From a safety point of view, it is important to study the damages and reliability of molten salt reactor structural alloy materials, which are subjected to extreme environments due to neutron irradiation, molten salt ...From a safety point of view, it is important to study the damages and reliability of molten salt reactor structural alloy materials, which are subjected to extreme environments due to neutron irradiation, molten salt corrosion, fission product attacks, thermal stress, and even combinations of these. In the past few years, synchrotron radiation-based materials characterization techniques have proven to be effective in revealing the microstructural evolution and failure mechanisms of the alloys under surrogating operation conditions. Here, we review the recent progress in the investigations of molten salt corrosion,tellurium(Te) corrosion, and alloy design. The valence states and distribution of chromium(Cr) atoms, and the diffusion and local atomic structure of Te atoms near the surface of corroded alloys have been investigated using synchrotron radiation techniques, which considerably deepen the understandings on the molten salt and Te corrosion behaviors. Furthermore, the structure and size distribution of the second phases in the alloys have been obtained, which are helpful for the future development of new alloy materials.展开更多
Iron-ore-imbedded silicone rubber materials were produced for radiation shielding. Samples were tested against a Co-60 gamma source, which is widely used in nuclear technology and medicine. Decreasing the particle siz...Iron-ore-imbedded silicone rubber materials were produced for radiation shielding. Samples were tested against a Co-60 gamma source, which is widely used in nuclear technology and medicine. Decreasing the particle size of iron ore resulted in better gamma radiation protection owing to more homogenous distribution. In addition, the materials had flexible properties up to the addition of 60 wt% iron ore content. Further, 0.5 mm Pb E gamma protection was provided by using 2.06-mm-thick SDT-60 as the Co-60 source. Iron ore–silicone rubber composites are candidate materials for lead-free flexible radiation protection systems owing to their relatively inexpensive and easy production.展开更多
By the study of electromagnetic shielding principle,we have designed some new style fabrics for anti-electromagnetic radiation through the research of raw materials and fabric texture,and solved the key technical prob...By the study of electromagnetic shielding principle,we have designed some new style fabrics for anti-electromagnetic radiation through the research of raw materials and fabric texture,and solved the key technical problems such as the manufacture of composite yarn which composed of stainless steel filament and cotton yarn.As a newly developed high technology material,the new style anti-electromagnetic radiation fabric was woven by the special yarn composed of stainless filament and nature fiber.The new fabric overcomes the defect in the production and service of the shielding fabrics at present and satisfies the people's requirement the routine job and life.With further improvement,it can be widely used in aviation,navigation and military project,underground project and so on.展开更多
This paper is devoted to the homogenization and statistical multiscale analysis of a transient heat conduction problem in random porous materials with a nonlinear radiation boundary condition.A novel statistical multi...This paper is devoted to the homogenization and statistical multiscale analysis of a transient heat conduction problem in random porous materials with a nonlinear radiation boundary condition.A novel statistical multiscale analysis method based on the two-scale asymptotic expansion is proposed.In the statistical multiscale formulations,a unified linear homogenization procedure is established and the second-order correctors are introduced for modeling the nonlinear radiative heat transfer in random perforations,which are our main contributions.Besides,a numerical algorithm based on the statistical multiscale method is given in details.Numerical results prove the accuracy and efficiency of our method for multiscale simulation of transient nonlinear conduction and radiation heat transfer problem in random porous materials.展开更多
This paper discusses a statistical second-order two-scale(SSOTS) analysis and computation for a heat conduction problem with a radiation boundary condition in random porous materials.Firstly,the microscopic configur...This paper discusses a statistical second-order two-scale(SSOTS) analysis and computation for a heat conduction problem with a radiation boundary condition in random porous materials.Firstly,the microscopic configuration for the structure with random distribution is briefly characterized.Secondly,the SSOTS formulae for computing the heat transfer problem are derived successively by means of the construction way for each cell.Then,the statistical prediction algorithm based on the proposed two-scale model is described in detail.Finally,some numerical experiments are proposed,which show that the SSOTS method developed in this paper is effective for predicting the heat transfer performance of porous materials and demonstrating its significant applications in actual engineering computation.展开更多
The expediency of development of one of the newest highly effective radiation-protective materials—layered composites of “light metal/heavy metal” type is substantiated. The characteristics of the internal architec...The expediency of development of one of the newest highly effective radiation-protective materials—layered composites of “light metal/heavy metal” type is substantiated. The characteristics of the internal architecture of composites of Al/Pb type made by consecutive application of vacuum and normal atmospheric rolling are adduced. The differences between the radioisotope and accelerating techniques of experimental testing of radiation-protective properties of materials are described. The results of the testing of composites and the influence of their structure on radiation-protective properties of the investigated materials are characterized. It is shown that the radiation-protective efficiency of composites certain structures may be 30% - 40% higher than the aluminum. This gives the opportunity to reduce the weight of radiation-protective structure at preservation of effectiveness of protection at aluminum level, or to increase the effectiveness of protection at constant weight of this structure.展开更多
Polytetrafluoroethylene (Teflon), a widely used spacecraft material, isstudied to investigate the vacuum ultraviolet (VUV) effects and its synergistic effects with atomicoxygen (AO) in a ground-based simulation facili...Polytetrafluoroethylene (Teflon), a widely used spacecraft material, isstudied to investigate the vacuum ultraviolet (VUV) effects and its synergistic effects with atomicoxygen (AO) in a ground-based simulation facility. The samples before and after the experiments arecompared in appearance, mass, optical properties and surface composition. The reactioncharacteristics of Teflon are summarized and the reaction mechanisms are analyzed. The followingconclusion can be drawn: at the action of VUV the Teflon sample surface is darkened for theaccumulation of carbon; and when the sample is exposed to AO, the carbon is oxidized and thedarkening surface is bleached; the synergistic effects of VUV and AO may cause the erosion of Teflonmore severe.展开更多
An infinite panel model of giant magnetostrictive material loudspeaker system (GMMLS) is proposed by making use of finite element method(FEM). Bending wave eigenfunction is introduced to describe the acoustic radi...An infinite panel model of giant magnetostrictive material loudspeaker system (GMMLS) is proposed by making use of finite element method(FEM). Bending wave eigenfunction is introduced to describe the acoustic radiation condition of the panel. Far-field response in different conditions is calculated by changing the mass surface density. Conclusion is obtained by analyzing the curves simulated, that panel which has larger mass surface density can hardly generate far-field acoustic radiation for lower frequency, while the panel has smaller mass surface density generates far-field acoustic radiation for lower frequency evenly and stronger.展开更多
Semiconductor materials exemplify humanity's unwavering pursuit of enhanced performance,efficiency,and functionality in electronic devices.From its early iterations to the advanced variants of today,this field has...Semiconductor materials exemplify humanity's unwavering pursuit of enhanced performance,efficiency,and functionality in electronic devices.From its early iterations to the advanced variants of today,this field has undergone an extraordinary evolution.As the reliability requirements of integrated circuits continue to increase,the industry is placing greater emphasis on the crystal qualities.Consequently,conducting a range of characterization tests on the crystals has become necessary.This paper will examine the correlation between crystal quality,device performance,and production yield,emphasizing the significance of crystal characterization tests and the important role of high-precision synchrotron radiation X-ray topography characterization in semiconductor analysis.Finally,we will cover the specific applications of synchrotron radiation characterization in the development of semiconductor materials.展开更多
Some compensation methods have been pro- posed to mitigate the degradation of radiation characteris- tics caused by composite material radomes, however most of them are complex and not applicable for large radomes, fo...Some compensation methods have been pro- posed to mitigate the degradation of radiation characteris- tics caused by composite material radomes, however most of them are complex and not applicable for large radomes, for example, the modification of geometric shape by grinding process. A novel and simple compensation strat- egy based on phase modification is proposed for large reflector antenna-radome systems. Through moving the feed or sub-reflector along axial direction opportunely, the modification of phase distribution in the original aperture of an enclosed reflector antenna can be used to reduce the phase shift caused by composite material radomes. The distortion of far-field pattern can be minimized. The modification formulas are proposed, and the limitation of their application is also discussed. Numerical simulations for a one-piece composite materials sandwich radome and a 40 m multipartite composite materials sandwich radome verify that the novel compensation strategy achieves sat- isfactory compensated results, and improves the distortion of the far-field pattern for the composite material radomes. For one-piece dielectric radome, more than 60% phasedifference caused by radome is reduced. For multipartite radome, the sidelobe level improves about 1.2 dB, the nulling depth improves about 3 dB. The improvement of far-field pattern could be obtained effectively and simply by moving the feed or sub-reflector according to phase shift of the radome.展开更多
The objective of the current study is to investigate the importance of entropy generation and thermal radiation on the patterns of velocity,isentropic lines,and temperature contours within a thermal energy storage dev...The objective of the current study is to investigate the importance of entropy generation and thermal radiation on the patterns of velocity,isentropic lines,and temperature contours within a thermal energy storage device filled with magnetic nanoencapsulated phase change materials(NEPCMs).The versatile finite element method(FEM)is implemented to numerically solve the governing equations.The effects of various parameters,including the viscosity parameter,ranging from 1 to 3,the thermal conductivity parameter,ranging from 1 to 3,the Rayleigh parameter,ranging from 102 to 3×10^(2),the radiation number,ranging from 0.1 to 0.5,the fusion temperature,ranging from 1.0 to 1.2,the volume fraction of NEPCMs,ranging from 2%to 6%,the Stefan number,ranging from 1 to 5,the magnetic number,ranging from 0.1 to 0.5,and the irreversibility parameter,ranging from 0.1 to 0.5,are examined in detail on the temperature contours,isentropic lines,heat capacity ratio,and velocity fields.Furthermore,the heat transfer rates at both the cold and hot walls are analyzed,and the findings are presented graphically.The results indicate that the time taken by the NEPCMs to transition from solid to liquid is prolonged inside the chamber region as the fusion temperatureθf increases.Additionally,the contours of the heat capacity ratio Cr decrease with the increase in the Stefan number Ste.展开更多
Based on the fundamental dynamic equations of functionally graded material (FGM) cylindrical shell, this paper investigates the sound radiation of vibrational FGM shell in water by mobility method. This model takes in...Based on the fundamental dynamic equations of functionally graded material (FGM) cylindrical shell, this paper investigates the sound radiation of vibrational FGM shell in water by mobility method. This model takes into account the exterior fluid loading due to the sound press radiated by the FGM shell. The FGM cylindrical shell was excited by a harmonic line radial force uniformly distributing along the generator. The FGM shell equations of motion, the Helmholtz equation in the exterior fluid medium and the continuity equation at fluid-shell interface are used in this vibroacoustic problem. The expressions of sound radiation efficiency and sound field of the FGM shell have been derived by mobility method. Radiation efficiency, modal mobility and the directivity pattern of the sound field are solved numerically. In particular, radiation efficiency and directivity pattern with various power law index are analyzed.展开更多
Aiming at the harmfulness of and protection from ionizing radiation, this paper will centre on the design and synthesis technology of a new type of polymeric material which is stable at the ionizing radiation from 10-...Aiming at the harmfulness of and protection from ionizing radiation, this paper will centre on the design and synthesis technology of a new type of polymeric material which is stable at the ionizing radiation from 10-11 to 10-8 meter wave. The material is made up of epoxy resin 6101, curing agent phenolic-aniline resin, which is developed by the authors, and other auxilliary agents. This material is stable at the radiation of 107Gy,and its physical and chemical properties are excellent.展开更多
This paper derives the force of the electromagnetic radiation on left-handed materials (LHMs) by a direct application of the Lorentz law of classical electrodynamics. The expressions of radiation force are given for...This paper derives the force of the electromagnetic radiation on left-handed materials (LHMs) by a direct application of the Lorentz law of classical electrodynamics. The expressions of radiation force are given for TE-polarised and TM-polarised fields. The numerical results demonstrate that electromagnetic waves exert an inverse lateral radiation force on each edge of the beams, that is, the lateral pressure is expansive for TE-polarised beams and compressive for TM-polarised beams. The investigation of the radiation force will provide insights into the fundamental properties of LHMs and will provide to better understanding of the interaction of light with LHMs.展开更多
The characteristics of the best known defect centers E' in silica optical fiber material irradiated with ray were investigated by ESR at room temperature.A mechanism model of production of the E' center defect...The characteristics of the best known defect centers E' in silica optical fiber material irradiated with ray were investigated by ESR at room temperature.A mechanism model of production of the E' center defect was established.The production of E' center includes two processes creation and activation.The strained bonds(or oxygen replacement) in silica networks lead to the creation of new defects whose concentration increases linearly with the dose.The pre-existing defects produce the activation,which tends to saturation.According to this model,the relation of E' center concentration changing with irradiation dose was obtained theoretically.The results are in good agreement with the experimental results.展开更多
Acoustic wave propagation from surrounding medium into a soft material can generate acoustic radiation stress due to acoustic momentum transfer inside the medium and material, as well as at the interface between the t...Acoustic wave propagation from surrounding medium into a soft material can generate acoustic radiation stress due to acoustic momentum transfer inside the medium and material, as well as at the interface between the two. To analyze acoustic-induced deformation of soft materials, we establish an acoustomechanical constitutive theory by combining the acoustic radiation stress theory and the nonlinear elasticity theory for soft materials. The acoustic radiation stress tensor is formulated by time averaging the momentum equation of particle motion, which is then introduced into the nonlinear elasticity constitutive relation to construct the acoustomechanical constitutive theory for soft materials.Considering a specified case of soft material sheet subjected to two counter-propagating acoustic waves, we demonstrate the nonlinear large deformation of the soft material and analyze the interaction between acoustic waves and material deformation under the conditions of total reflection, acoustic transparency, and acoustic mismatch.展开更多
The radioactivity concentrations of 226Ra, 232Th and 40K in 24 samples of natural and manufactured building materials commonly used in Bangladesh were measured using HPGe gamma ray spectrometer. The results in the pre...The radioactivity concentrations of 226Ra, 232Th and 40K in 24 samples of natural and manufactured building materials commonly used in Bangladesh were measured using HPGe gamma ray spectrometer. The results in the present study were compared with the world average and also with the reported data available in literature. The radium equivalent activity, the absorbed dose rate, annual effective dose, external and internal hazard indices, gamma index, alpha index, annual gonadal dose equivalent and excess lifetime cancer risk were also evaluated to assess the potential radiation hazards associated with these building materials. All samples under investigation were found to be within the recommended safety limit and do not pose any significant radiation hazards. This study can be used as a reference for more extensive studies of the same subject in future.展开更多
Phase change materials are one of the potential resources to replace fossil fuels in regards of supplying the energy of buildings.Basically,these materials absorb or release heat energy with the help of their latent h...Phase change materials are one of the potential resources to replace fossil fuels in regards of supplying the energy of buildings.Basically,these materials absorb or release heat energy with the help of their latent heat.Phase change materials have low thermal conductivity and this makes it possible to use the physical properties of these materials in the tropical regions where the solar radiation is more direct and concentrated over a smaller area.In this theoretical work,an attempt has been made to study the melting process of these materials by applying constant heat flux and temperature.It was found that by increasing the thickness of phase change materials’layers,due to the melting,more thermal energy is stored.Simultaneously it reduces the penetration of excessive heat into the chamber,so that by increasing the thickness of paraffin materials up to 20 mm,the rate of temperature reduction reaches more than 18%.It was also recognized that increasing the values of constant input heat flux increases buoyancy effects.Increasing the Stefan number from 0.1 to 0.3,increases the temperature by 6%.展开更多
Heavy concrete currently used for construction contains special materials that are expensive and difficult to work with.This study replaced natural aggregate(stones) in concrete with round steel balls,which are inex...Heavy concrete currently used for construction contains special materials that are expensive and difficult to work with.This study replaced natural aggregate(stones) in concrete with round steel balls,which are inexpensive and easily obtainable.The diameters of the steel balls were 0.5 and 1 cm,and their density was 7.8 kg/m3.Dense packing mixture methods were used to produce heavy concrete with densities of 3500 and 5000 kg/m3.The various properties of this concrete were tested according to the standards of the American Society for Testing and Materials(ASTM).The results indicated that the construction slump of the concrete could reach 260-280 mm and its slump flow could reach 610-710 mm.More important,its compressive strength could reach 8848 MPa.These results will significantly alter traditional construction methods that use heavy concrete and enhance innovative ideas for structural design.展开更多
A spherical cap radiator is one of the important parts of an underwater wide-beam imaging system. The back radiation of a traditional spherical cap radiator, which is composed of a vibrating cap and a rigid baffle, is...A spherical cap radiator is one of the important parts of an underwater wide-beam imaging system. The back radiation of a traditional spherical cap radiator, which is composed of a vibrating cap and a rigid baffle, is strong and its far-field directivity function may fluctuate in big amplitude in the vicinity of the polar axis. These shortcomings complicate the processing of the reflective waves received for imaging the targets. In this study, the back radiation is weakened by adding an acoustic soft material belt between the vibrating cap and the rigid baffle. And the fluctuation mentioned above is lowered remarkably by dividing the spherical cap radiator into many annuluses and a relatively smaller spherical cap, and by controlling the phase retardations of all elements appropriately. Furthermore, the numerical experiments are carried out by the finite element method (FEM) to prove the validity of the above methods.展开更多
基金supported by the National key research and development program of China(Nos.2016YFB0700401 and 2016YFB0700404)Natural Science Foundation of Shanghai(Nos.19ZR1468200 and 18ZR1448000)+2 种基金National Natural Science Foundation of China(Nos.51671154,51601213 and 51671122)Strategic Priority Research Program of the Chinese Academy of Sciences(No.XDA02004210)Youth Innovation Promotion Association,Chinese Academy of Science(No.2019264)
文摘From a safety point of view, it is important to study the damages and reliability of molten salt reactor structural alloy materials, which are subjected to extreme environments due to neutron irradiation, molten salt corrosion, fission product attacks, thermal stress, and even combinations of these. In the past few years, synchrotron radiation-based materials characterization techniques have proven to be effective in revealing the microstructural evolution and failure mechanisms of the alloys under surrogating operation conditions. Here, we review the recent progress in the investigations of molten salt corrosion,tellurium(Te) corrosion, and alloy design. The valence states and distribution of chromium(Cr) atoms, and the diffusion and local atomic structure of Te atoms near the surface of corroded alloys have been investigated using synchrotron radiation techniques, which considerably deepen the understandings on the molten salt and Te corrosion behaviors. Furthermore, the structure and size distribution of the second phases in the alloys have been obtained, which are helpful for the future development of new alloy materials.
文摘Iron-ore-imbedded silicone rubber materials were produced for radiation shielding. Samples were tested against a Co-60 gamma source, which is widely used in nuclear technology and medicine. Decreasing the particle size of iron ore resulted in better gamma radiation protection owing to more homogenous distribution. In addition, the materials had flexible properties up to the addition of 60 wt% iron ore content. Further, 0.5 mm Pb E gamma protection was provided by using 2.06-mm-thick SDT-60 as the Co-60 source. Iron ore–silicone rubber composites are candidate materials for lead-free flexible radiation protection systems owing to their relatively inexpensive and easy production.
文摘By the study of electromagnetic shielding principle,we have designed some new style fabrics for anti-electromagnetic radiation through the research of raw materials and fabric texture,and solved the key technical problems such as the manufacture of composite yarn which composed of stainless steel filament and cotton yarn.As a newly developed high technology material,the new style anti-electromagnetic radiation fabric was woven by the special yarn composed of stainless filament and nature fiber.The new fabric overcomes the defect in the production and service of the shielding fabrics at present and satisfies the people's requirement the routine job and life.With further improvement,it can be widely used in aviation,navigation and military project,underground project and so on.
基金This work was financially supported by the National Natural Science Foundation of China(11501449)the Fundamental Research Funds for the Central Universities(3102017zy043)+1 种基金the fund of the State Key Laboratory of Solidification Processing in NWPU(SKLSP201628)the National Key Research and Development Program of China(2016YFB1100602).
文摘This paper is devoted to the homogenization and statistical multiscale analysis of a transient heat conduction problem in random porous materials with a nonlinear radiation boundary condition.A novel statistical multiscale analysis method based on the two-scale asymptotic expansion is proposed.In the statistical multiscale formulations,a unified linear homogenization procedure is established and the second-order correctors are introduced for modeling the nonlinear radiative heat transfer in random perforations,which are our main contributions.Besides,a numerical algorithm based on the statistical multiscale method is given in details.Numerical results prove the accuracy and efficiency of our method for multiscale simulation of transient nonlinear conduction and radiation heat transfer problem in random porous materials.
基金Project supported by the China Postdoctoral Science Foundation(Grant Nos.2015M580256 and 2016T90276)
文摘This paper discusses a statistical second-order two-scale(SSOTS) analysis and computation for a heat conduction problem with a radiation boundary condition in random porous materials.Firstly,the microscopic configuration for the structure with random distribution is briefly characterized.Secondly,the SSOTS formulae for computing the heat transfer problem are derived successively by means of the construction way for each cell.Then,the statistical prediction algorithm based on the proposed two-scale model is described in detail.Finally,some numerical experiments are proposed,which show that the SSOTS method developed in this paper is effective for predicting the heat transfer performance of porous materials and demonstrating its significant applications in actual engineering computation.
文摘The expediency of development of one of the newest highly effective radiation-protective materials—layered composites of “light metal/heavy metal” type is substantiated. The characteristics of the internal architecture of composites of Al/Pb type made by consecutive application of vacuum and normal atmospheric rolling are adduced. The differences between the radioisotope and accelerating techniques of experimental testing of radiation-protective properties of materials are described. The results of the testing of composites and the influence of their structure on radiation-protective properties of the investigated materials are characterized. It is shown that the radiation-protective efficiency of composites certain structures may be 30% - 40% higher than the aluminum. This gives the opportunity to reduce the weight of radiation-protective structure at preservation of effectiveness of protection at aluminum level, or to increase the effectiveness of protection at constant weight of this structure.
文摘Polytetrafluoroethylene (Teflon), a widely used spacecraft material, isstudied to investigate the vacuum ultraviolet (VUV) effects and its synergistic effects with atomicoxygen (AO) in a ground-based simulation facility. The samples before and after the experiments arecompared in appearance, mass, optical properties and surface composition. The reactioncharacteristics of Teflon are summarized and the reaction mechanisms are analyzed. The followingconclusion can be drawn: at the action of VUV the Teflon sample surface is darkened for theaccumulation of carbon; and when the sample is exposed to AO, the carbon is oxidized and thedarkening surface is bleached; the synergistic effects of VUV and AO may cause the erosion of Teflonmore severe.
文摘An infinite panel model of giant magnetostrictive material loudspeaker system (GMMLS) is proposed by making use of finite element method(FEM). Bending wave eigenfunction is introduced to describe the acoustic radiation condition of the panel. Far-field response in different conditions is calculated by changing the mass surface density. Conclusion is obtained by analyzing the curves simulated, that panel which has larger mass surface density can hardly generate far-field acoustic radiation for lower frequency, while the panel has smaller mass surface density generates far-field acoustic radiation for lower frequency evenly and stronger.
基金This work was supported by Youth Innovation Promotion Association CAS,National Natural Science Foundation of China(Grant No.11705263)Shanghai Rising-Star Program(Grant No.21QA1410900)。
文摘Semiconductor materials exemplify humanity's unwavering pursuit of enhanced performance,efficiency,and functionality in electronic devices.From its early iterations to the advanced variants of today,this field has undergone an extraordinary evolution.As the reliability requirements of integrated circuits continue to increase,the industry is placing greater emphasis on the crystal qualities.Consequently,conducting a range of characterization tests on the crystals has become necessary.This paper will examine the correlation between crystal quality,device performance,and production yield,emphasizing the significance of crystal characterization tests and the important role of high-precision synchrotron radiation X-ray topography characterization in semiconductor analysis.Finally,we will cover the specific applications of synchrotron radiation characterization in the development of semiconductor materials.
基金Supported by National Natural Science Foundation of China(Grant Nos.51475348,51305322 and 51490660)Open Foundation of State Key Laboratory of Mechanical Transmissions(SKLMT-KFKT-201409)Fundamental Research Funds for the Central Universities of China
文摘Some compensation methods have been pro- posed to mitigate the degradation of radiation characteris- tics caused by composite material radomes, however most of them are complex and not applicable for large radomes, for example, the modification of geometric shape by grinding process. A novel and simple compensation strat- egy based on phase modification is proposed for large reflector antenna-radome systems. Through moving the feed or sub-reflector along axial direction opportunely, the modification of phase distribution in the original aperture of an enclosed reflector antenna can be used to reduce the phase shift caused by composite material radomes. The distortion of far-field pattern can be minimized. The modification formulas are proposed, and the limitation of their application is also discussed. Numerical simulations for a one-piece composite materials sandwich radome and a 40 m multipartite composite materials sandwich radome verify that the novel compensation strategy achieves sat- isfactory compensated results, and improves the distortion of the far-field pattern for the composite material radomes. For one-piece dielectric radome, more than 60% phasedifference caused by radome is reduced. For multipartite radome, the sidelobe level improves about 1.2 dB, the nulling depth improves about 3 dB. The improvement of far-field pattern could be obtained effectively and simply by moving the feed or sub-reflector according to phase shift of the radome.
文摘The objective of the current study is to investigate the importance of entropy generation and thermal radiation on the patterns of velocity,isentropic lines,and temperature contours within a thermal energy storage device filled with magnetic nanoencapsulated phase change materials(NEPCMs).The versatile finite element method(FEM)is implemented to numerically solve the governing equations.The effects of various parameters,including the viscosity parameter,ranging from 1 to 3,the thermal conductivity parameter,ranging from 1 to 3,the Rayleigh parameter,ranging from 102 to 3×10^(2),the radiation number,ranging from 0.1 to 0.5,the fusion temperature,ranging from 1.0 to 1.2,the volume fraction of NEPCMs,ranging from 2%to 6%,the Stefan number,ranging from 1 to 5,the magnetic number,ranging from 0.1 to 0.5,and the irreversibility parameter,ranging from 0.1 to 0.5,are examined in detail on the temperature contours,isentropic lines,heat capacity ratio,and velocity fields.Furthermore,the heat transfer rates at both the cold and hot walls are analyzed,and the findings are presented graphically.The results indicate that the time taken by the NEPCMs to transition from solid to liquid is prolonged inside the chamber region as the fusion temperatureθf increases.Additionally,the contours of the heat capacity ratio Cr decrease with the increase in the Stefan number Ste.
基金supported by the Key Project of the National Natural Science Foundation of China (10932006)Hebei Natural Science Foundation (2011210055)Hebei Key Basic Research Project (10963528D)
文摘Based on the fundamental dynamic equations of functionally graded material (FGM) cylindrical shell, this paper investigates the sound radiation of vibrational FGM shell in water by mobility method. This model takes into account the exterior fluid loading due to the sound press radiated by the FGM shell. The FGM cylindrical shell was excited by a harmonic line radial force uniformly distributing along the generator. The FGM shell equations of motion, the Helmholtz equation in the exterior fluid medium and the continuity equation at fluid-shell interface are used in this vibroacoustic problem. The expressions of sound radiation efficiency and sound field of the FGM shell have been derived by mobility method. Radiation efficiency, modal mobility and the directivity pattern of the sound field are solved numerically. In particular, radiation efficiency and directivity pattern with various power law index are analyzed.
文摘Aiming at the harmfulness of and protection from ionizing radiation, this paper will centre on the design and synthesis technology of a new type of polymeric material which is stable at the ionizing radiation from 10-11 to 10-8 meter wave. The material is made up of epoxy resin 6101, curing agent phenolic-aniline resin, which is developed by the authors, and other auxilliary agents. This material is stable at the radiation of 107Gy,and its physical and chemical properties are excellent.
基金Project supported by the National Natural Science Foundation of China (Grant No. 10974063)the Research Foundation of Wuhan National Laboratory (Grant No. P080008)the National "973" Project (Grant No. 2007CB310403)
文摘This paper derives the force of the electromagnetic radiation on left-handed materials (LHMs) by a direct application of the Lorentz law of classical electrodynamics. The expressions of radiation force are given for TE-polarised and TM-polarised fields. The numerical results demonstrate that electromagnetic waves exert an inverse lateral radiation force on each edge of the beams, that is, the lateral pressure is expansive for TE-polarised beams and compressive for TM-polarised beams. The investigation of the radiation force will provide insights into the fundamental properties of LHMs and will provide to better understanding of the interaction of light with LHMs.
基金Supported by National Program on Key Basic Research Project(973 Program,No.2012CB723405)Natural Science Foundation of China(No.60937003,61077068,61275090,61275051,and 61027015)Shanghai Natural Science Foundation(No.12ZR1411200)
文摘The characteristics of the best known defect centers E' in silica optical fiber material irradiated with ray were investigated by ESR at room temperature.A mechanism model of production of the E' center defect was established.The production of E' center includes two processes creation and activation.The strained bonds(or oxygen replacement) in silica networks lead to the creation of new defects whose concentration increases linearly with the dose.The pre-existing defects produce the activation,which tends to saturation.According to this model,the relation of E' center concentration changing with irradiation dose was obtained theoretically.The results are in good agreement with the experimental results.
基金supported by the National Natural Science Foundation of China (Grants 51528501, 11532009)the Fundamental Research Funds for Central Universities (Grant 2014qngz12)supported by China Scholarship Council as a visiting scholar to Harvard University
文摘Acoustic wave propagation from surrounding medium into a soft material can generate acoustic radiation stress due to acoustic momentum transfer inside the medium and material, as well as at the interface between the two. To analyze acoustic-induced deformation of soft materials, we establish an acoustomechanical constitutive theory by combining the acoustic radiation stress theory and the nonlinear elasticity theory for soft materials. The acoustic radiation stress tensor is formulated by time averaging the momentum equation of particle motion, which is then introduced into the nonlinear elasticity constitutive relation to construct the acoustomechanical constitutive theory for soft materials.Considering a specified case of soft material sheet subjected to two counter-propagating acoustic waves, we demonstrate the nonlinear large deformation of the soft material and analyze the interaction between acoustic waves and material deformation under the conditions of total reflection, acoustic transparency, and acoustic mismatch.
文摘The radioactivity concentrations of 226Ra, 232Th and 40K in 24 samples of natural and manufactured building materials commonly used in Bangladesh were measured using HPGe gamma ray spectrometer. The results in the present study were compared with the world average and also with the reported data available in literature. The radium equivalent activity, the absorbed dose rate, annual effective dose, external and internal hazard indices, gamma index, alpha index, annual gonadal dose equivalent and excess lifetime cancer risk were also evaluated to assess the potential radiation hazards associated with these building materials. All samples under investigation were found to be within the recommended safety limit and do not pose any significant radiation hazards. This study can be used as a reference for more extensive studies of the same subject in future.
文摘Phase change materials are one of the potential resources to replace fossil fuels in regards of supplying the energy of buildings.Basically,these materials absorb or release heat energy with the help of their latent heat.Phase change materials have low thermal conductivity and this makes it possible to use the physical properties of these materials in the tropical regions where the solar radiation is more direct and concentrated over a smaller area.In this theoretical work,an attempt has been made to study the melting process of these materials by applying constant heat flux and temperature.It was found that by increasing the thickness of phase change materials’layers,due to the melting,more thermal energy is stored.Simultaneously it reduces the penetration of excessive heat into the chamber,so that by increasing the thickness of paraffin materials up to 20 mm,the rate of temperature reduction reaches more than 18%.It was also recognized that increasing the values of constant input heat flux increases buoyancy effects.Increasing the Stefan number from 0.1 to 0.3,increases the temperature by 6%.
文摘Heavy concrete currently used for construction contains special materials that are expensive and difficult to work with.This study replaced natural aggregate(stones) in concrete with round steel balls,which are inexpensive and easily obtainable.The diameters of the steel balls were 0.5 and 1 cm,and their density was 7.8 kg/m3.Dense packing mixture methods were used to produce heavy concrete with densities of 3500 and 5000 kg/m3.The various properties of this concrete were tested according to the standards of the American Society for Testing and Materials(ASTM).The results indicated that the construction slump of the concrete could reach 260-280 mm and its slump flow could reach 610-710 mm.More important,its compressive strength could reach 8848 MPa.These results will significantly alter traditional construction methods that use heavy concrete and enhance innovative ideas for structural design.
基金Project supported by the National High Technology Research and Development Program of China (Grant No. 2006AA09Z109)the Natural Science Foundation of Fujian Province,China (Grant No. T0750014)
文摘A spherical cap radiator is one of the important parts of an underwater wide-beam imaging system. The back radiation of a traditional spherical cap radiator, which is composed of a vibrating cap and a rigid baffle, is strong and its far-field directivity function may fluctuate in big amplitude in the vicinity of the polar axis. These shortcomings complicate the processing of the reflective waves received for imaging the targets. In this study, the back radiation is weakened by adding an acoustic soft material belt between the vibrating cap and the rigid baffle. And the fluctuation mentioned above is lowered remarkably by dividing the spherical cap radiator into many annuluses and a relatively smaller spherical cap, and by controlling the phase retardations of all elements appropriately. Furthermore, the numerical experiments are carried out by the finite element method (FEM) to prove the validity of the above methods.