Repetitive mining beneath bedding slopes is identified as a critical factor in geomorphic disturbances, especially landslides and surface subsidence. Prior research has largely concentrated on surface deformation in p...Repetitive mining beneath bedding slopes is identified as a critical factor in geomorphic disturbances, especially landslides and surface subsidence. Prior research has largely concentrated on surface deformation in plains due to multi-seam coal mining and the instability of natural bedding slopes, yet the cumulative impact of different mining sequences on bedding slopes has been less explored. This study combines drone surveys and geological data to construct a comprehensive three-dimensional model of bedding slopes. Utilizing FLAC3D and PFC2D models, derived from laboratory experiments, it simulates stress, deformation, and failure dynamics of slopes under various mining sequences. Incorporating fractal dimension analysis, the research evaluates the stability of slopes in relation to different mining sequences. The findings reveal that mining in an upslope direction minimizes disruption to overlying strata. Initiating extraction from lower segments increases tensile-shear stress in coal pillar overburdens, resulting in greater creep deformation towards the downslope than when starting from upper segments, potentially leading to localized landslides and widespread creep deformation in mined-out areas. The downslope upward mining sequence exhibits the least fractal dimensions, indicating minimal disturbance to both strata and surface. While all five mining scenarios maintain good slope stability under normal conditions, recalibrated stability assessments based on fractal dimensions suggest that downslope upward mining offers the highest stability under rainfall, contrasting with the lower stability and potential instability risks of upslope downward mining. These insights are pivotal for mining operations and geological hazard mitigation in multi-seam coal exploitation on bedding slopes.展开更多
The significant difference between the mechanical properties of soft rock and hard rock results in the complexity of the failure mode of the anti-dip layered slope with soft and hard rock interbedding.In order to reve...The significant difference between the mechanical properties of soft rock and hard rock results in the complexity of the failure mode of the anti-dip layered slope with soft and hard rock interbedding.In order to reveal the landslide mechanism,taking the north slope of Fushun West Open-pit Mine as an example,this paper analyzed the failure mechanism of different landslides with monitoring and field surveys,and simulated the evolution of landslides.The study indicated that when the green mudstone(hard rock)of the anti-dip slope contains siltized intercalations(soft rock),the existence of weak layers not only aggravates the toppling deformation of anti-dip layered slope with high dip,but also causes the shear failure of anti-dip layered slope with stable low dip.The shear failure including subsidence induced sliding and wedge failure mainly exists in the unloading zone of the slope.Its failure depth and failure time were far less than that of toppling failure.In terms of the development characteristics of deformation,toppling deformation has the long-term and progressive characteristics,but shear failure deformation has the abrupt and transient characteristics.This study has deepened the understanding of such slope landslide mechanism,and can provide reference for similar engineering.展开更多
Reservoir-induced earthquakes(RIEs)occur frequently in the Three Gorges Reservoir Area(TGRA)and the rock mass strength of the hydro-fluctuation belt(HFB)deteriorates severely due to the reservoirinduced seismic loads....Reservoir-induced earthquakes(RIEs)occur frequently in the Three Gorges Reservoir Area(TGRA)and the rock mass strength of the hydro-fluctuation belt(HFB)deteriorates severely due to the reservoirinduced seismic loads.Three models of typical bedded rock slopes(BRSs),i.e.gently(GIS),moderately(MIS),and steeply(SIS)inclined slopes,were proposed according to field investigations.The dynamic response mechanism and stability of the BRSs,affected by the rock mass deterioration of the HFB,were investigated by the shaking table test and the universal distinct element code(UDEC)simulation.Specifically,the amplification coefficient of the peak ground acceleration(PGA)of the slope was gradually attenuated under multiple seismic loads,and the acceleration response showed obvious“surface effect”and“elevation effect”in the horizontal and vertical directions,respectively.The“S-type”cubic function and“steep-rise type”exponential function were used to characterize the cumulative damage evolution of the slope caused by microseismic waves(low seismic waves)and high seismic waves,respectively.According to the dynamic responses of the acceleration,cumulative displacement,rock pressure,pore water pressure,damping ratio,natural frequency,stability coefficient,and sliding velocity of the slope,the typical evolution processes of the dynamic cumulative damage and instability failure of the slope were generalized,and the numerical and experimental results were compared.Considering the dynamic effects of the slope height(SH),slope angle(SA),bedding plane thickness(BPT),dip angle of the bedding plane(DABP),dynamic load amplitude(DLA),dynamic load frequency(DLF),height of water level of the hydro-fluctuation belt(HWLHFB),degradation range of the hydro-fluctuation belt(DRHFB),and degradation shape of the hydro-fluctuation belt(DSHFB),the sensitivity of factors influencing the slope dynamic stability using the orthogonal analysis method(OAM)was DLA>DRHFB>SA>SH>DLF>HWLHFB>DSHFB>DABP>BPT.展开更多
Catastrophic geological disasters frequently occur on slopes with obliquely inclined bedding structures(also referred to as obliquely inclined bedding slopes),where the apparent dip sliding is not readily visible.This...Catastrophic geological disasters frequently occur on slopes with obliquely inclined bedding structures(also referred to as obliquely inclined bedding slopes),where the apparent dip sliding is not readily visible.This phenomenon has become a focal point in landslide research.Yet,there is a lack of studies on the failure modes and mechanisms of hidden,steep obliquely inclined bedding slopes.This study investigated the Shanyang landslide in Shaanxi Province,China.Using field investigations,laboratory tests of geotechnical parameters,and the 3DEC software,this study developed a numerical model of the landslide to analyze the failure process of such slopes.The findings indicate that the Shanyang landslide primarily crept along a weak interlayer under the action of gravity.The landslide,initially following a dip angle with the support of a stable inclined rock mass,shifted direction under the influence of argillization in the weak interlayer,moving towards the apparent dip angle.The slide resistance effect of the karstic dissolution zone was increasingly significant during this process,with lateral friction being the primary resistance force.A reduction in the lateral friction due to karstic dissolution made the apparent dip sliding characteristics of the Shanyang landslide more pronounced.Notably,deformations such as bending and uplift at the slope’s foot suggest that the main slide resistance shifts from lateral friction within the karstic dissolution zone to the slope foot’s resistance force,leading to the eventual buckling failure of the landslide.This study unveils a novel failure mode of apparent dip creep-buckling in the Shanyang landslide,highlighting the critical role of lateral friction from the karstic dissolution zone in its failure mechanism.These insights offer a valuable reference for mitigating risks and preventing disasters related to obliquely inclined bedding landslides.展开更多
Primary toppling usually occurs in layered rock slopes with large anti-dip angles.In this paper,the block toppling evolution was explored using a large-scale centrifuge system.Each block column in the layered model sl...Primary toppling usually occurs in layered rock slopes with large anti-dip angles.In this paper,the block toppling evolution was explored using a large-scale centrifuge system.Each block column in the layered model slope was made of cement mortar.Some artificial cracks perpendicular to the block column were prefabricated.Strain gages,displacement gages,and high-speed camera measurements were employed to monitor the deformation and failure processes of the model slope.The centrifuge test results show that the block toppling evolution can be divided into seven stages,i.e.layer compression,formation of major tensile crack,reverse bending of the block column,closure of major tensile crack,strong bending of the block column,formation of failure zone,and complete failure.Block toppling is characterized by sudden large deformation and occurs in stages.The wedge-shaped cracks in the model incline towards the slope.Experimental observations show that block toppling is mainly caused by bending failure rather than by shear failure.The tensile strength also plays a key factor in the evolution of block toppling.The simulation results from discrete element method(DEM)is in line with the testing results.Tensile stress exists at the backside of rock column during toppling deformation.Stress concentration results in the fragmented rock column and its degree is the most significant at the slope toe.展开更多
Shake table testing was performed to investigate the dynamic stability of a mid-dip bedding rock slope under frequent earthquakes. Then, numerical modelling was established to further study the slope dynamic stability...Shake table testing was performed to investigate the dynamic stability of a mid-dip bedding rock slope under frequent earthquakes. Then, numerical modelling was established to further study the slope dynamic stability under purely microseisms and the influence of five factors, including seismic amplitude, slope height, slope angle, strata inclination and strata thickness, were considered. The experimental results show that the natural frequency of the slope decreases and damping ratio increases as the earthquake loading times increase. The dynamic strength reduction method is adopted for the stability evaluation of the bedding rock slope in numerical simulation, and the slope stability decreases with the increase of seismic amplitude, increase of slope height, reduction of strata thickness and increase of slope angle. The failure mode of a mid-dip bedding rock slope in the shaking table test is integral slipping along the bedding surface with dipping tensile cracks at the slope rear edge going through the bedding surfaces. In the numerical simulation, the long-term stability of a mid-dip bedding slope is worst under frequent microseisms and the slope is at risk of integral sliding instability, whereas the slope rock mass is more broken than shown in the shaking table test. The research results are of practical significance to better understand the formation mechanism of reservoir landslides and prevent future landslide disasters.展开更多
Bedding rock slopes are common geological features in nature that are prone to failure under strong earthquakes. Their failures induce catastrophic landslides and form barrier lakes, posing severe threats to people’s...Bedding rock slopes are common geological features in nature that are prone to failure under strong earthquakes. Their failures induce catastrophic landslides and form barrier lakes, posing severe threats to people’s lives and property. Based on the similarity criteria, a bedding rock slope model with a length of3 m, a width of 0.8 m, and a height of 1.6 m was constructed to facilitate large-scale shaking table tests.The results showed that with the increase of vibration time, the natural frequency of the model slope decreased, but the damping ratio increased. Damage to the rock mass structure altered the dynamic characteristics of the slope;therefore, amplification of the acceleration was found to be nonlinear and uneven. Furthermore, the acceleration was amplified nonlinearly with the increase of slope elevation along the slope surface and the vertical section, and the maximum acceleration amplification factor(AAF) occurred at the slope crest. Before visible deformation, the AAF increased with increasing shaking intensity;however, it decreased with increasing shaking intensity after obvious deformation. The slope was likely to slide along the bedding planes at a shallow depth below the slope surface. The upper part of the slope mainly experienced a tensile-shear effect, whereas the lower part suffered a compressive-shear force. The progressive failure process of the model slope can be divided into four stages, and the dislocated rock mass can be summarized into three zones. The testing data provide a good explanation of the dynamic behavior of the rock slope when subjected to an earthquake and may serve as a helpful reference in implementing antiseismic measures for earthquake-induced landslides.展开更多
In order to study the influence of depth-thickness ratio on bedding slope stability, whose sliding surface is flexural concave in shape under mining conditions, this paper aims to study the characteristics ofdeformari...In order to study the influence of depth-thickness ratio on bedding slope stability, whose sliding surface is flexural concave in shape under mining conditions, this paper aims to study the characteristics ofdeformarion and damage of bedding sliding with depth-thickness ratios of 200:1,150:1,120:1,100:1 and 50:1 by adopting numerical simulation analysis software combined with laboratory-made "under the influence of mining variable sliding surface slope similar simulation test bed", and to propose identification methods for slope stability under the infuence of mining. The results show that mining activities under the slope reduce slope stability. With a decrease in the mining depth ratio, the influence of mining on the slope increases gradually, and the damage to the slope gradually expands, the stability of the slope grad- ually reduces, fracture occurs on the slope toe and the central fissure gradually develops to the surface, and reaches slide threshold when the depth-thickness ratio is 50:1.展开更多
Engineering experience shows that outward dipping bedded rock slopes, especially including weak interlayers, are prone to slide under rainfall conditions. To investigate the effect of inclined weak interlayers at vari...Engineering experience shows that outward dipping bedded rock slopes, especially including weak interlayers, are prone to slide under rainfall conditions. To investigate the effect of inclined weak interlayers at various levels of depth below the surface on the variation of displacements and stresses in bedded rock slopes, four geo- mechanical model tests with artificial rainfall have been conducted. Displacements, water content as well as earth pressure in the model were monitored by means of various FBG (Fiber Bragg Grating) sensors. The results showed that the amount of displacement of a slope with a weak interlayer is 2.8 to 6.2 times larger than that of a slope without a weak interlayer during one rainfall event. Furthermore, the position of the weak interlayer in terms of depth below the surface has a significant effect on the zone of deformation in the model. In the slope with a high position weak interlayer, the recorded deformation was larger in the superficial layer of the model and smaller in the frontal portion than in the slope with a low position weak interlayer. The slope with two weak interlayers has the largest deformation at all locations of all test slopes. The slope without a weak interlayer was only saturated in its superficial layer, while the displacement decreased with depth. That was different from all slopes with a weak interlayer in which the largest displacement shifted from the superficial layer to the weak interlayer when rainfall persisted. Plastic deformation of the weak interlayer promoted the formation of cracks which caused more water to flow into the slope, thus causing larger deformation in the slope with weak interlayers. In addition, the slide thrust pressure showed a vibration phenomenon o.5 to 1 hour ahead of an abrupt increase of the deformation, which was interpreted as a predictor for rainfall-induced failure of bedded rock slopes.展开更多
Local scour downstream of sluice gates in erosive beds is one of the main concerns of hydraulic engineers because it can cause considerable damage to structures.Many researchers have conducted various studies to predi...Local scour downstream of sluice gates in erosive beds is one of the main concerns of hydraulic engineers because it can cause considerable damage to structures.Many researchers have conducted various studies to predict the maximum depth and length of scour holes and to develop new methods to control this phenomenon.In the methods that have recently been examined,embedded buried plates are used to control the scour in the erosive beds.In this study,using a physical model,the effect of buried plates in erosive beds on the depth of scour downstream of a hydraulic jump was studied.Several experiments were performed in which plates were buried at 50° and 90° angles at different distances from the apron in open channels with horizontal and reverse bed slopes.The results of experiments in which the scour profiles were drawn in dimensionless forms show that the angle and position of the plates are important to controlling and reducing scour depth.In fact,by reducing the angle of buried plates,the maximum depth of scour is also reduced.Also,comparison of the results of a single buried plate and double buried plates shows that using two buried plates at the distances of 30 and 45 cm from the non-erodible bed is more effective in reducing the scour depth.The best distances of the buried plates with angles of 90° and 50° from the non-erodible bed are 45 cm and 30 cm,respectively,in the condition with a single buried plate.展开更多
Blasting is one of the most economical and efficient mining methods in open-pit mine production.However,behind the huge benefits,it poses a hidden threat to the quality of slope rock mass,stability of slope,and safety...Blasting is one of the most economical and efficient mining methods in open-pit mine production.However,behind the huge benefits,it poses a hidden threat to the quality of slope rock mass,stability of slope,and safety of nearby buildings.In order to explore the influence of blasting vibration on the stability of anti-dip layered rock slopes,herein,the site near the large-scale toppling failure area of Changshanhao gold mine stope of Inner Mongolia Taiping Mining Co.,Ltd.was selected for on-site blasting test and monitoring.The Peak Particle Velocity(PPV)measured at the monitoring point is located on the lower side of the maximum allowable vibration velocity curve that is prepared based on the allowable speed standard evaluation chart in the full frequency domain established by standards practiced in various countries such as German DIN4150,the USBM RI 8507,and Chinese GB6722-2014.This indicates that the blasting vibration has less influence on the location of the monitoring point.The vibration signals obtained in the blasting test were analyzed using the wavelet packet theory,and it was concluded that the blasting vibration signals measured in the anti-dip layered rock slope were mainly concentrated in two frequency bands of 0-80 Hz and 115-160 Hz.The sum of energy of the two frequency bands accounted for more than 99%,wherein,the energy contained in the 0-80 Hz frequency band accounted for more than 85%of the monitoring signals.The vibration signal with 0-80 Hz frequency band monitored at the slope toe was selected for the energy attenuation analysis.The results showed that the energy attenuation decreased in radial,vertical,and tangential directions.Further,the Energy Attenuation Rate per Meter(EARPM)was calculated.In conjunction with the site characteristics analysis,it was found that the energy attenuation rate was significantly affected by the rock mass characteristics of the structural plane.The slope reinforcement project can effectively reduce the absorption of vibration energy by the slope and increase slope stability.展开更多
The Jiweishan landslide illustrates the failure pattern of an apparent dip slide of an oblique thick-bedded rockslide. Centrifugal modeling was performed using a model slope consisting of four sets of joints to invest...The Jiweishan landslide illustrates the failure pattern of an apparent dip slide of an oblique thick-bedded rockslide. Centrifugal modeling was performed using a model slope consisting of four sets of joints to investigate the landslide initiation mechanism. Crack strain gauges pasted between the slide blocks and the base failed in sequence from the rear to the front as the centrifugal acceleration increased. When the acceleration reached 16.3g, the instantaneous failure of the key block in the front triggered the apparent dip slide of all blocks. The physical modeling results and previous studies suggest that the strength reduction in the weak layer and the failure of the key block are the main reasons for the Jiweishan landslide. The centrifuge experiment validated the previously proposed driving-blocks-key-block model of apparent dip slide in oblique with inclined bedding rock slopes. In addition, the results from limit equilibrium method and centrifuge test suggest that even though the failure of the key block in the front is instantaneous, a progressive stable-unstable transition exists.展开更多
To investigate the dynamic damage evolution characteristics of bank slopes with serrated structural planes,the shaking table model test and the numerical simulation were utilized.The main findings indicate that under ...To investigate the dynamic damage evolution characteristics of bank slopes with serrated structural planes,the shaking table model test and the numerical simulation were utilized.The main findings indicate that under continuous seismic loads,the deformation of the bank slope increased,particularly around the hydro-fluctuation belt,accompanying by the pore water pressure rising.The soil pressure increased and then decreased showed dynamic variation characteristics.As the undulation angle of the serrated structural planes increased(30°, 45°, and 60°),the failure modes were climbing,climbinggnawing,and gnawing respectively.The first-order natural frequency was used to calculate the damage degree(Dd)of the bank slope.During microseisms and small earthquakes,it was discovered that the evolution of Dd followed the“S”shape,which was fitted by a logic function.Additionally,the quadratic function was used to fit the Dd during moderately strong earthquakes.Through the numerical simulation,the variation characteristics of safety factors(Sf)for slopes with serrated structural planes and slopes with straight structural planes were compared.Under continuous seismic loads,the Sf of slopes with straight structural planes reduce stalely,whereas the Sf for slopes with serrated structural planes was greater than the former and the reduction rate was increasing.展开更多
Bedding slope is a typical heterogeneous slope consisting of different soil/rock layers and is likely to slide along the weakest interface.Conventional slope protection methods for bedding slopes,such as retaining wal...Bedding slope is a typical heterogeneous slope consisting of different soil/rock layers and is likely to slide along the weakest interface.Conventional slope protection methods for bedding slopes,such as retaining walls,stabilizing piles,and anchors,are time-consuming and labor-and energy-intensive.This study proposes an innovative polymer grout method to improve the bearing capacity and reduce the displacement of bedding slopes.A series of large-scale model tests were carried out to verify the effectiveness of polymer grout in protecting bedding slopes.Specifically,load-displacement relationships and failure patterns were analyzed for different testing slopes with various dosages of polymer.Results show the great potential of polymer grout in improving bearing capacity,reducing settlement,and protecting slopes from being crushed under shearing.The polymer-treated slopes remained structurally intact,while the untreated slope exhibited considerable damage when subjected to loads surpassing the bearing capacity.It is also found that polymer-cemented soils concentrate around the injection pipe,forming a fan-shaped sheet-like structure.This study proves the improvement of polymer grouting for bedding slope treatment and will contribute to the development of a fast method to protect bedding slopes from landslides.展开更多
基金funded by the Sichuan Science and Technology Program (grant number 2022NSFSC1176)the open Fund for National Key Laboratory of Geological Disaster Prevention and Environmental Protection (grant number SKLGP2022K027)the State Key Laboratory of Geohazard Prevention and Geoenvironment Protection Independent Research Project (SKLGP2022Z001)。
文摘Repetitive mining beneath bedding slopes is identified as a critical factor in geomorphic disturbances, especially landslides and surface subsidence. Prior research has largely concentrated on surface deformation in plains due to multi-seam coal mining and the instability of natural bedding slopes, yet the cumulative impact of different mining sequences on bedding slopes has been less explored. This study combines drone surveys and geological data to construct a comprehensive three-dimensional model of bedding slopes. Utilizing FLAC3D and PFC2D models, derived from laboratory experiments, it simulates stress, deformation, and failure dynamics of slopes under various mining sequences. Incorporating fractal dimension analysis, the research evaluates the stability of slopes in relation to different mining sequences. The findings reveal that mining in an upslope direction minimizes disruption to overlying strata. Initiating extraction from lower segments increases tensile-shear stress in coal pillar overburdens, resulting in greater creep deformation towards the downslope than when starting from upper segments, potentially leading to localized landslides and widespread creep deformation in mined-out areas. The downslope upward mining sequence exhibits the least fractal dimensions, indicating minimal disturbance to both strata and surface. While all five mining scenarios maintain good slope stability under normal conditions, recalibrated stability assessments based on fractal dimensions suggest that downslope upward mining offers the highest stability under rainfall, contrasting with the lower stability and potential instability risks of upslope downward mining. These insights are pivotal for mining operations and geological hazard mitigation in multi-seam coal exploitation on bedding slopes.
基金supported by the National Key Research and Development Program of China(Nos.2022YFC2903902 and 2022YFC2903903)the National Natural Science Foundation of China(Nos.U1903216 and 52174070).
文摘The significant difference between the mechanical properties of soft rock and hard rock results in the complexity of the failure mode of the anti-dip layered slope with soft and hard rock interbedding.In order to reveal the landslide mechanism,taking the north slope of Fushun West Open-pit Mine as an example,this paper analyzed the failure mechanism of different landslides with monitoring and field surveys,and simulated the evolution of landslides.The study indicated that when the green mudstone(hard rock)of the anti-dip slope contains siltized intercalations(soft rock),the existence of weak layers not only aggravates the toppling deformation of anti-dip layered slope with high dip,but also causes the shear failure of anti-dip layered slope with stable low dip.The shear failure including subsidence induced sliding and wedge failure mainly exists in the unloading zone of the slope.Its failure depth and failure time were far less than that of toppling failure.In terms of the development characteristics of deformation,toppling deformation has the long-term and progressive characteristics,but shear failure deformation has the abrupt and transient characteristics.This study has deepened the understanding of such slope landslide mechanism,and can provide reference for similar engineering.
基金the China Postdoctoral Science Foundation(Grant No.2023M730432)the Special Funding for Chongqing Postdoctoral Research Project(Grant No.2022CQBSHTB1010)the Chongqing Postdoctoral Science Foundation(Grant No.CSTB2023NSCQ-BHX0223).
文摘Reservoir-induced earthquakes(RIEs)occur frequently in the Three Gorges Reservoir Area(TGRA)and the rock mass strength of the hydro-fluctuation belt(HFB)deteriorates severely due to the reservoirinduced seismic loads.Three models of typical bedded rock slopes(BRSs),i.e.gently(GIS),moderately(MIS),and steeply(SIS)inclined slopes,were proposed according to field investigations.The dynamic response mechanism and stability of the BRSs,affected by the rock mass deterioration of the HFB,were investigated by the shaking table test and the universal distinct element code(UDEC)simulation.Specifically,the amplification coefficient of the peak ground acceleration(PGA)of the slope was gradually attenuated under multiple seismic loads,and the acceleration response showed obvious“surface effect”and“elevation effect”in the horizontal and vertical directions,respectively.The“S-type”cubic function and“steep-rise type”exponential function were used to characterize the cumulative damage evolution of the slope caused by microseismic waves(low seismic waves)and high seismic waves,respectively.According to the dynamic responses of the acceleration,cumulative displacement,rock pressure,pore water pressure,damping ratio,natural frequency,stability coefficient,and sliding velocity of the slope,the typical evolution processes of the dynamic cumulative damage and instability failure of the slope were generalized,and the numerical and experimental results were compared.Considering the dynamic effects of the slope height(SH),slope angle(SA),bedding plane thickness(BPT),dip angle of the bedding plane(DABP),dynamic load amplitude(DLA),dynamic load frequency(DLF),height of water level of the hydro-fluctuation belt(HWLHFB),degradation range of the hydro-fluctuation belt(DRHFB),and degradation shape of the hydro-fluctuation belt(DSHFB),the sensitivity of factors influencing the slope dynamic stability using the orthogonal analysis method(OAM)was DLA>DRHFB>SA>SH>DLF>HWLHFB>DSHFB>DABP>BPT.
基金jointly supported by the projects of the China Geological Survey(DD20230092,DD20201119)。
文摘Catastrophic geological disasters frequently occur on slopes with obliquely inclined bedding structures(also referred to as obliquely inclined bedding slopes),where the apparent dip sliding is not readily visible.This phenomenon has become a focal point in landslide research.Yet,there is a lack of studies on the failure modes and mechanisms of hidden,steep obliquely inclined bedding slopes.This study investigated the Shanyang landslide in Shaanxi Province,China.Using field investigations,laboratory tests of geotechnical parameters,and the 3DEC software,this study developed a numerical model of the landslide to analyze the failure process of such slopes.The findings indicate that the Shanyang landslide primarily crept along a weak interlayer under the action of gravity.The landslide,initially following a dip angle with the support of a stable inclined rock mass,shifted direction under the influence of argillization in the weak interlayer,moving towards the apparent dip angle.The slide resistance effect of the karstic dissolution zone was increasingly significant during this process,with lateral friction being the primary resistance force.A reduction in the lateral friction due to karstic dissolution made the apparent dip sliding characteristics of the Shanyang landslide more pronounced.Notably,deformations such as bending and uplift at the slope’s foot suggest that the main slide resistance shifts from lateral friction within the karstic dissolution zone to the slope foot’s resistance force,leading to the eventual buckling failure of the landslide.This study unveils a novel failure mode of apparent dip creep-buckling in the Shanyang landslide,highlighting the critical role of lateral friction from the karstic dissolution zone in its failure mechanism.These insights offer a valuable reference for mitigating risks and preventing disasters related to obliquely inclined bedding landslides.
基金The authors wish to thank National Key R&D Program of China(Grant No.2022YFC308100)the National Nature Science Foundation of China(Grant Nos.42107172 and 42072303)for financial support.
文摘Primary toppling usually occurs in layered rock slopes with large anti-dip angles.In this paper,the block toppling evolution was explored using a large-scale centrifuge system.Each block column in the layered model slope was made of cement mortar.Some artificial cracks perpendicular to the block column were prefabricated.Strain gages,displacement gages,and high-speed camera measurements were employed to monitor the deformation and failure processes of the model slope.The centrifuge test results show that the block toppling evolution can be divided into seven stages,i.e.layer compression,formation of major tensile crack,reverse bending of the block column,closure of major tensile crack,strong bending of the block column,formation of failure zone,and complete failure.Block toppling is characterized by sudden large deformation and occurs in stages.The wedge-shaped cracks in the model incline towards the slope.Experimental observations show that block toppling is mainly caused by bending failure rather than by shear failure.The tensile strength also plays a key factor in the evolution of block toppling.The simulation results from discrete element method(DEM)is in line with the testing results.Tensile stress exists at the backside of rock column during toppling deformation.Stress concentration results in the fragmented rock column and its degree is the most significant at the slope toe.
基金National Natural Science Foundation of China under Grant No. 41372356the College Cultivation Project of the National Natural Science Foundation of China under Grant No. 2018PY30+1 种基金the Basic Research and Frontier Exploration Project of Chongqing,China under Grant No. cstc2018jcyj A1597the Graduate Scientific Research and Innovation Foundation of Chongqing,China under Grant No. CYS18026。
文摘Shake table testing was performed to investigate the dynamic stability of a mid-dip bedding rock slope under frequent earthquakes. Then, numerical modelling was established to further study the slope dynamic stability under purely microseisms and the influence of five factors, including seismic amplitude, slope height, slope angle, strata inclination and strata thickness, were considered. The experimental results show that the natural frequency of the slope decreases and damping ratio increases as the earthquake loading times increase. The dynamic strength reduction method is adopted for the stability evaluation of the bedding rock slope in numerical simulation, and the slope stability decreases with the increase of seismic amplitude, increase of slope height, reduction of strata thickness and increase of slope angle. The failure mode of a mid-dip bedding rock slope in the shaking table test is integral slipping along the bedding surface with dipping tensile cracks at the slope rear edge going through the bedding surfaces. In the numerical simulation, the long-term stability of a mid-dip bedding slope is worst under frequent microseisms and the slope is at risk of integral sliding instability, whereas the slope rock mass is more broken than shown in the shaking table test. The research results are of practical significance to better understand the formation mechanism of reservoir landslides and prevent future landslide disasters.
基金funded by the National Natural Science Foundation of China (Grant No. 41825018)the National Key Research and Development Plan of China (Grant No. 2019YFC1509704)the Second Tibetan Plateau Scientific Expedition and Research Program (STEP, Grant No. 2019QZKK0904)。
文摘Bedding rock slopes are common geological features in nature that are prone to failure under strong earthquakes. Their failures induce catastrophic landslides and form barrier lakes, posing severe threats to people’s lives and property. Based on the similarity criteria, a bedding rock slope model with a length of3 m, a width of 0.8 m, and a height of 1.6 m was constructed to facilitate large-scale shaking table tests.The results showed that with the increase of vibration time, the natural frequency of the model slope decreased, but the damping ratio increased. Damage to the rock mass structure altered the dynamic characteristics of the slope;therefore, amplification of the acceleration was found to be nonlinear and uneven. Furthermore, the acceleration was amplified nonlinearly with the increase of slope elevation along the slope surface and the vertical section, and the maximum acceleration amplification factor(AAF) occurred at the slope crest. Before visible deformation, the AAF increased with increasing shaking intensity;however, it decreased with increasing shaking intensity after obvious deformation. The slope was likely to slide along the bedding planes at a shallow depth below the slope surface. The upper part of the slope mainly experienced a tensile-shear effect, whereas the lower part suffered a compressive-shear force. The progressive failure process of the model slope can be divided into four stages, and the dislocated rock mass can be summarized into three zones. The testing data provide a good explanation of the dynamic behavior of the rock slope when subjected to an earthquake and may serve as a helpful reference in implementing antiseismic measures for earthquake-induced landslides.
文摘In order to study the influence of depth-thickness ratio on bedding slope stability, whose sliding surface is flexural concave in shape under mining conditions, this paper aims to study the characteristics ofdeformarion and damage of bedding sliding with depth-thickness ratios of 200:1,150:1,120:1,100:1 and 50:1 by adopting numerical simulation analysis software combined with laboratory-made "under the influence of mining variable sliding surface slope similar simulation test bed", and to propose identification methods for slope stability under the infuence of mining. The results show that mining activities under the slope reduce slope stability. With a decrease in the mining depth ratio, the influence of mining on the slope increases gradually, and the damage to the slope gradually expands, the stability of the slope grad- ually reduces, fracture occurs on the slope toe and the central fissure gradually develops to the surface, and reaches slide threshold when the depth-thickness ratio is 50:1.
基金financially supported by the National Natural Science Foundation of China(Grant Nos.41502299,41372306)Research Planning of Sichuan Education Department,China(Grant No.16ZB0105)
文摘Engineering experience shows that outward dipping bedded rock slopes, especially including weak interlayers, are prone to slide under rainfall conditions. To investigate the effect of inclined weak interlayers at various levels of depth below the surface on the variation of displacements and stresses in bedded rock slopes, four geo- mechanical model tests with artificial rainfall have been conducted. Displacements, water content as well as earth pressure in the model were monitored by means of various FBG (Fiber Bragg Grating) sensors. The results showed that the amount of displacement of a slope with a weak interlayer is 2.8 to 6.2 times larger than that of a slope without a weak interlayer during one rainfall event. Furthermore, the position of the weak interlayer in terms of depth below the surface has a significant effect on the zone of deformation in the model. In the slope with a high position weak interlayer, the recorded deformation was larger in the superficial layer of the model and smaller in the frontal portion than in the slope with a low position weak interlayer. The slope with two weak interlayers has the largest deformation at all locations of all test slopes. The slope without a weak interlayer was only saturated in its superficial layer, while the displacement decreased with depth. That was different from all slopes with a weak interlayer in which the largest displacement shifted from the superficial layer to the weak interlayer when rainfall persisted. Plastic deformation of the weak interlayer promoted the formation of cracks which caused more water to flow into the slope, thus causing larger deformation in the slope with weak interlayers. In addition, the slide thrust pressure showed a vibration phenomenon o.5 to 1 hour ahead of an abrupt increase of the deformation, which was interpreted as a predictor for rainfall-induced failure of bedded rock slopes.
文摘Local scour downstream of sluice gates in erosive beds is one of the main concerns of hydraulic engineers because it can cause considerable damage to structures.Many researchers have conducted various studies to predict the maximum depth and length of scour holes and to develop new methods to control this phenomenon.In the methods that have recently been examined,embedded buried plates are used to control the scour in the erosive beds.In this study,using a physical model,the effect of buried plates in erosive beds on the depth of scour downstream of a hydraulic jump was studied.Several experiments were performed in which plates were buried at 50° and 90° angles at different distances from the apron in open channels with horizontal and reverse bed slopes.The results of experiments in which the scour profiles were drawn in dimensionless forms show that the angle and position of the plates are important to controlling and reducing scour depth.In fact,by reducing the angle of buried plates,the maximum depth of scour is also reduced.Also,comparison of the results of a single buried plate and double buried plates shows that using two buried plates at the distances of 30 and 45 cm from the non-erodible bed is more effective in reducing the scour depth.The best distances of the buried plates with angles of 90° and 50° from the non-erodible bed are 45 cm and 30 cm,respectively,in the condition with a single buried plate.
基金supported by Open Research Fund of State Key Laboratory of Geomechanics and Geotechnical Engineering,Institute of Rock and Soil Mechanics,Chinese Academy of Sciences(Grant No.Z020007)。
文摘Blasting is one of the most economical and efficient mining methods in open-pit mine production.However,behind the huge benefits,it poses a hidden threat to the quality of slope rock mass,stability of slope,and safety of nearby buildings.In order to explore the influence of blasting vibration on the stability of anti-dip layered rock slopes,herein,the site near the large-scale toppling failure area of Changshanhao gold mine stope of Inner Mongolia Taiping Mining Co.,Ltd.was selected for on-site blasting test and monitoring.The Peak Particle Velocity(PPV)measured at the monitoring point is located on the lower side of the maximum allowable vibration velocity curve that is prepared based on the allowable speed standard evaluation chart in the full frequency domain established by standards practiced in various countries such as German DIN4150,the USBM RI 8507,and Chinese GB6722-2014.This indicates that the blasting vibration has less influence on the location of the monitoring point.The vibration signals obtained in the blasting test were analyzed using the wavelet packet theory,and it was concluded that the blasting vibration signals measured in the anti-dip layered rock slope were mainly concentrated in two frequency bands of 0-80 Hz and 115-160 Hz.The sum of energy of the two frequency bands accounted for more than 99%,wherein,the energy contained in the 0-80 Hz frequency band accounted for more than 85%of the monitoring signals.The vibration signal with 0-80 Hz frequency band monitored at the slope toe was selected for the energy attenuation analysis.The results showed that the energy attenuation decreased in radial,vertical,and tangential directions.Further,the Energy Attenuation Rate per Meter(EARPM)was calculated.In conjunction with the site characteristics analysis,it was found that the energy attenuation rate was significantly affected by the rock mass characteristics of the structural plane.The slope reinforcement project can effectively reduce the absorption of vibration energy by the slope and increase slope stability.
基金supported and sponsored by a project of the Mechanism of Slope deformation induced by Underground Mining in Chongqing(DZLXJK201307)of the Institute of Geomechanicsprojects on Research on Monitoring and Early Warning,Risk Assessment Technology for geological hazards(2012BAK10B00)of the National Key Technology R&D Program for the 12th Five-year Plan
文摘The Jiweishan landslide illustrates the failure pattern of an apparent dip slide of an oblique thick-bedded rockslide. Centrifugal modeling was performed using a model slope consisting of four sets of joints to investigate the landslide initiation mechanism. Crack strain gauges pasted between the slide blocks and the base failed in sequence from the rear to the front as the centrifugal acceleration increased. When the acceleration reached 16.3g, the instantaneous failure of the key block in the front triggered the apparent dip slide of all blocks. The physical modeling results and previous studies suggest that the strength reduction in the weak layer and the failure of the key block are the main reasons for the Jiweishan landslide. The centrifuge experiment validated the previously proposed driving-blocks-key-block model of apparent dip slide in oblique with inclined bedding rock slopes. In addition, the results from limit equilibrium method and centrifuge test suggest that even though the failure of the key block in the front is instantaneous, a progressive stable-unstable transition exists.
基金supported by the National Natural Science Foundation of China(No.41972266)the China Postdoctoral Science Foundation(No.2023M730432)+1 种基金the Special Funding for Chongqing Postdoctoral Research Project(No.2022CQBSHTB1010)the Chongqing Postdoctoral Science Foundation(No.CSTB2023NSCQBHX0223).
文摘To investigate the dynamic damage evolution characteristics of bank slopes with serrated structural planes,the shaking table model test and the numerical simulation were utilized.The main findings indicate that under continuous seismic loads,the deformation of the bank slope increased,particularly around the hydro-fluctuation belt,accompanying by the pore water pressure rising.The soil pressure increased and then decreased showed dynamic variation characteristics.As the undulation angle of the serrated structural planes increased(30°, 45°, and 60°),the failure modes were climbing,climbinggnawing,and gnawing respectively.The first-order natural frequency was used to calculate the damage degree(Dd)of the bank slope.During microseisms and small earthquakes,it was discovered that the evolution of Dd followed the“S”shape,which was fitted by a logic function.Additionally,the quadratic function was used to fit the Dd during moderately strong earthquakes.Through the numerical simulation,the variation characteristics of safety factors(Sf)for slopes with serrated structural planes and slopes with straight structural planes were compared.Under continuous seismic loads,the Sf of slopes with straight structural planes reduce stalely,whereas the Sf for slopes with serrated structural planes was greater than the former and the reduction rate was increasing.
基金supported by the Fujian Science Foundation for Outstanding Youth(Grant No.2023J06039)the National Natural Science Foundation of China(Grant No.41977259 and No.U2005205)Fujian Province natural resources science and technology innovation project(Grant No.KY-090000-04-2022-019)。
文摘Bedding slope is a typical heterogeneous slope consisting of different soil/rock layers and is likely to slide along the weakest interface.Conventional slope protection methods for bedding slopes,such as retaining walls,stabilizing piles,and anchors,are time-consuming and labor-and energy-intensive.This study proposes an innovative polymer grout method to improve the bearing capacity and reduce the displacement of bedding slopes.A series of large-scale model tests were carried out to verify the effectiveness of polymer grout in protecting bedding slopes.Specifically,load-displacement relationships and failure patterns were analyzed for different testing slopes with various dosages of polymer.Results show the great potential of polymer grout in improving bearing capacity,reducing settlement,and protecting slopes from being crushed under shearing.The polymer-treated slopes remained structurally intact,while the untreated slope exhibited considerable damage when subjected to loads surpassing the bearing capacity.It is also found that polymer-cemented soils concentrate around the injection pipe,forming a fan-shaped sheet-like structure.This study proves the improvement of polymer grouting for bedding slope treatment and will contribute to the development of a fast method to protect bedding slopes from landslides.