosion properties in extremely humid and salt-induced foggy environments.Herein,a dual-oxide shell of ZnO/Al_(2)...Developing highly efficient magnetic microwave absorb-ers(MAs)is crucial,and yet challenging for anti-corrosion properties in extremely humid and salt-induced foggy environments.Herein,a dual-oxide shell of ZnO/Al_(2)O_(3) as a robust barrier to FeSiAl core is introduced to mitigate corrosion resistance.The FeSiAl@ZnO@Al_(2)O_(3) layer by layer hybrid structure is realized with atomic-scale precision through the atomic layer deposition technique.Owing to the unique hybrid structure,the FeSiAl@ZnO@Al_(2)O_(3) exhibits record-high micro-wave absorbing performance in low-frequency bands covering L and S bands with a minimum reflection loss(RLmin)of-50.6 dB at 3.4 GHz.Compared with pure FeSiAl(RLmin of-13.5 dB,a bandwidth of 0.5 GHz),the RLmin value and effective bandwidth of this designed novel absorber increased up to~3.7 and~3 times,respectively.Fur-thermore,the inert ceramic dual-shells have improved 9.0 times the anti-corrosion property of FeSiAl core by multistage barriers towards corrosive medium and obstruction of the electric circuit.This is attributed to the large charge transfer resistance,increased impedance modulus|Z|0.01 Hz,and frequency time constant of FeSiAl@ZnO@Al_(2)O_(3).The research demonstrates a promising platform toward the design of next-generation MAs with improved anti-corrosion properties.展开更多
In extreme cold regions,a thermal insulation layer(TIL)is commonly employed to mitigate the detrimental effects of frost heaving forces in tunnels.Optimizing the laying scheme of TIL,specifically minimizing frost heav...In extreme cold regions,a thermal insulation layer(TIL)is commonly employed to mitigate the detrimental effects of frost heaving forces in tunnels.Optimizing the laying scheme of TIL,specifically minimizing frost heaving forces,holds considerable importance in the prevention of frost damage.This research developed a two-dimensional unsteady temperature field of circular tunnels by using the difference method(taking the off-wall laying method as an example)based on the law of conservation of energy.Then,the frozen circle and water migration coefficient were introduced to establish the relationship between the temperature field and frost heaving forces,and a reliable methodology for calculating these forces under the specific conditions of TIL installation was developed.Then(i)the influence of the air layer thickness of the off-wall laying method,(ii)different laying methods of TIL,(iii)the TIL thickness,(iv)the thermal conductivity of the TIL,and(v)the freeze-thaw cycles on the frost heaving force were investigated.The results showed that the frost heaving force served as a reliable and effective metric for evaluating the insulation effect in tunnels.In order to avoid frost damage in compliance with the design requirements,the insulation effects from various laying methods were established,in descending efficacy order as follows:off-wall laying,double layer laying,surface laying,and sandwich laying.Our findings revealed that the optimal thickness for the air layer in the offwall laying method was 0.10 m.The insulation effect of materials with a thermal conductivity below 0.047 W/(m·℃)was furthermore found to be good.Under freeze-thaw cycle conditions,it is concluded that to prevent frost damage,the TIL thickness should be the sum of the thickness r1 of the first freeze-thaw cycle without frost heaving forces and an additional reserve value 0.06r1 of the TIL thickness.展开更多
Spherical carbonyl iron(Fe)powders were coated with magnesioferrite(MgFe2O4)insulating coating layer and then mixed with epoxy-modified silicone resin(ESR).Soft magnetic composites(SMCs)were fabricated by compaction o...Spherical carbonyl iron(Fe)powders were coated with magnesioferrite(MgFe2O4)insulating coating layer and then mixed with epoxy-modified silicone resin(ESR).Soft magnetic composites(SMCs)were fabricated by compaction of the coated powders and annealing treatment.Transmission electron microscopy(TEM),scanning electron microscopy(SEM),energy dispersive spectroscopy(EDS),X-ray diffractometry(XRD)and X-ray photoelectron spectroscopy(XPS)revealed that the MgFe2O4 layer was coated on the surface of the iron powders.The magnetic properties of SMCs were determined using a vibrating sample magnetometer and an auto testing system for magnetic materials.The results showed that the SMCs prepared at 800 MPa and 550℃ exhibited a significant core loss of 167.5 W/kg at 100 kHz and 50 mT.展开更多
A sandwich plate with a corrugation and auxetic honeycomb hybrid core is constructed,and its sound insulation and optimization are investigated.First,the motion governing equation of the sandwich plate is established ...A sandwich plate with a corrugation and auxetic honeycomb hybrid core is constructed,and its sound insulation and optimization are investigated.First,the motion governing equation of the sandwich plate is established by the third-order shear deformation theory(TSDT),and then combined with the fluid-structure coupling conditions,and the sound insulation is solved.The theoretical results are validated by COMSOL simulation results,and the effects of the structural parameter on the sound insulation are analyzed.Finally,the standard genetic algorithm is adopted to optimize the sound insulation of the sandwich plate.展开更多
Composite Li metal anodes based on three-dimensional(3D) porous frameworks have been considered as an effective material for achieving stable Li metal batteries with high energy density.However,uneven Li deposition be...Composite Li metal anodes based on three-dimensional(3D) porous frameworks have been considered as an effective material for achieving stable Li metal batteries with high energy density.However,uneven Li deposition behavior still occurs at the top of 3D frameworks owing to the local accumulation of Li ions.To promote uniform Li deposition without top dendrite growth,herein,a layered multifunctional framework based on oxidation-treated polyacrylonitrile(OPAN) and metal-organic framework(MOF) derivatives was proposed for rationally regulating the distribution of Li ions flux,nucleation sites,and electrical conductivity.Profiting from these merits,the OPAN/carbon nano fiber-MOF(CMOF) composite framework demonstrated a reversible Li plating/stripping behavior for 500 cycles with a stable Coulombic efficiency of around 99.0% at the current density of 2 mA/cm~2.Besides,such a Li composite anode exhibited a superior cycle lifespan of over 1300 h under a low polarized voltage of 18 mV in symmetrical cells.When the Li composite anode was paired with LiFePO_(4)(LFP) cathode,the obtained full cell exhibited a stable cycling over 500 cycles.Moreover,the COMSOL Multiphysics simulation was conducted to reveal the effects on homogeneous Li ions distribution derived from the above-mentioned OPAN/CMOF framework and electrical insulation/conduction design.These electrochemical and simulated results shed light on the difficulties of designing stable and safe Li metal anode via optimizing the 3D frameworks.展开更多
The formula of the thickness of the heat-insulating layer is deduced via heat transfer analysis,according to the principle of heat transfer in limited space.Polishing experiments are carried out using the same technol...The formula of the thickness of the heat-insulating layer is deduced via heat transfer analysis,according to the principle of heat transfer in limited space.Polishing experiments are carried out using the same technological parameters.Compared with the polishing experimental results,the heat transfer model is proved to be correct.As validated by the experimental results,polyurethane heat-insulating layer can effectively improve the service life of the ice fixed abrasive pad and alleviate the melting rate in the polishing process to improve the polishing quality proposed.The heat transfer model provides theoretical basis for research of temperature field of ice fixed abrasive polishing.展开更多
We have systematically investigated the feature, genetic model and distribution of calcareous insulating layers in marine strata of the Ⅰ oil group in member 2 of Zhujiang formation(ZJ2I oil formation), western Pearl...We have systematically investigated the feature, genetic model and distribution of calcareous insulating layers in marine strata of the Ⅰ oil group in member 2 of Zhujiang formation(ZJ2I oil formation), western Pearl River Mouth basin(PRMB) in the north of the South China Sea by using data such as cores, thin sections, X-ray diffraction of whole-rock, and calcite cement carbon and oxygen isotopes. The lithology of the calcareous insulating layers in the study area is mainly composed of the terrigenous clastic bioclastic limestone and a small amount of fine-grained calcareous sandstone. On this basis, two genetic models of calcareous insulating layers are established, including the evaporation seawater genetic model and shallow burial meteoric water genetic model. The calcareous insulating layers of the evaporation seawater genetic model developed in the foreshore subfacies, mainly at the top of the 1-1 strata and 1-3 strata. The calcareous insulating layers of the shallow burial meteoric water genetic model developed in the backshore subfacies, primarily in the 1-2 strata.展开更多
The molten salt leakage accident is an important issue in the nuclear safety analysis of molten salt reactors.While the molten salt leaks from the pipeline or storage tank,it will contact the insulation layer outside;...The molten salt leakage accident is an important issue in the nuclear safety analysis of molten salt reactors.While the molten salt leaks from the pipeline or storage tank,it will contact the insulation layer outside;hence,the processes of penetration and spreading play an important role in the development of leakage accidents.In this study,the penetration and diffusion of leaking molten salt(LMS)in an aluminum silicate fiber(ASF)thermal insulation layer were studied experimentally.A molten salt tank with an adjustable outlet was designed to simulate the leakage of molten salt,and the subsequent behavior in the thermal insulation layer was evaluated by measuring the penetra-tion time and penetration mass of the LMS.The results show that when the molten salt discharges from the outlet and reaches the thermal insulation layer,the LMS will penetrate and seep out from the ASF,and a higher flow rate of LMS requires less penetration time and leaked mass of LMS.As the temperature of the LMS and thickness of the ASF increased,the penetration time became longer and the leaked mass became greater at a lower LMS flow rate;when the LMS flow rate increased,the penetration time and leaked mass decreased rapidly and tended to flatten.展开更多
Novel hybrid coatings on pure magnesium were prepared by combining plasma electrolytic carburizing(PEC)with micro-arc oxidation(MAO)to further enhance the anti-corrosion property in this paper.Scanning electron micros...Novel hybrid coatings on pure magnesium were prepared by combining plasma electrolytic carburizing(PEC)with micro-arc oxidation(MAO)to further enhance the anti-corrosion property in this paper.Scanning electron microscopy(SEM)was used to observe the microstructure of the coatings,meanwhile,energy dispersive spectrometry(EDS)and X-ray diffraction(XRD)were separately used to investigate the elemental as well as phase compositions of the coatings.The anti-corrosion property of the coatings was evaluated by potentiodynamic polarization curves as well as electrochemical impedance spectroscopy(EIS).The results show that PEC process is closely related with the effects of adsorption as well as diffusion of the activated carbon atoms,and it can provide a favorable pretreatment surface with predesigned chemical composition to obtain a new kind of phase,namely Si C with superior corrosion resistance and chemical stability,in the following PEC+MAO hybrid coatings.Meanwhile,PEC preprocessing also can afford an excellent micro-structure to increase the coating thickness as well as to improve the compactness of the PEC+MAO hybrid coatings.During the fabrication process of the PEC+MAO hybrid coatings,an overlapping phenomenon in regard to coating thickness can be observed instead of heaping up layer by layer.Compared with both single PEC surface modification layers as well as single MAO coatings,the PEC+MAO hybrid coatings exhibit more superior anti-corrosion property.Especially,the EIS data reveal that the PEC+MAO hybrid coatings can act as an effective protection system to provide relatively excellent long-range anti-corrosion protection.Note also that employing same MAO technique for both single MAO treatment as well as PEC+MAO combining procedure is the key to this research.展开更多
The microstructure and optical properties of a buried layer formed by O<sup>+</sup>(200keV,1.8×10<sup>18</sup>/cm<sup>2</sup>)and N<sup>+</sup>(180 keV,4×10<...The microstructure and optical properties of a buried layer formed by O<sup>+</sup>(200keV,1.8×10<sup>18</sup>/cm<sup>2</sup>)and N<sup>+</sup>(180 keV,4×10<sup>17</sup>/cm<sup>2</sup>)co-implantation and annealed at 1200℃for 2 h have been investigated by Auger electron,IR absorption and reflection spectroscopicmeasurements.The results show that the buried layer consists of silicon dioxide and SiO<sub>x</sub>(x【 2)and the nitrogen segregates to the wings of the buried layer where it forms an oxynitride.Bydetail theoretical analysis and computer simulation of the IR reflection interference spectrum,therefractive index profiles of the buried layer were obtained.展开更多
With a thermal manikin, the distribution pattern of thermal insulation in multi-layered clothing ensemble is studied. It is found that the thermal insulation of multi-layered clothing ensemble has certain statistical ...With a thermal manikin, the distribution pattern of thermal insulation in multi-layered clothing ensemble is studied. It is found that the thermal insulation of multi-layered clothing ensemble has certain statistical relationship with the thermal insulation of each layer, and the prediction equation has been established.展开更多
Atomically thin two-dimensional(2D) materials are the building bricks for next-generation electronics and optoelectronics, which demand plentiful functional properties in mechanics, transport, magnetism and photorespo...Atomically thin two-dimensional(2D) materials are the building bricks for next-generation electronics and optoelectronics, which demand plentiful functional properties in mechanics, transport, magnetism and photoresponse.For electronic devices, not only metals and high-performance semiconductors but also insulators and dielectric materials are highly desirable. Layered structures composed of 2D materials of different properties can be delicately designed as various useful heterojunction or homojunction devices, in which the designs on the same material(namely homojunction) are of special interest because preparation techniques can be greatly simplified and atomically seamless interfaces can be achieved. We demonstrate that the insulating pristine ZnPS_3, a ternary transition-metal phosphorus trichalcogenide, can be transformed into a highly conductive metal and an n-type semiconductor by intercalating Co and Cu atoms, respectively. The field-effect-transistor(FET) devices are prepared via an ultraviolet exposure lithography technique. The Co-ZnPS_3 device exhibits an electrical conductivity of 8 × 10^(4) S/m, which is comparable to the conductivity of graphene. The Cu-ZnPS_3 FET reveals a current ON/OFF ratio of 1-05 and a mobility of 3 × 10^(-2 )cm^(2)·V^(-1)·s^(-1). The realization of an insulator, a typical semiconductor and a metallic state in the same 2D material provides an opportunity to fabricate n-metal homojunctions and other in-plane electronic functional devices.展开更多
Twisting the stacking of layered materials leads to rich new physics. A three-dimensional topological insulator film hosts two-dimensional gapless Dirac electrons on top and bottom surfaces, which, when the film is be...Twisting the stacking of layered materials leads to rich new physics. A three-dimensional topological insulator film hosts two-dimensional gapless Dirac electrons on top and bottom surfaces, which, when the film is below some critical thickness, will hybridize and open a gap in the surface state structure. The hybridization gap can be tuned by various parameters such as film thickness and inversion symmetry, according to the literature. The three-dimensional strong topological insulator Bi(Sb)Se(Te) family has layered structures composed of quintuple layers(QLs) stacked together by van der Waals interaction. Here we successfully grow twistedly stacked Sb_2Te_3 QLs and investigate the effect of twist angels on the hybridization gaps below the thickness limit. It is found that the hybridization gap can be tuned for films of three QLs, which may lead to quantum spin Hall states.Signatures of gap-closing are found in 3-QL films. The successful in situ application of this approach opens a new route to search for exotic physics in topological insulators.展开更多
气体绝缘金属封闭开关设备(gas insulated metal enclosed switchgear,GIS)机械缺陷是导致设备故障的重要因素,针对单测点、单证据机械缺陷诊断模型信息缺失和精度不足问题,该文提出一种多层融合振动数据分析的GIS设备机械缺陷诊断方法...气体绝缘金属封闭开关设备(gas insulated metal enclosed switchgear,GIS)机械缺陷是导致设备故障的重要因素,针对单测点、单证据机械缺陷诊断模型信息缺失和精度不足问题,该文提出一种多层融合振动数据分析的GIS设备机械缺陷诊断方法。首先,基于真型GIS设备振动模拟平台试验研究测点位置与缺陷类型对振动行为的影响特性;然后,联合统计分析、模态分解、尺度变换方法提出机械振动信号整体与局部信息关注的复合参数分析方法,引入主成分分析开展多测点振动信息的特征层融合降维;最后,提出改进放缩权重的Dempster-Shafer(DS)证据理论和Bagging投票机制的强/弱基学习器决策层融合机制,联合构建多层融合振动数据分析的GIS设备机械缺陷诊断模型。结果表明:不同类型机械缺陷信号的响应幅值、特征频点和畸变程度存在显著差异,复合特征参量大小及分散程度各不相同;同时,测点位置对缺陷信号的复合振动特征参量的表现形式及分布区间也具有一定影响;基于多层融合数据分析的诊断模型实现缺陷有效识别,辨识准确率为98.66%,相比单一分类器诊断效果提升5.83%。该文可为GIS设备机械缺陷诊断方法提供有价值的参考。展开更多
基金financialy supported by the National Key R&D Program of China(Grant No.2018YFB0905400)the National Natural Science Foundation of China(Grant Nos.22075331,51702376)+2 种基金the Fundamental Research Funds for the Central Universities(19lgzd02)the Guangdong Pearl River Talents Plan(2019QN01L117)the National Thousand Youth Talents Project of the Chinese Government
文摘For the aqueous Zn-ion battery,dendrite formation,corrosion,and interfacial parasitic reactions are major issues,which greatly inhibits their practical application.How to develop a method of Zn construction or treatment to solve these issues for Zn anodes are still great challenges.Herein,a simple and cheap metal passivation technique is proposed for Zn anodes from a corrosion science perspective.Similar to the metal anticorrosion engineering,the formed interfacial protective layer in a chemical way can sufficiently solve the corrosion issues.Furthermore,the proposed passivity approach can reconstruct Zn surface-preferred crystal planes,exposing more(002)planes and improving surface hydrophilicity,which inhibits the formation of Zn dendrites and hydrogen evolution effectively.As expected,the passivated Zn achieves outstanding cycling life(1914 h)with low voltage polarization(<40 mV).Even at 6 mA cm^(−2) and 3 mA h cm^(−2),it can achieve stable Zn deposition over 460 h.The treated Zn anode coupled with MnO_(2) cathode shows prominently reinforced full batteries service life,making it a potential Zn anode candidate for excellent performance aqueous Zn-ion batteries.The proposed passivation approach provides a guideline for other metal electrodes preparation in various batteries and establishes the connections between corrosion science and batteries.
基金financially supported by the National Natural Science Foundation of China(No.51972045,5197021414)the Fundamental Research Funds for the Chinese Central Universities,China(No.ZYGX2019J025)+4 种基金Sichuan Science and Technology Program(No.2020JDRC0015 and No.2020JDRC0045)Sichuan Science and Technology Innovation Talent Project(No.2021JDRC0021)the Vice-Chancellor fellowship scheme at RMIT Universitythe RMIT Micro Nano Research Facility(MNRF)in the Victorian node of the Australian National Fabrication Facility(ANFF)the RMIT Microscopy and Microanalysis Facility(RMMF)to support this work。
文摘Developing highly efficient magnetic microwave absorb-ers(MAs)is crucial,and yet challenging for anti-corrosion properties in extremely humid and salt-induced foggy environments.Herein,a dual-oxide shell of ZnO/Al_(2)O_(3) as a robust barrier to FeSiAl core is introduced to mitigate corrosion resistance.The FeSiAl@ZnO@Al_(2)O_(3) layer by layer hybrid structure is realized with atomic-scale precision through the atomic layer deposition technique.Owing to the unique hybrid structure,the FeSiAl@ZnO@Al_(2)O_(3) exhibits record-high micro-wave absorbing performance in low-frequency bands covering L and S bands with a minimum reflection loss(RLmin)of-50.6 dB at 3.4 GHz.Compared with pure FeSiAl(RLmin of-13.5 dB,a bandwidth of 0.5 GHz),the RLmin value and effective bandwidth of this designed novel absorber increased up to~3.7 and~3 times,respectively.Fur-thermore,the inert ceramic dual-shells have improved 9.0 times the anti-corrosion property of FeSiAl core by multistage barriers towards corrosive medium and obstruction of the electric circuit.This is attributed to the large charge transfer resistance,increased impedance modulus|Z|0.01 Hz,and frequency time constant of FeSiAl@ZnO@Al_(2)O_(3).The research demonstrates a promising platform toward the design of next-generation MAs with improved anti-corrosion properties.
基金the financial support provided by the National Natural Science Foundation of China(Nos.52078061,51878074)the Huaihua University Scientific Research Project,China(No.HHUY 2022-26)+1 种基金the Postgraduate Research and Innovation-funded Project of Hunan Province,China(No.CX20220885)。
文摘In extreme cold regions,a thermal insulation layer(TIL)is commonly employed to mitigate the detrimental effects of frost heaving forces in tunnels.Optimizing the laying scheme of TIL,specifically minimizing frost heaving forces,holds considerable importance in the prevention of frost damage.This research developed a two-dimensional unsteady temperature field of circular tunnels by using the difference method(taking the off-wall laying method as an example)based on the law of conservation of energy.Then,the frozen circle and water migration coefficient were introduced to establish the relationship between the temperature field and frost heaving forces,and a reliable methodology for calculating these forces under the specific conditions of TIL installation was developed.Then(i)the influence of the air layer thickness of the off-wall laying method,(ii)different laying methods of TIL,(iii)the TIL thickness,(iv)the thermal conductivity of the TIL,and(v)the freeze-thaw cycles on the frost heaving force were investigated.The results showed that the frost heaving force served as a reliable and effective metric for evaluating the insulation effect in tunnels.In order to avoid frost damage in compliance with the design requirements,the insulation effects from various laying methods were established,in descending efficacy order as follows:off-wall laying,double layer laying,surface laying,and sandwich laying.Our findings revealed that the optimal thickness for the air layer in the offwall laying method was 0.10 m.The insulation effect of materials with a thermal conductivity below 0.047 W/(m·℃)was furthermore found to be good.Under freeze-thaw cycle conditions,it is concluded that to prevent frost damage,the TIL thickness should be the sum of the thickness r1 of the first freeze-thaw cycle without frost heaving forces and an additional reserve value 0.06r1 of the TIL thickness.
基金Project(2016YFB0700302)supported by the National Key Research and Development Program of ChinaProjects(51862030,51563020)supported by the National Natural Science Foundation of China。
文摘Spherical carbonyl iron(Fe)powders were coated with magnesioferrite(MgFe2O4)insulating coating layer and then mixed with epoxy-modified silicone resin(ESR).Soft magnetic composites(SMCs)were fabricated by compaction of the coated powders and annealing treatment.Transmission electron microscopy(TEM),scanning electron microscopy(SEM),energy dispersive spectroscopy(EDS),X-ray diffractometry(XRD)and X-ray photoelectron spectroscopy(XPS)revealed that the MgFe2O4 layer was coated on the surface of the iron powders.The magnetic properties of SMCs were determined using a vibrating sample magnetometer and an auto testing system for magnetic materials.The results showed that the SMCs prepared at 800 MPa and 550℃ exhibited a significant core loss of 167.5 W/kg at 100 kHz and 50 mT.
基金Project supported by the National Natural Science Foundation of China (Nos. 12172339 and 11732005)the Beijing Natural Science Foundation of China (No. 1222006)。
文摘A sandwich plate with a corrugation and auxetic honeycomb hybrid core is constructed,and its sound insulation and optimization are investigated.First,the motion governing equation of the sandwich plate is established by the third-order shear deformation theory(TSDT),and then combined with the fluid-structure coupling conditions,and the sound insulation is solved.The theoretical results are validated by COMSOL simulation results,and the effects of the structural parameter on the sound insulation are analyzed.Finally,the standard genetic algorithm is adopted to optimize the sound insulation of the sandwich plate.
基金supported by the National Natural Science Foundation of China (52302292, 52302058, 52302085)the China Postdoctoral Science Foundation (2021M702225)+1 种基金the Anhui Province University Natural Science Research Project (2023AH030093, 2023AH040301)the Startup Research Fund of Chaohu University (KYQD-2023005, KYQD-2023051)。
文摘Composite Li metal anodes based on three-dimensional(3D) porous frameworks have been considered as an effective material for achieving stable Li metal batteries with high energy density.However,uneven Li deposition behavior still occurs at the top of 3D frameworks owing to the local accumulation of Li ions.To promote uniform Li deposition without top dendrite growth,herein,a layered multifunctional framework based on oxidation-treated polyacrylonitrile(OPAN) and metal-organic framework(MOF) derivatives was proposed for rationally regulating the distribution of Li ions flux,nucleation sites,and electrical conductivity.Profiting from these merits,the OPAN/carbon nano fiber-MOF(CMOF) composite framework demonstrated a reversible Li plating/stripping behavior for 500 cycles with a stable Coulombic efficiency of around 99.0% at the current density of 2 mA/cm~2.Besides,such a Li composite anode exhibited a superior cycle lifespan of over 1300 h under a low polarized voltage of 18 mV in symmetrical cells.When the Li composite anode was paired with LiFePO_(4)(LFP) cathode,the obtained full cell exhibited a stable cycling over 500 cycles.Moreover,the COMSOL Multiphysics simulation was conducted to reveal the effects on homogeneous Li ions distribution derived from the above-mentioned OPAN/CMOF framework and electrical insulation/conduction design.These electrochemical and simulated results shed light on the difficulties of designing stable and safe Li metal anode via optimizing the 3D frameworks.
基金supported by the National Natural Science Foundation of China(No.51375237)the Natural Science Foundation of Jiangsu Province(No.BK2012796)the Scientific Research Start Project of Talent Introduction of NUAA(No.1005-56YAH)
文摘The formula of the thickness of the heat-insulating layer is deduced via heat transfer analysis,according to the principle of heat transfer in limited space.Polishing experiments are carried out using the same technological parameters.Compared with the polishing experimental results,the heat transfer model is proved to be correct.As validated by the experimental results,polyurethane heat-insulating layer can effectively improve the service life of the ice fixed abrasive pad and alleviate the melting rate in the polishing process to improve the polishing quality proposed.The heat transfer model provides theoretical basis for research of temperature field of ice fixed abrasive polishing.
基金Project(51534006)supported by the Key Program of National Natural Science Foundation of ChinaProject(2014CB239005)supported by the National Key Basic Research and Development,ChinaProjects(41772150,51674211)supported by the National Natural Science Foundation of China。
文摘We have systematically investigated the feature, genetic model and distribution of calcareous insulating layers in marine strata of the Ⅰ oil group in member 2 of Zhujiang formation(ZJ2I oil formation), western Pearl River Mouth basin(PRMB) in the north of the South China Sea by using data such as cores, thin sections, X-ray diffraction of whole-rock, and calcite cement carbon and oxygen isotopes. The lithology of the calcareous insulating layers in the study area is mainly composed of the terrigenous clastic bioclastic limestone and a small amount of fine-grained calcareous sandstone. On this basis, two genetic models of calcareous insulating layers are established, including the evaporation seawater genetic model and shallow burial meteoric water genetic model. The calcareous insulating layers of the evaporation seawater genetic model developed in the foreshore subfacies, mainly at the top of the 1-1 strata and 1-3 strata. The calcareous insulating layers of the shallow burial meteoric water genetic model developed in the backshore subfacies, primarily in the 1-2 strata.
基金supported by the“Strategic Priority Research Program”of the Chinese Academy of Sciences(No.XDA0201002)the Youth Innovation Promotion Association of the Chinese Academy of Sciences(No.2018301).
文摘The molten salt leakage accident is an important issue in the nuclear safety analysis of molten salt reactors.While the molten salt leaks from the pipeline or storage tank,it will contact the insulation layer outside;hence,the processes of penetration and spreading play an important role in the development of leakage accidents.In this study,the penetration and diffusion of leaking molten salt(LMS)in an aluminum silicate fiber(ASF)thermal insulation layer were studied experimentally.A molten salt tank with an adjustable outlet was designed to simulate the leakage of molten salt,and the subsequent behavior in the thermal insulation layer was evaluated by measuring the penetra-tion time and penetration mass of the LMS.The results show that when the molten salt discharges from the outlet and reaches the thermal insulation layer,the LMS will penetrate and seep out from the ASF,and a higher flow rate of LMS requires less penetration time and leaked mass of LMS.As the temperature of the LMS and thickness of the ASF increased,the penetration time became longer and the leaked mass became greater at a lower LMS flow rate;when the LMS flow rate increased,the penetration time and leaked mass decreased rapidly and tended to flatten.
基金financially supported by the Creative Research Group Fund Grant of Gansu Province,China(1111RJDA011)。
文摘Novel hybrid coatings on pure magnesium were prepared by combining plasma electrolytic carburizing(PEC)with micro-arc oxidation(MAO)to further enhance the anti-corrosion property in this paper.Scanning electron microscopy(SEM)was used to observe the microstructure of the coatings,meanwhile,energy dispersive spectrometry(EDS)and X-ray diffraction(XRD)were separately used to investigate the elemental as well as phase compositions of the coatings.The anti-corrosion property of the coatings was evaluated by potentiodynamic polarization curves as well as electrochemical impedance spectroscopy(EIS).The results show that PEC process is closely related with the effects of adsorption as well as diffusion of the activated carbon atoms,and it can provide a favorable pretreatment surface with predesigned chemical composition to obtain a new kind of phase,namely Si C with superior corrosion resistance and chemical stability,in the following PEC+MAO hybrid coatings.Meanwhile,PEC preprocessing also can afford an excellent micro-structure to increase the coating thickness as well as to improve the compactness of the PEC+MAO hybrid coatings.During the fabrication process of the PEC+MAO hybrid coatings,an overlapping phenomenon in regard to coating thickness can be observed instead of heaping up layer by layer.Compared with both single PEC surface modification layers as well as single MAO coatings,the PEC+MAO hybrid coatings exhibit more superior anti-corrosion property.Especially,the EIS data reveal that the PEC+MAO hybrid coatings can act as an effective protection system to provide relatively excellent long-range anti-corrosion protection.Note also that employing same MAO technique for both single MAO treatment as well as PEC+MAO combining procedure is the key to this research.
文摘The microstructure and optical properties of a buried layer formed by O<sup>+</sup>(200keV,1.8×10<sup>18</sup>/cm<sup>2</sup>)and N<sup>+</sup>(180 keV,4×10<sup>17</sup>/cm<sup>2</sup>)co-implantation and annealed at 1200℃for 2 h have been investigated by Auger electron,IR absorption and reflection spectroscopicmeasurements.The results show that the buried layer consists of silicon dioxide and SiO<sub>x</sub>(x【 2)and the nitrogen segregates to the wings of the buried layer where it forms an oxynitride.Bydetail theoretical analysis and computer simulation of the IR reflection interference spectrum,therefractive index profiles of the buried layer were obtained.
文摘With a thermal manikin, the distribution pattern of thermal insulation in multi-layered clothing ensemble is studied. It is found that the thermal insulation of multi-layered clothing ensemble has certain statistical relationship with the thermal insulation of each layer, and the prediction equation has been established.
基金Supported by the National Key Research and Development Program of China (Grant Nos.2017YFA0403600 and 2016YFA0300404)the National Natural Science Foundation of China (Grant Nos.11874363,11974356 and U1932216)the Collaborative Innovation Program of Hefei Science Center,CAS (Grant No.2019HSC-CIP002)。
文摘Atomically thin two-dimensional(2D) materials are the building bricks for next-generation electronics and optoelectronics, which demand plentiful functional properties in mechanics, transport, magnetism and photoresponse.For electronic devices, not only metals and high-performance semiconductors but also insulators and dielectric materials are highly desirable. Layered structures composed of 2D materials of different properties can be delicately designed as various useful heterojunction or homojunction devices, in which the designs on the same material(namely homojunction) are of special interest because preparation techniques can be greatly simplified and atomically seamless interfaces can be achieved. We demonstrate that the insulating pristine ZnPS_3, a ternary transition-metal phosphorus trichalcogenide, can be transformed into a highly conductive metal and an n-type semiconductor by intercalating Co and Cu atoms, respectively. The field-effect-transistor(FET) devices are prepared via an ultraviolet exposure lithography technique. The Co-ZnPS_3 device exhibits an electrical conductivity of 8 × 10^(4) S/m, which is comparable to the conductivity of graphene. The Cu-ZnPS_3 FET reveals a current ON/OFF ratio of 1-05 and a mobility of 3 × 10^(-2 )cm^(2)·V^(-1)·s^(-1). The realization of an insulator, a typical semiconductor and a metallic state in the same 2D material provides an opportunity to fabricate n-metal homojunctions and other in-plane electronic functional devices.
基金Supported by the National Natural Science Foundation of China (Grant Nos.61804056 and 92065102)。
文摘Twisting the stacking of layered materials leads to rich new physics. A three-dimensional topological insulator film hosts two-dimensional gapless Dirac electrons on top and bottom surfaces, which, when the film is below some critical thickness, will hybridize and open a gap in the surface state structure. The hybridization gap can be tuned by various parameters such as film thickness and inversion symmetry, according to the literature. The three-dimensional strong topological insulator Bi(Sb)Se(Te) family has layered structures composed of quintuple layers(QLs) stacked together by van der Waals interaction. Here we successfully grow twistedly stacked Sb_2Te_3 QLs and investigate the effect of twist angels on the hybridization gaps below the thickness limit. It is found that the hybridization gap can be tuned for films of three QLs, which may lead to quantum spin Hall states.Signatures of gap-closing are found in 3-QL films. The successful in situ application of this approach opens a new route to search for exotic physics in topological insulators.
文摘气体绝缘金属封闭开关设备(gas insulated metal enclosed switchgear,GIS)机械缺陷是导致设备故障的重要因素,针对单测点、单证据机械缺陷诊断模型信息缺失和精度不足问题,该文提出一种多层融合振动数据分析的GIS设备机械缺陷诊断方法。首先,基于真型GIS设备振动模拟平台试验研究测点位置与缺陷类型对振动行为的影响特性;然后,联合统计分析、模态分解、尺度变换方法提出机械振动信号整体与局部信息关注的复合参数分析方法,引入主成分分析开展多测点振动信息的特征层融合降维;最后,提出改进放缩权重的Dempster-Shafer(DS)证据理论和Bagging投票机制的强/弱基学习器决策层融合机制,联合构建多层融合振动数据分析的GIS设备机械缺陷诊断模型。结果表明:不同类型机械缺陷信号的响应幅值、特征频点和畸变程度存在显著差异,复合特征参量大小及分散程度各不相同;同时,测点位置对缺陷信号的复合振动特征参量的表现形式及分布区间也具有一定影响;基于多层融合数据分析的诊断模型实现缺陷有效识别,辨识准确率为98.66%,相比单一分类器诊断效果提升5.83%。该文可为GIS设备机械缺陷诊断方法提供有价值的参考。