Microstructure observations and drop-weight tear test were performed to study the microstructures and mechanical properties of two kinds of industrial X70 and two kinds of industrial X80 grade pipeline steels. The eff...Microstructure observations and drop-weight tear test were performed to study the microstructures and mechanical properties of two kinds of industrial X70 and two kinds of industrial X80 grade pipeline steels. The effective grain size and the fraction of high angle grain boundaries in the pipeline steels were investigated by electron backscatter diffraction analysis. It is found that the low temperature toughness of the pipeline steels depends not only on the effective grain size, but also on other microstructural factors such as martensite-austenite (MA) constituents and precipitates. The morphology and size of MA constituents significantly affect the mechanical properties of the pipeline steels. Nubby MA constituents with large size have significant negative effects on the toughness, while smaller granular MA constituents have less harmful effects. Similarly, larger Ti-rich nitrides with sharp corners have a strongly negative effect on the toughness, while fine, spherical Nb-rich carbides have a less deleterious effect. The low temperature toughness of the steels is independent of the fraction of high angle grain boundaries.展开更多
Brittle fracture occurs frequently in rails and thermite welded joints, which intimidates the security and reliability of railway ser- vice. Railways in cold regions, such as Qinghai-Tibet Railway, make the problem of...Brittle fracture occurs frequently in rails and thermite welded joints, which intimidates the security and reliability of railway ser- vice. Railways in cold regions, such as Qinghai-Tibet Railway, make the problem of brittle fi'acture in rails even worse. A series of tests such as uniaxial tensile tests, Charpy impact tests, and three-point bending tests were carried out at low temperature to investigate the mechanical properties and fracture toughness of U71Mn and U75V rail steels and their thermite welds. Fracture micromechanisms were analyzed by scanning electron microscopy (SEM) on the fracture surfaces of the tested specimens. The ductility indices (percentage elongation aider frac- ture and percentage reduction of area) and the toughness indices (Charpy impact energy Ak and plane-strain fracture toughness Kic) of the two kinds of rail steels and the corresponding thermite welds all decrease as the temperature decreases. The thermite welds are more critical to fracture than the rail steel base metals, as indicated by a higher yield-to-ultimate ratio and a much lower Charpy impact energy. U71Mn rail steel is relatively higher in toughness than U75V, as demonstrated by larger Ak and Klc values. Therefore, U71Mn rail steel and the corresponding thermite weld are recommended in railway construction and maintenance in cold regions.展开更多
Different contents of Ni(0.3wt.%to 1.2wt.%)were added to the QT400-18L ductile iron to investigate the effect of Ni addition on the impact toughness of cast ductile irons at low temperatures.The impact toughnesses of ...Different contents of Ni(0.3wt.%to 1.2wt.%)were added to the QT400-18L ductile iron to investigate the effect of Ni addition on the impact toughness of cast ductile irons at low temperatures.The impact toughnesses of the samples at room and low temperatures were tested.The microstructures and fractographs were observed.Results show that with the increase of Ni addition there is a general trend of refinement of the ferrite matrix while the nodule density shows no obvious change.When the Ni content is 0.7wt.%,the matrix structure is the refined ferrite with a very small fraction(about 2%)of pearlite near the eutectic cell boundaries.When the Ni content is further increased,the fraction of pearlite increases significantly and reaches more than 5%when 1.2wt.%Ni is added.The impact toughness at room temperature increases as the content of Ni increases from 0.3 wt.%to 0.7 wt.%,but decreases as the Ni content further increases to 1.2wt.%due to the increase of pearlite fraction.The maximum value of the impact work is 18.5 J at room temperature with 0.7wt.%Ni addition.The average value of the impact work is still more than 13 J even at-30℃.In addition,the fracture mechanism changes from ductile manner to brittleness as the testing temperature decreases from 20℃to-60℃.展开更多
Fe-Cr-Mn (W, V) austenite steel was researched in order to supply a theory base for the first wall materials of fusion reactors.Experiments included vacuum melting, forging, annealing, solution treatment, Charpy impac...Fe-Cr-Mn (W, V) austenite steel was researched in order to supply a theory base for the first wall materials of fusion reactors.Experiments included vacuum melting, forging, annealing, solution treatment, Charpy impact tests and microstructure observation. Theresults show that the imped value decreases with the test temperature decreasing. In this system, there is ductile/brittle transition. Themechanism of this decrease of the impact value is considered to be due to γ - ε transformation in sub-stable austenite steel and stoppingoverlapping sacking fault by grain boundaries in stable austenite steel.展开更多
High strength low alloy steel with 16 mm thickness was welded by using high power laser hybrid welding. Microstrueture was characterized by using optical microscopy, scanning electron microscopy ( SEM ) , transmissi...High strength low alloy steel with 16 mm thickness was welded by using high power laser hybrid welding. Microstrueture was characterized by using optical microscopy, scanning electron microscopy ( SEM ) , transmission electron microscopy (TEM) and selected area electron diffraction (SAED). Low temperature impact toughness was estimated by using Charpy V-notch impact samples selected from the upper part and the lower part at the same heterogeneous joint. Results show that the low temperature impact absorbed energies of weld metal are (202,180,165 J) of upper samples and (178,145,160 J) of lower samples, respectively. All of them increase compared to base metal. The embrittlement of HAZ does not occur. Weld metal primarily consists of refined carbide free bainite and a little granular bainite since laser hybrid welding owns the character of low heat input. Retained austenite constituent film "locates among the lath structure of bainitie ferrite. Refined bainitic ferrite lath and retained austenite constituent film provide better low temperature impact toughness compared to base metal.展开更多
The fracture toughness of SA508-Ⅲ steel was studied in the temperature range from room temperature to 320℃ using the J-integral method. The fracture behavior of the steel was also investigated. It was found that the...The fracture toughness of SA508-Ⅲ steel was studied in the temperature range from room temperature to 320℃ using the J-integral method. The fracture behavior of the steel was also investigated. It was found that the conditional fracture toughness (JQ) of the steel first decreased and then increased with increasing test temperature. The maximum and minimum values of do were 517.4 kJ/m^2 at 25℃ and 304.5 kJ/m^2 at 180℃, respectively. Dynamic strain aging (DSA) was also observed to occur when the temperature exceeded 260℃ with a certain strain rate. Both the dislocation density and the number of small dislocation cells effectively increased because of the occurrence of DSA; as a consequence, crack propagation was more strongly inhibited in the steel. Simultaneously, an increasing number of fine carbides precipitated under high stress at temperatures greater than 260℃. Thus, the deformation resistance of the steel was improved and the Jo was enhanced.展开更多
The impact toughness scattering in the ductile-brittle transition temperature (DBTT) region was experimentally examined on mixed and homogeneous grains of low alloy high strength bainitic steel under dynamic loading...The impact toughness scattering in the ductile-brittle transition temperature (DBTT) region was experimentally examined on mixed and homogeneous grains of low alloy high strength bainitic steel under dynamic loading conditions. The results revealed that the mixed grain microstructure had larger impact toughness scattering than the homogeneous one, and the impact toughness scattering was mainly caused by the scattering in the cleavage fractttre stress σf. The value of σf. is related to the size of the microcrack formed in the bainitic packet. When a bainitic packet-sized microcrack propagates from one bainitic packet into the adjacent packet, cleavage fracture occurs. The cleavage fracture is controlled by the few coarse packets in the microstructures, and the σf scattering is influenced by the varied distances/relative locations between these coarse packets, and homogenizing the distribution of fine bainitic packet sizes is an effective way to reduce the impact toughness scattering in the DBTT region.展开更多
The experiments were carried out to measure the mechanical properties ofthree grades of structural steels (Q235A, 16Mn and Q390E steel) at low temperature. It was shownthat the strength of the steels increases while t...The experiments were carried out to measure the mechanical properties ofthree grades of structural steels (Q235A, 16Mn and Q390E steel) at low temperature. It was shownthat the strength of the steels increases while the plasticity and toughness decrease as temperaturedrops. In the transitional area the toughness drops rapidly with temperature. Among the threestructural steels, Q390E steel has the best toughness and the lowest sensitivity.展开更多
The effects of the annealing process on the mechanical properties and crystallization behaviors of polypropylene random copolymer(PP-R) composites were investigated using differential scanning calorimetry(DSC), wi...The effects of the annealing process on the mechanical properties and crystallization behaviors of polypropylene random copolymer(PP-R) composites were investigated using differential scanning calorimetry(DSC), wide-angle X-ray diffraction(WAXD), and dynamic mechanical analysis(DMA), and scanning electron microscopy(SEM). The experimental results indicated that the annealing process significantly influenced the comprehensive properties of PP-R composites. At temperatures below 23 ℃, the impact strength of the PP-R composites annealed at 120 ℃ for 6 h was relatively high at 74.73 k J/m^2, which was 16.8% higher than that of the samples annealed at 80 ℃ for 6 h. At low temperatures(-30-0 ℃), the impact strength ranged from approximately 13.31 k J/m^2 to 54.4 k J/m^2. In addition, the annealing process conducted at 120 ℃ for 6 h improved the crystalline structure and low-temperature toughness of the PP-R composites and induced α-form to β-form crystal transformation. The work provides a possible method to reinforce and toughen the semicrystalline polymer at low temperatures(-30-0 ℃) by annealing.展开更多
On the basis of analysis of low carbon steel fracture macro-features and micro-processes at low temperature,the definition was given of the characteristic transition temperature of brittleness,T_(pm),and its physical ...On the basis of analysis of low carbon steel fracture macro-features and micro-processes at low temperature,the definition was given of the characteristic transition temperature of brittleness,T_(pm),and its physical meaning was expounded.Discussion was carried out of phys- ical characteristic of variation at T_(pm) in respect of the fracture toughness and property of crack arrest.In addition,research was made on the application of T_(pm),which can give infor- mation about the transition of the fracture toughness,the property of crack arrest and critical crack size,to estimation the brittleness of low carbon steel at low temperatures.展开更多
Railway steel bridge belongs to large-scale weld structures suffered with cyclic dynamic stress generated by the train. In recent years, the section of bridge member becomes bigger, plate becomes thicker, connection f...Railway steel bridge belongs to large-scale weld structures suffered with cyclic dynamic stress generated by the train. In recent years, the section of bridge member becomes bigger, plate becomes thicker, connection form becomes more complicated and steel bridge is applied to wider districts even in the lower temperature environment. Thus, fatigue and fracture problems become more serious. On the basis of CTOD (crack tip open displacement) test data of 372 specimens tested in different temperatures, this paper discusses research work about fracture proof design that involves how to determine the criterion of CVN (Charpy V-notch) impact toughness by establishing the relationship between CTOD and CVN, how to prevent from brittle fracture by stress control in railway steel bridge design based on COD (crack open displacement) design curve through the test data and how to do the fatigue design for railway steel bridge at -50 ℃ of design temperature in an easy way. The method of fatigue design at -50 ℃ environment has been used for railway steel bridge structure of Qinghai-Tibet Railway in China.展开更多
Effect of yttrium on low temperature toughness of weld metal deposited by TiO2-CaO type electrode has been investigated by transfering yttrium from welding pool to weld with fluxcored wire.The results show that the de...Effect of yttrium on low temperature toughness of weld metal deposited by TiO2-CaO type electrode has been investigated by transfering yttrium from welding pool to weld with fluxcored wire.The results show that the decrease in surface tension of liquid iron in welding pool and the variation in density of inclusion in weld are main causes for toughness improvement effect on weld by yttrium.展开更多
In this investigation, the mechanical properties and low-temperature fracture toughness of API 5L X65 offshore pipeline welded joints were studied. Structure Integrity Assessment Procedure (SINTAP)—Failure Assessment...In this investigation, the mechanical properties and low-temperature fracture toughness of API 5L X65 offshore pipeline welded joints were studied. Structure Integrity Assessment Procedure (SINTAP)—Failure Assessment Diagram (FAD) method was applied to the pipe structure with surface flaw at the weld toe. According to the ISO standard BS7448, the CTOD fracture toughness of the welded joints was determined at the temperature of 0℃. For the heat-affected zone (HAZ) specimens, post-test metallographic analysis was performed to verify that the tip of the crack was located in the coarse crystal zone in order to confirm the validity of the above results. The failure lines of analysis level 1 and 3 of weld metal were derived from the results of the mechanical property test. The assessment was performed, considering the maximum lay stress, residual stress conservatively assumed to be uniform tensile stress, and minimum CTOD value. The results of the assessment showed that pipeline structure with a surface flaw (the height and length are respectively 2.2mm and 5mm) at the weld toe is safe. This study lays the foundation of application of SINTAP to pipeline structure assessment.展开更多
Prior austenite grain size dependence of the low temperature impact toughness has been addressed in the bainitic weld metals by in situ observations.Usually,decreasing the grain size is the only approach by which both...Prior austenite grain size dependence of the low temperature impact toughness has been addressed in the bainitic weld metals by in situ observations.Usually,decreasing the grain size is the only approach by which both the strength and the toughness of a steel are increased.However,low carbon bainitic steel with small grain size shows a weakening of the low temperature impact toughness in this study.By direct tracking of the morphological evolution during phase transformation,it is found that large austenite grain size dominates the nucleation of intragranular acicular ferrite,whereas small austenite grain size leads to grain boundary nucleation of bainite.This kinetics information will contribute to meet the increasing low temperature toughness requirement of weld metals for the storage tanks and offshore structures.展开更多
To determine the physical significance of the impact toughness parameters and accurately characterize the low temperature impact toughness of transmission tower material Q420 B,the finite element model of Charpy impac...To determine the physical significance of the impact toughness parameters and accurately characterize the low temperature impact toughness of transmission tower material Q420 B,the finite element model of Charpy impact test is established on the basis of experiment.The simulation and test results are verified,and the specimen fracture is analyzed by scanning electron microscope.The formation and growth mechanism of the crack are dynamically analyzed.On this basis,energy separation method is used to investigate the effect of low temperature on impact toughness.The results show that the simulation and test results are in good agreement,and the ductile-brittle transition temperature of Q420 B is about-50 ℃.The breaking process of the specimen is divided into the crack formation and propagation.When temperature drops from 20 to-60 ℃,the crack propagation energy decreases from 51.0 to 11.9 J,the crack formation energy reduces from 39.9 to 15.8 J,and the fracture time of the material drops from 1.8 to 0.6 ms.展开更多
The microstructure and mechanical properties of low carbon bainite high strength steel plate were studied via different cooling paths at the pilot scale. There was a significant increase in mechanical properties, and ...The microstructure and mechanical properties of low carbon bainite high strength steel plate were studied via different cooling paths at the pilot scale. There was a significant increase in mechanical properties, and notably, the yield strength, tensile strength, and toughness at-40 ℃ for the tested steel processed by ultra-fast cooling were 126 MPa, 98 MPa and 69 J, respectively, in relation to steel processed by accelerated cooling. The ultra-fast cooling rate not only refined the microstructure, precipitates, and martensiteaustenite(M/A) islands, but also contributed to the refinement of microstructure in thick plates. The large size M/A constituents formed at lower cooling rate experienced stress concentration and were potential sites for crack initiation, which led to deterioration of low-temperature impact toughness. In contrast, the acicular ferrite and lath bainite with high fraction of high-angle grain boundaries were formed in steel processed by ultra-fast cooling, which retarded cleavage crack propagation.展开更多
文摘Microstructure observations and drop-weight tear test were performed to study the microstructures and mechanical properties of two kinds of industrial X70 and two kinds of industrial X80 grade pipeline steels. The effective grain size and the fraction of high angle grain boundaries in the pipeline steels were investigated by electron backscatter diffraction analysis. It is found that the low temperature toughness of the pipeline steels depends not only on the effective grain size, but also on other microstructural factors such as martensite-austenite (MA) constituents and precipitates. The morphology and size of MA constituents significantly affect the mechanical properties of the pipeline steels. Nubby MA constituents with large size have significant negative effects on the toughness, while smaller granular MA constituents have less harmful effects. Similarly, larger Ti-rich nitrides with sharp corners have a strongly negative effect on the toughness, while fine, spherical Nb-rich carbides have a less deleterious effect. The low temperature toughness of the steels is independent of the fraction of high angle grain boundaries.
基金supported by the Research Foundation of the Ministry of Railways and Tsinghua University (No.T200410)the National Natural Science Foundation of China (Nos.50778102 and 51178244)
文摘Brittle fracture occurs frequently in rails and thermite welded joints, which intimidates the security and reliability of railway ser- vice. Railways in cold regions, such as Qinghai-Tibet Railway, make the problem of brittle fi'acture in rails even worse. A series of tests such as uniaxial tensile tests, Charpy impact tests, and three-point bending tests were carried out at low temperature to investigate the mechanical properties and fracture toughness of U71Mn and U75V rail steels and their thermite welds. Fracture micromechanisms were analyzed by scanning electron microscopy (SEM) on the fracture surfaces of the tested specimens. The ductility indices (percentage elongation aider frac- ture and percentage reduction of area) and the toughness indices (Charpy impact energy Ak and plane-strain fracture toughness Kic) of the two kinds of rail steels and the corresponding thermite welds all decrease as the temperature decreases. The thermite welds are more critical to fracture than the rail steel base metals, as indicated by a higher yield-to-ultimate ratio and a much lower Charpy impact energy. U71Mn rail steel is relatively higher in toughness than U75V, as demonstrated by larger Ak and Klc values. Therefore, U71Mn rail steel and the corresponding thermite weld are recommended in railway construction and maintenance in cold regions.
基金financially supported by the National Natural Science Foundation of China(No.51274142)the Science&Technology Project of Liaoning Province(No.2009221005)the Science&Technology Project of Shenyang City(Nos.F10-035-2-00 and F11-069-2-00)
文摘Different contents of Ni(0.3wt.%to 1.2wt.%)were added to the QT400-18L ductile iron to investigate the effect of Ni addition on the impact toughness of cast ductile irons at low temperatures.The impact toughnesses of the samples at room and low temperatures were tested.The microstructures and fractographs were observed.Results show that with the increase of Ni addition there is a general trend of refinement of the ferrite matrix while the nodule density shows no obvious change.When the Ni content is 0.7wt.%,the matrix structure is the refined ferrite with a very small fraction(about 2%)of pearlite near the eutectic cell boundaries.When the Ni content is further increased,the fraction of pearlite increases significantly and reaches more than 5%when 1.2wt.%Ni is added.The impact toughness at room temperature increases as the content of Ni increases from 0.3 wt.%to 0.7 wt.%,but decreases as the Ni content further increases to 1.2wt.%due to the increase of pearlite fraction.The maximum value of the impact work is 18.5 J at room temperature with 0.7wt.%Ni addition.The average value of the impact work is still more than 13 J even at-30℃.In addition,the fracture mechanism changes from ductile manner to brittleness as the testing temperature decreases from 20℃to-60℃.
文摘Fe-Cr-Mn (W, V) austenite steel was researched in order to supply a theory base for the first wall materials of fusion reactors.Experiments included vacuum melting, forging, annealing, solution treatment, Charpy impact tests and microstructure observation. Theresults show that the imped value decreases with the test temperature decreasing. In this system, there is ductile/brittle transition. Themechanism of this decrease of the impact value is considered to be due to γ - ε transformation in sub-stable austenite steel and stoppingoverlapping sacking fault by grain boundaries in stable austenite steel.
文摘High strength low alloy steel with 16 mm thickness was welded by using high power laser hybrid welding. Microstrueture was characterized by using optical microscopy, scanning electron microscopy ( SEM ) , transmission electron microscopy (TEM) and selected area electron diffraction (SAED). Low temperature impact toughness was estimated by using Charpy V-notch impact samples selected from the upper part and the lower part at the same heterogeneous joint. Results show that the low temperature impact absorbed energies of weld metal are (202,180,165 J) of upper samples and (178,145,160 J) of lower samples, respectively. All of them increase compared to base metal. The embrittlement of HAZ does not occur. Weld metal primarily consists of refined carbide free bainite and a little granular bainite since laser hybrid welding owns the character of low heat input. Retained austenite constituent film "locates among the lath structure of bainitie ferrite. Refined bainitic ferrite lath and retained austenite constituent film provide better low temperature impact toughness compared to base metal.
基金financially supported by the Major State Basic Research Development Program of China (No. 2011CB610506)the National Natural Science Foundation of China (Nos. 51371044 and 51171039)the Fundamental Research Fund for the Central Universities of China (No. N130410001)
文摘The fracture toughness of SA508-Ⅲ steel was studied in the temperature range from room temperature to 320℃ using the J-integral method. The fracture behavior of the steel was also investigated. It was found that the conditional fracture toughness (JQ) of the steel first decreased and then increased with increasing test temperature. The maximum and minimum values of do were 517.4 kJ/m^2 at 25℃ and 304.5 kJ/m^2 at 180℃, respectively. Dynamic strain aging (DSA) was also observed to occur when the temperature exceeded 260℃ with a certain strain rate. Both the dislocation density and the number of small dislocation cells effectively increased because of the occurrence of DSA; as a consequence, crack propagation was more strongly inhibited in the steel. Simultaneously, an increasing number of fine carbides precipitated under high stress at temperatures greater than 260℃. Thus, the deformation resistance of the steel was improved and the Jo was enhanced.
基金Sponsored by the National Basic Research Program of China(No.2011CB610405)the Reactor Material Development Research Project of Shanghai Baoshan Iron&Steel Research Institute(No.X08ECEJ190)
文摘The impact toughness scattering in the ductile-brittle transition temperature (DBTT) region was experimentally examined on mixed and homogeneous grains of low alloy high strength bainitic steel under dynamic loading conditions. The results revealed that the mixed grain microstructure had larger impact toughness scattering than the homogeneous one, and the impact toughness scattering was mainly caused by the scattering in the cleavage fractttre stress σf. The value of σf. is related to the size of the microcrack formed in the bainitic packet. When a bainitic packet-sized microcrack propagates from one bainitic packet into the adjacent packet, cleavage fracture occurs. The cleavage fracture is controlled by the few coarse packets in the microstructures, and the σf scattering is influenced by the varied distances/relative locations between these coarse packets, and homogenizing the distribution of fine bainitic packet sizes is an effective way to reduce the impact toughness scattering in the DBTT region.
基金This work was financially supported by the National Natural Science Foundation of China (No. 50078029).
文摘The experiments were carried out to measure the mechanical properties ofthree grades of structural steels (Q235A, 16Mn and Q390E steel) at low temperature. It was shownthat the strength of the steels increases while the plasticity and toughness decrease as temperaturedrops. In the transitional area the toughness drops rapidly with temperature. Among the threestructural steels, Q390E steel has the best toughness and the lowest sensitivity.
基金the Science and Technology Cooperation Program of Guizhou Province of China([2016]5673)the Excellent Youth and Science&Technology Talent Foundation of Guizhou Province of China([2015]29)
文摘The effects of the annealing process on the mechanical properties and crystallization behaviors of polypropylene random copolymer(PP-R) composites were investigated using differential scanning calorimetry(DSC), wide-angle X-ray diffraction(WAXD), and dynamic mechanical analysis(DMA), and scanning electron microscopy(SEM). The experimental results indicated that the annealing process significantly influenced the comprehensive properties of PP-R composites. At temperatures below 23 ℃, the impact strength of the PP-R composites annealed at 120 ℃ for 6 h was relatively high at 74.73 k J/m^2, which was 16.8% higher than that of the samples annealed at 80 ℃ for 6 h. At low temperatures(-30-0 ℃), the impact strength ranged from approximately 13.31 k J/m^2 to 54.4 k J/m^2. In addition, the annealing process conducted at 120 ℃ for 6 h improved the crystalline structure and low-temperature toughness of the PP-R composites and induced α-form to β-form crystal transformation. The work provides a possible method to reinforce and toughen the semicrystalline polymer at low temperatures(-30-0 ℃) by annealing.
文摘On the basis of analysis of low carbon steel fracture macro-features and micro-processes at low temperature,the definition was given of the characteristic transition temperature of brittleness,T_(pm),and its physical meaning was expounded.Discussion was carried out of phys- ical characteristic of variation at T_(pm) in respect of the fracture toughness and property of crack arrest.In addition,research was made on the application of T_(pm),which can give infor- mation about the transition of the fracture toughness,the property of crack arrest and critical crack size,to estimation the brittleness of low carbon steel at low temperatures.
文摘Railway steel bridge belongs to large-scale weld structures suffered with cyclic dynamic stress generated by the train. In recent years, the section of bridge member becomes bigger, plate becomes thicker, connection form becomes more complicated and steel bridge is applied to wider districts even in the lower temperature environment. Thus, fatigue and fracture problems become more serious. On the basis of CTOD (crack tip open displacement) test data of 372 specimens tested in different temperatures, this paper discusses research work about fracture proof design that involves how to determine the criterion of CVN (Charpy V-notch) impact toughness by establishing the relationship between CTOD and CVN, how to prevent from brittle fracture by stress control in railway steel bridge design based on COD (crack open displacement) design curve through the test data and how to do the fatigue design for railway steel bridge at -50 ℃ of design temperature in an easy way. The method of fatigue design at -50 ℃ environment has been used for railway steel bridge structure of Qinghai-Tibet Railway in China.
文摘Effect of yttrium on low temperature toughness of weld metal deposited by TiO2-CaO type electrode has been investigated by transfering yttrium from welding pool to weld with fluxcored wire.The results show that the decrease in surface tension of liquid iron in welding pool and the variation in density of inclusion in weld are main causes for toughness improvement effect on weld by yttrium.
文摘In this investigation, the mechanical properties and low-temperature fracture toughness of API 5L X65 offshore pipeline welded joints were studied. Structure Integrity Assessment Procedure (SINTAP)—Failure Assessment Diagram (FAD) method was applied to the pipe structure with surface flaw at the weld toe. According to the ISO standard BS7448, the CTOD fracture toughness of the welded joints was determined at the temperature of 0℃. For the heat-affected zone (HAZ) specimens, post-test metallographic analysis was performed to verify that the tip of the crack was located in the coarse crystal zone in order to confirm the validity of the above results. The failure lines of analysis level 1 and 3 of weld metal were derived from the results of the mechanical property test. The assessment was performed, considering the maximum lay stress, residual stress conservatively assumed to be uniform tensile stress, and minimum CTOD value. The results of the assessment showed that pipeline structure with a surface flaw (the height and length are respectively 2.2mm and 5mm) at the weld toe is safe. This study lays the foundation of application of SINTAP to pipeline structure assessment.
文摘Prior austenite grain size dependence of the low temperature impact toughness has been addressed in the bainitic weld metals by in situ observations.Usually,decreasing the grain size is the only approach by which both the strength and the toughness of a steel are increased.However,low carbon bainitic steel with small grain size shows a weakening of the low temperature impact toughness in this study.By direct tracking of the morphological evolution during phase transformation,it is found that large austenite grain size dominates the nucleation of intragranular acicular ferrite,whereas small austenite grain size leads to grain boundary nucleation of bainite.This kinetics information will contribute to meet the increasing low temperature toughness requirement of weld metals for the storage tanks and offshore structures.
文摘To determine the physical significance of the impact toughness parameters and accurately characterize the low temperature impact toughness of transmission tower material Q420 B,the finite element model of Charpy impact test is established on the basis of experiment.The simulation and test results are verified,and the specimen fracture is analyzed by scanning electron microscope.The formation and growth mechanism of the crack are dynamically analyzed.On this basis,energy separation method is used to investigate the effect of low temperature on impact toughness.The results show that the simulation and test results are in good agreement,and the ductile-brittle transition temperature of Q420 B is about-50 ℃.The breaking process of the specimen is divided into the crack formation and propagation.When temperature drops from 20 to-60 ℃,the crack propagation energy decreases from 51.0 to 11.9 J,the crack formation energy reduces from 39.9 to 15.8 J,and the fracture time of the material drops from 1.8 to 0.6 ms.
基金Funded by National Natural Science Foundation of China(No.51234002)National Key Research and Development Program of China(No.2016YFB0300602)
文摘The microstructure and mechanical properties of low carbon bainite high strength steel plate were studied via different cooling paths at the pilot scale. There was a significant increase in mechanical properties, and notably, the yield strength, tensile strength, and toughness at-40 ℃ for the tested steel processed by ultra-fast cooling were 126 MPa, 98 MPa and 69 J, respectively, in relation to steel processed by accelerated cooling. The ultra-fast cooling rate not only refined the microstructure, precipitates, and martensiteaustenite(M/A) islands, but also contributed to the refinement of microstructure in thick plates. The large size M/A constituents formed at lower cooling rate experienced stress concentration and were potential sites for crack initiation, which led to deterioration of low-temperature impact toughness. In contrast, the acicular ferrite and lath bainite with high fraction of high-angle grain boundaries were formed in steel processed by ultra-fast cooling, which retarded cleavage crack propagation.