A new model considering corrosion property for grounding grids diagnosis is proposed,which provides reference solutions of ambiguous branches.The constraint total least square method based on singular value decomposit...A new model considering corrosion property for grounding grids diagnosis is proposed,which provides reference solutions of ambiguous branches.The constraint total least square method based on singular value decomposition is adopted to improve the effectiveness of grounding grids' diagnosis algorithm.The improvement can weaken the influence of the model's error,which results from the differences between design paper and actual grid.Its influence on touch and step voltages caused by the interior resistance of conductors is taken into account.Simulation results show the validity of this approach.展开更多
The primary aim of the power system grounding is to safeguard the person and satisfying the performance of the power systemtomaintain reliable operation.With equal conductor spacing grounding grid design,the distribut...The primary aim of the power system grounding is to safeguard the person and satisfying the performance of the power systemtomaintain reliable operation.With equal conductor spacing grounding grid design,the distribution of the current in the grid is not uniform.Hence,unequal grid conductor span in which grid conductors are concentrated more at the periphery is safer to practice than equal spacing.This paper presents the comparative analysis of two novel techniques that create unequal spacing among the grid conductors:the least-square curve fitting technique and the compression ratio techniquewith equal grid configuration for both square and rectangular grids.Particle Swarm Optimization(PSO)is adopted for finding out one optimal feasible solution among many feasible solutions of equal grid configuration for both square and rectangular grids.Comparative analysis is also carried out between square and rectangular grids using the least square curve fitting technique as it results in only one unequal grid configuration.Simulation results are obtained by theMATLAB software developed.Percentage of improvement in ground potential rise,step voltage,touch voltage,and grid resistancewith variation in compression ratios are plotted.展开更多
Magnetically coupled resonant technology is a novel method for solving the breakpoint locating of power grounding grid.But the method can only detect breakpoints of a single mesh grounding grid at present.In this pape...Magnetically coupled resonant technology is a novel method for solving the breakpoint locating of power grounding grid.But the method can only detect breakpoints of a single mesh grounding grid at present.In this paper,a magnetically coupled resonant detection method for four-hole grounding grid breakpoint is proposed.Firstly,the equivalent circuit model of the four mesh grounding grid with two types of breakpoints,namely edge branch and intermediate branch,is established.The input impedance and phase angle of the system are obtained by analyzing the equivalent capacitance and equivalent resistance in the model.Secondly,the magnetically coupled resonant physical process of grounding grid faults is solved via HFSS software.The magnetic field intensity and phase frequency characteristic curves of four mesh holes with different branches and positions of breakpoints and different corrosion degrees are studied,and an experimental system is built to verify the feasibility.The results show that under the condition of grounding grid buried depth of 0.5 m and input frequency of 1~15MHz,and there is an inverse relationship between equivalent capacitance and distortion frequency,the phase angle is positively correlated with the degree of corrosion of grounding grid,and the error of signal distortion frequency can be positioned at 5%.This paper provides some ideas for the application of magnetic coupling grounding grid detection technology.展开更多
An investigation into the optimal design of a substation grounding system for the transmission substation in Gaza City, Palestine has been carried out. A research into the most influential parameters on the effectiven...An investigation into the optimal design of a substation grounding system for the transmission substation in Gaza City, Palestine has been carried out. A research into the most influential parameters on the effectiveness of the substation grid system has been performed and its results have been incorporated into the Gaza case study. Through modelling and simulating the power station in Gaza while considering some field data, an optimal substation grounding grid has been designed and has shown complete conformance to safety. It is thus considered that such a design will protect personnel in any area of the substation in addition to the installed machinery if the largest possible fault current was to traverse the earth.展开更多
Grounding Points (GPs) are installed in electrical power system to drive protective devices and accomplish the person nel safety. The general grounding problem is to find the optimal locations of these points so that ...Grounding Points (GPs) are installed in electrical power system to drive protective devices and accomplish the person nel safety. The general grounding problem is to find the optimal locations of these points so that the security and reli ability of power system can be improved. This paper presents a practical approach to find the optimal location of GPs based on the ratios of zero sequence reactance with positive sequence reactance (X0/X1), zero sequence resistance with positive sequence reactance (R0/X1) and Ground Fault Factor (GFF). The optimal values of these indicators were deter-mined by considering several scenarios of fault disturbances such as single line to ground on a selected area of the Iraqi National Grid (132 KV) taking into account the statue of GPs for transformers in the other substations. From the presented results in this paper, it is noted that GFF calculated for some substations could be used to measure the effectiveness of GPs. However, the operated time of relay can be taken as a criterion of this measurement for selecting the best location of GPs.展开更多
Explicit solution techniques have been widely used in geotechnical engineering for simulating the coupled hydro-mechanical(H-M) interaction of fluid flow and deformation induced by structures built above and under sat...Explicit solution techniques have been widely used in geotechnical engineering for simulating the coupled hydro-mechanical(H-M) interaction of fluid flow and deformation induced by structures built above and under saturated ground, i.e. circular footing and deep tunnel. However, the technique is only conditionally stable and requires small time steps, portending its inefficiency for simulating large-scale H-M problems. To improve its efficiency, the unconditionally stable alternating direction explicit(ADE)scheme could be used to solve the flow problem. The standard ADE scheme, however, is only moderately accurate and is restricted to uniform grids and plane strain flow conditions. This paper aims to remove these drawbacks by developing a novel high-order ADE scheme capable of solving flow problems in nonuniform grids and under axisymmetric conditions. The new scheme is derived by performing a fourthorder finite difference(FD) approximation to the spatial derivatives of the axisymmetric fluid-diffusion equation in a non-uniform grid configuration. The implicit Crank-Nicolson technique is then applied to the resulting approximation, and the subsequent equation is split into two alternating direction sweeps,giving rise to a new axisymmetric ADE scheme. The pore pressure solutions from the new scheme are then sequentially coupled with an existing geomechanical simulator in the computer code fast Lagrangian analysis of continua(FLAC). This coupling procedure is called the sequentially-explicit coupling technique based on the fourth-order axisymmetric ADE scheme or SEA-4-AXI. Application of SEA-4-AXI for solving axisymmetric consolidation of a circular footing and of advancing tunnel in deep saturated ground shows that SEA-4-AXI reduces computer runtime up to 42%-50% that of FLAC’s basic scheme without numerical instability. In addition, it produces high numerical accuracy of the H-M solutions with average percentage difference of only 0.5%-1.8%.展开更多
In ground-based GPS meteorology, Tm is a key parameter to calculate the conversion factor that can convert the zenith wet delay(ZWD) to precipitable water vapor(PWV). It is generally acknowledged that Tm is in an ...In ground-based GPS meteorology, Tm is a key parameter to calculate the conversion factor that can convert the zenith wet delay(ZWD) to precipitable water vapor(PWV). It is generally acknowledged that Tm is in an approximate linear relationship with surface temperature Ts, and the relationship presents regional variation. This paper employed sliding average method to calculate correlation coefficients and linear regression coefficients between Tm and Ts at every 2°× 2.5° grid point using Ts data from European Centre for Medium-Range Weather Forecasts(ECMWF) and Tm data from "GGOS Atmosphere", yielding the grid and bilinear interpolation-based Tm Grid model. Tested by Tm and Ts grid data, Constellation Observation System of Meteorology, Ionosphere, and Climate(COSMIC) data and radiosonde data, the Tm Grid model shows a higher accuracy relative to the Bevis Tm-Ts relationship which is widely used nowadays. The Tm Grid model will be of certain practical value in high-precision PWV calculation.展开更多
In order to get the distribution characteristics of lightning transient ground potential of 100 MW wind farm in the Chaoyang Mountain,Jinzhai County,the characteristics of lightning parameters within 5 km of the wind ...In order to get the distribution characteristics of lightning transient ground potential of 100 MW wind farm in the Chaoyang Mountain,Jinzhai County,the characteristics of lightning parameters within 5 km of the wind farm were analyzed based on the lightning monitoring data from 2006 to 2020 provided by Anhui Meteorological Bureau.According to the on-site geological investigation,a double-ring ground network model was established to simulate the three-dimensional transient contact voltage and step voltage distribution of a typical wind fan was obtained through simulation.The results show that the average lightning current amplitude around the wind farm was 44 kA,instead of 10 kA in the current traditional simulation research,which is used as the excitation source for the subsequent simulation of lightning transient ground potential.The peak value of lightning transient contact voltage of the single wind turbine is 2158.35 V,and the peak value of lightning transient step voltage is 441.75 V.The simulation results can provide certain reference for subsequent lightning risk assessment,lightning scheme design and ground grid construction of wind farms.展开更多
Because of rich solar resource and low land cost, a lot of large-scale ground-based grid-connected PV systems have been built in Northwest China. In this paper, some shading phenomena on a grid-connected PV system inN...Because of rich solar resource and low land cost, a lot of large-scale ground-based grid-connected PV systems have been built in Northwest China. In this paper, some shading phenomena on a grid-connected PV system inNorthwest Chinaare classified and analyzed. Through the I-V curve test of PV modules, it can be seen that dust influence system performance of the grid-connected PV system. And the experimental results have shown that shading could affect the electrical properties of PV modules. Meanwhile, same shading area on different shading positions could have different impacts on the identical PV module.展开更多
To improve the corrosion resistance of steels for grounding grids, a low-carbon Cr micro-alloyed steel was developed (C 1 steel), and corrosion behavior of Q235 steel and newly developed C1 steel in simulated acidic...To improve the corrosion resistance of steels for grounding grids, a low-carbon Cr micro-alloyed steel was developed (C 1 steel), and corrosion behavior of Q235 steel and newly developed C1 steel in simulated acidic soil was investigated. The corrosion rate was evaluated with the mass loss measurements, while the corrosion morphology of surface and cross section of rust layer was observed by scanning electron microscopy. The corrosion products were analyzed by energy- dispersive X-ray spectrometry, X-ray diffraction and X-ray photoelectron spectroscopy, and the polarization curve was measured using potentiodynamic polarization method. Results indicated that C 1 steel displayed good corrosion resistance in the simulated acidic soil, of which the corrosion rate was only 30% of that of Q235 steel after corrosion for 360 h. The analysis of rust layer showed that lower carbon content in steel could reduce the tendency of micro cell corrosion and appropriate amount of chromium could improve the corrosion potential of metal matrix. Moreover, the analysis of X-ray photoelectron spectroscopy revealed that the chromium enriched in inner rust layer of C1 steel existed mainly in the form of Fe2CrO4, which facilitated the formation of Cr-goethite and improved the protection of corrosion products.展开更多
文摘A new model considering corrosion property for grounding grids diagnosis is proposed,which provides reference solutions of ambiguous branches.The constraint total least square method based on singular value decomposition is adopted to improve the effectiveness of grounding grids' diagnosis algorithm.The improvement can weaken the influence of the model's error,which results from the differences between design paper and actual grid.Its influence on touch and step voltages caused by the interior resistance of conductors is taken into account.Simulation results show the validity of this approach.
文摘The primary aim of the power system grounding is to safeguard the person and satisfying the performance of the power systemtomaintain reliable operation.With equal conductor spacing grounding grid design,the distribution of the current in the grid is not uniform.Hence,unequal grid conductor span in which grid conductors are concentrated more at the periphery is safer to practice than equal spacing.This paper presents the comparative analysis of two novel techniques that create unequal spacing among the grid conductors:the least-square curve fitting technique and the compression ratio techniquewith equal grid configuration for both square and rectangular grids.Particle Swarm Optimization(PSO)is adopted for finding out one optimal feasible solution among many feasible solutions of equal grid configuration for both square and rectangular grids.Comparative analysis is also carried out between square and rectangular grids using the least square curve fitting technique as it results in only one unequal grid configuration.Simulation results are obtained by theMATLAB software developed.Percentage of improvement in ground potential rise,step voltage,touch voltage,and grid resistancewith variation in compression ratios are plotted.
基金supported by the Science and Technology Research Innovation Team Project LT2019007 of the Department of Education of Liaoning Provincethe Discipline Innovation Team Project LNTU20TD-02,29 of Liaoning Technical University。
文摘Magnetically coupled resonant technology is a novel method for solving the breakpoint locating of power grounding grid.But the method can only detect breakpoints of a single mesh grounding grid at present.In this paper,a magnetically coupled resonant detection method for four-hole grounding grid breakpoint is proposed.Firstly,the equivalent circuit model of the four mesh grounding grid with two types of breakpoints,namely edge branch and intermediate branch,is established.The input impedance and phase angle of the system are obtained by analyzing the equivalent capacitance and equivalent resistance in the model.Secondly,the magnetically coupled resonant physical process of grounding grid faults is solved via HFSS software.The magnetic field intensity and phase frequency characteristic curves of four mesh holes with different branches and positions of breakpoints and different corrosion degrees are studied,and an experimental system is built to verify the feasibility.The results show that under the condition of grounding grid buried depth of 0.5 m and input frequency of 1~15MHz,and there is an inverse relationship between equivalent capacitance and distortion frequency,the phase angle is positively correlated with the degree of corrosion of grounding grid,and the error of signal distortion frequency can be positioned at 5%.This paper provides some ideas for the application of magnetic coupling grounding grid detection technology.
文摘An investigation into the optimal design of a substation grounding system for the transmission substation in Gaza City, Palestine has been carried out. A research into the most influential parameters on the effectiveness of the substation grid system has been performed and its results have been incorporated into the Gaza case study. Through modelling and simulating the power station in Gaza while considering some field data, an optimal substation grounding grid has been designed and has shown complete conformance to safety. It is thus considered that such a design will protect personnel in any area of the substation in addition to the installed machinery if the largest possible fault current was to traverse the earth.
文摘Grounding Points (GPs) are installed in electrical power system to drive protective devices and accomplish the person nel safety. The general grounding problem is to find the optimal locations of these points so that the security and reli ability of power system can be improved. This paper presents a practical approach to find the optimal location of GPs based on the ratios of zero sequence reactance with positive sequence reactance (X0/X1), zero sequence resistance with positive sequence reactance (R0/X1) and Ground Fault Factor (GFF). The optimal values of these indicators were deter-mined by considering several scenarios of fault disturbances such as single line to ground on a selected area of the Iraqi National Grid (132 KV) taking into account the statue of GPs for transformers in the other substations. From the presented results in this paper, it is noted that GFF calculated for some substations could be used to measure the effectiveness of GPs. However, the operated time of relay can be taken as a criterion of this measurement for selecting the best location of GPs.
基金the support from the University Transportation Center for Underground Transportation Infrastructure at the Colorado School of Mines for partially funding this research under Grant No. 69A3551747118 of the Fixing America's Surface Transportation Act (FAST Act) of U.S. DoT FY2016
文摘Explicit solution techniques have been widely used in geotechnical engineering for simulating the coupled hydro-mechanical(H-M) interaction of fluid flow and deformation induced by structures built above and under saturated ground, i.e. circular footing and deep tunnel. However, the technique is only conditionally stable and requires small time steps, portending its inefficiency for simulating large-scale H-M problems. To improve its efficiency, the unconditionally stable alternating direction explicit(ADE)scheme could be used to solve the flow problem. The standard ADE scheme, however, is only moderately accurate and is restricted to uniform grids and plane strain flow conditions. This paper aims to remove these drawbacks by developing a novel high-order ADE scheme capable of solving flow problems in nonuniform grids and under axisymmetric conditions. The new scheme is derived by performing a fourthorder finite difference(FD) approximation to the spatial derivatives of the axisymmetric fluid-diffusion equation in a non-uniform grid configuration. The implicit Crank-Nicolson technique is then applied to the resulting approximation, and the subsequent equation is split into two alternating direction sweeps,giving rise to a new axisymmetric ADE scheme. The pore pressure solutions from the new scheme are then sequentially coupled with an existing geomechanical simulator in the computer code fast Lagrangian analysis of continua(FLAC). This coupling procedure is called the sequentially-explicit coupling technique based on the fourth-order axisymmetric ADE scheme or SEA-4-AXI. Application of SEA-4-AXI for solving axisymmetric consolidation of a circular footing and of advancing tunnel in deep saturated ground shows that SEA-4-AXI reduces computer runtime up to 42%-50% that of FLAC’s basic scheme without numerical instability. In addition, it produces high numerical accuracy of the H-M solutions with average percentage difference of only 0.5%-1.8%.
基金supported by National Natural Science Foundation of China(41301377)by the Fundamental Research Funds for the Central Universities(2014214020202)by Surveying and Mapping Basic Research Program of National Administration of Surveying,Mapping and Geoinformation(13-02-09)
文摘In ground-based GPS meteorology, Tm is a key parameter to calculate the conversion factor that can convert the zenith wet delay(ZWD) to precipitable water vapor(PWV). It is generally acknowledged that Tm is in an approximate linear relationship with surface temperature Ts, and the relationship presents regional variation. This paper employed sliding average method to calculate correlation coefficients and linear regression coefficients between Tm and Ts at every 2°× 2.5° grid point using Ts data from European Centre for Medium-Range Weather Forecasts(ECMWF) and Tm data from "GGOS Atmosphere", yielding the grid and bilinear interpolation-based Tm Grid model. Tested by Tm and Ts grid data, Constellation Observation System of Meteorology, Ionosphere, and Climate(COSMIC) data and radiosonde data, the Tm Grid model shows a higher accuracy relative to the Bevis Tm-Ts relationship which is widely used nowadays. The Tm Grid model will be of certain practical value in high-precision PWV calculation.
文摘In order to get the distribution characteristics of lightning transient ground potential of 100 MW wind farm in the Chaoyang Mountain,Jinzhai County,the characteristics of lightning parameters within 5 km of the wind farm were analyzed based on the lightning monitoring data from 2006 to 2020 provided by Anhui Meteorological Bureau.According to the on-site geological investigation,a double-ring ground network model was established to simulate the three-dimensional transient contact voltage and step voltage distribution of a typical wind fan was obtained through simulation.The results show that the average lightning current amplitude around the wind farm was 44 kA,instead of 10 kA in the current traditional simulation research,which is used as the excitation source for the subsequent simulation of lightning transient ground potential.The peak value of lightning transient contact voltage of the single wind turbine is 2158.35 V,and the peak value of lightning transient step voltage is 441.75 V.The simulation results can provide certain reference for subsequent lightning risk assessment,lightning scheme design and ground grid construction of wind farms.
文摘Because of rich solar resource and low land cost, a lot of large-scale ground-based grid-connected PV systems have been built in Northwest China. In this paper, some shading phenomena on a grid-connected PV system inNorthwest Chinaare classified and analyzed. Through the I-V curve test of PV modules, it can be seen that dust influence system performance of the grid-connected PV system. And the experimental results have shown that shading could affect the electrical properties of PV modules. Meanwhile, same shading area on different shading positions could have different impacts on the identical PV module.
文摘To improve the corrosion resistance of steels for grounding grids, a low-carbon Cr micro-alloyed steel was developed (C 1 steel), and corrosion behavior of Q235 steel and newly developed C1 steel in simulated acidic soil was investigated. The corrosion rate was evaluated with the mass loss measurements, while the corrosion morphology of surface and cross section of rust layer was observed by scanning electron microscopy. The corrosion products were analyzed by energy- dispersive X-ray spectrometry, X-ray diffraction and X-ray photoelectron spectroscopy, and the polarization curve was measured using potentiodynamic polarization method. Results indicated that C 1 steel displayed good corrosion resistance in the simulated acidic soil, of which the corrosion rate was only 30% of that of Q235 steel after corrosion for 360 h. The analysis of rust layer showed that lower carbon content in steel could reduce the tendency of micro cell corrosion and appropriate amount of chromium could improve the corrosion potential of metal matrix. Moreover, the analysis of X-ray photoelectron spectroscopy revealed that the chromium enriched in inner rust layer of C1 steel existed mainly in the form of Fe2CrO4, which facilitated the formation of Cr-goethite and improved the protection of corrosion products.