This present issue is an extension of the work of Y. Xiao-Zhong et al. who investigated the influence of constant external magnetic field on the decoherence of a central electron spin of atom coupled to an anti-ferrom...This present issue is an extension of the work of Y. Xiao-Zhong et al. who investigated the influence of constant external magnetic field on the decoherence of a central electron spin of atom coupled to an anti-ferromagnetic environment. We have shown in this work that the character variability of the field induces oscillations amongst the eigen modes of the environment. This observation is made via the derivation of the transition probability density of state, a manner by which critical parameters (parameters where transition occur) of the system could be obtained as it shows resonance peak. We equally observed that the two different magnons modes resulting from the frequency splitting via the application of the time-varying external B-Field, exhibit each a resonant peak of similar amplitude at different temperature ranges. This additional information shows that the probability for the central spin system to remain in its initially prepared diabatic state is enhanced for some temperature ranges for the corresponding two magnon modes. Hence, these temperature ranges where the probability density is maximum could save as decoherence free environment;an important requirement for the implementation of quantum computation and information processing in solid state circuitry. The theoretical and numerical results presented for the decoherence time and the probability density are that of a decohered central electron spin coupled to an anti-ferromagnetic spin bath. The theory is based on a spin wave approximation and on the density matrix using both transformations of Bloch, Primakov and Bogoliobuv in the adiabatic limit.展开更多
In this article, we review the recent theoretical works on the spin fluctuations and superconductivity in iron-based superconductors. Using the fluctuation exchange approximation and multi-orbital tight-binding models...In this article, we review the recent theoretical works on the spin fluctuations and superconductivity in iron-based superconductors. Using the fluctuation exchange approximation and multi-orbital tight-binding models, we study the char- acteristics of the spin fluctuations and the symmetries of the superconducting gaps for different iron-based superconductors. We explore the systems with both electron-like and hole-like Fermi surfaces (FS) and the systems with only the electron-like FS. We argue that the spin-fluctuation theories are successful in explaining at least the essential part of the problems, indicating that the spin fluctuation is the common origin of superconductivity in iron-based superconductors.展开更多
A theory of the c-axis infrared conductivity of a d<SUB>x<SUP>2</SUP>-y<SUP>2</SUP></SUB>-wave superconductor due to the competition between the interlayer direct hopping and the ho...A theory of the c-axis infrared conductivity of a d<SUB>x<SUP>2</SUP>-y<SUP>2</SUP></SUB>-wave superconductor due to the competition between the interlayer direct hopping and the hopping assisted by the spin fluctuations has been developed. The prediction of our theory captures the main feature of the experiment. Thus we argue that the anomalous behavior of the c-axis infrared conductivity of the underdoped cuprates in superconducting state may be properly understood within the theory.展开更多
The exchange interaction between the electrons in the different magnetic ions and the spin-fluctuation of the magnetic ions exist in the paramagnetic media NdF3. The exchange interaction between the electrons in the d...The exchange interaction between the electrons in the different magnetic ions and the spin-fluctuation of the magnetic ions exist in the paramagnetic media NdF3. The exchange interaction between the electrons in the different magnetic ions may be equivalent to an effective field Hin that is in direct proportion to the magnetization M. The spin-fluctuation of the magnetic ions leads the coefficient of the effective field to vary with temperature. The effective field is given as Hin = -(0.75 + 0.22T) × 10^-5M in NdF3. When the secondary crystal field effect is taken into account, the magnetic susceptibility and Verdet constant are calculated for NdF3 by means of the effective field Hin and the applied field He. The calculated results are in agreement with the measured ones.展开更多
We study various particle–hole excitations and possible superconducting pairings mediated by these fluctuations in doped α-RuCl_3 by using multi-band Hubbard model with all t_(2g) orbitals. By performing a random-ph...We study various particle–hole excitations and possible superconducting pairings mediated by these fluctuations in doped α-RuCl_3 by using multi-band Hubbard model with all t_(2g) orbitals. By performing a random-phase-approximation(RPA) analysis, we find that among all particle–hole excitations, the j_(eff)= 1/2 pseudospin fluctuations are dominant, suggesting the robustness of j_(eff)= 1/2 picture even in the doped systems. We also find that the most favorable superconducting state has a d-wave pairing symmetry.展开更多
The infinite-layer cuprate ACu O_(2)(A=Ca,Sr,Ba)possesses the simplest crystal structure among numerous cuprate superconductors and can serve as a prototypical system to explore the unconventional superconductivity.Ba...The infinite-layer cuprate ACu O_(2)(A=Ca,Sr,Ba)possesses the simplest crystal structure among numerous cuprate superconductors and can serve as a prototypical system to explore the unconventional superconductivity.Based on the first-principles electronic structure calculations,we have studied the electronic and magnetic properties of the infinite-layer cuprate SrCuO_(2)from a phonon perspective.We find that interesting fluctuations of charges,electrical dipoles,and local magnetic moments can be induced by the atomic displacements of phonon modes in SrCuO_(2)upon the hole doping.Among all optical phonon modes of SrCuO_(2)in the antiferromagnetic Néel state,only the A_(1g)mode that involves the full-breathing O vibrations along the Cu-O bonds can cause significant fluctuations of local magnetic moments on O atoms and dramatic charge redistributions between Cu and O atoms.Notably,due to the atomic displacements of the A_(1g)mode,both the charge fluctuations on Cu and the electrical dipoles on O show a dome-like evolution with increasing hole doping,quite similar to the experimentally observed behavior of the superconducting T_(c);in comparison,the fluctuations of local magnetic moments on O display a monotonic enhancement along with the hole doping.Further analyses indicate that around the optimal doping,there exists a large softening in the frequency of the A_(1g)phonon mode and a van Hove singularity in the electronic structure close to the Fermi level,suggesting potential electron-phonon coupling.Our work reveals the important role of the full-breathing O phonon mode playing in the infinite-layer SrCuO_(2),which may provide new insights in understanding the cuprate superconductivity.展开更多
With the support by the National Natural Science Foundation of China and the Ministry of Science and Technology of China,a collaborative study led by Prof.Cheng Jinguang(程金光)from the Institute of Physics,Chinese Ac...With the support by the National Natural Science Foundation of China and the Ministry of Science and Technology of China,a collaborative study led by Prof.Cheng Jinguang(程金光)from the Institute of Physics,Chinese Academy of Sciences found evidence for the presence of hole pockets and the enhanced spin fluctuations in the pressure-induced high-Tcsuperconductivity phase of FeSe,which was published展开更多
文摘This present issue is an extension of the work of Y. Xiao-Zhong et al. who investigated the influence of constant external magnetic field on the decoherence of a central electron spin of atom coupled to an anti-ferromagnetic environment. We have shown in this work that the character variability of the field induces oscillations amongst the eigen modes of the environment. This observation is made via the derivation of the transition probability density of state, a manner by which critical parameters (parameters where transition occur) of the system could be obtained as it shows resonance peak. We equally observed that the two different magnons modes resulting from the frequency splitting via the application of the time-varying external B-Field, exhibit each a resonant peak of similar amplitude at different temperature ranges. This additional information shows that the probability for the central spin system to remain in its initially prepared diabatic state is enhanced for some temperature ranges for the corresponding two magnon modes. Hence, these temperature ranges where the probability density is maximum could save as decoherence free environment;an important requirement for the implementation of quantum computation and information processing in solid state circuitry. The theoretical and numerical results presented for the decoherence time and the probability density are that of a decohered central electron spin coupled to an anti-ferromagnetic spin bath. The theory is based on a spin wave approximation and on the density matrix using both transformations of Bloch, Primakov and Bogoliobuv in the adiabatic limit.
基金supported by the National Natural Science Foundation of China(Grant Nos.91021001,11190023,and11204125)the National Basic Research Program of China(Grants Nos.2011CB922101 and 2011CB605902)
文摘In this article, we review the recent theoretical works on the spin fluctuations and superconductivity in iron-based superconductors. Using the fluctuation exchange approximation and multi-orbital tight-binding models, we study the char- acteristics of the spin fluctuations and the symmetries of the superconducting gaps for different iron-based superconductors. We explore the systems with both electron-like and hole-like Fermi surfaces (FS) and the systems with only the electron-like FS. We argue that the spin-fluctuation theories are successful in explaining at least the essential part of the problems, indicating that the spin fluctuation is the common origin of superconductivity in iron-based superconductors.
文摘A theory of the c-axis infrared conductivity of a d<SUB>x<SUP>2</SUP>-y<SUP>2</SUP></SUB>-wave superconductor due to the competition between the interlayer direct hopping and the hopping assisted by the spin fluctuations has been developed. The prediction of our theory captures the main feature of the experiment. Thus we argue that the anomalous behavior of the c-axis infrared conductivity of the underdoped cuprates in superconducting state may be properly understood within the theory.
基金Project supported by the Science and Technology Foundation of China University of Mining and Technology (Grant No OK061066)
文摘The exchange interaction between the electrons in the different magnetic ions and the spin-fluctuation of the magnetic ions exist in the paramagnetic media NdF3. The exchange interaction between the electrons in the different magnetic ions may be equivalent to an effective field Hin that is in direct proportion to the magnetization M. The spin-fluctuation of the magnetic ions leads the coefficient of the effective field to vary with temperature. The effective field is given as Hin = -(0.75 + 0.22T) × 10^-5M in NdF3. When the secondary crystal field effect is taken into account, the magnetic susceptibility and Verdet constant are calculated for NdF3 by means of the effective field Hin and the applied field He. The calculated results are in agreement with the measured ones.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11674158 and 11774152)the National Key Projects for Research and Development of China(Grant No.2016YFA0300401)
文摘We study various particle–hole excitations and possible superconducting pairings mediated by these fluctuations in doped α-RuCl_3 by using multi-band Hubbard model with all t_(2g) orbitals. By performing a random-phase-approximation(RPA) analysis, we find that among all particle–hole excitations, the j_(eff)= 1/2 pseudospin fluctuations are dominant, suggesting the robustness of j_(eff)= 1/2 picture even in the doped systems. We also find that the most favorable superconducting state has a d-wave pairing symmetry.
基金supported by the National Key R&D Program of China(Grant Nos.2022YFA1403103,and 2019YFA0308603)the Beijing Natural Science Foundation(Grant No.Z200005)+2 种基金the National Natural Science Foundation of China(Grant Nos.12174443,and 11934020)supported by the National Key R&D Program of China(Grant No.2017YFA0302903)supported by the Project funded by China Postdoctoral Science Foundation(Grant No.2022M723355)。
文摘The infinite-layer cuprate ACu O_(2)(A=Ca,Sr,Ba)possesses the simplest crystal structure among numerous cuprate superconductors and can serve as a prototypical system to explore the unconventional superconductivity.Based on the first-principles electronic structure calculations,we have studied the electronic and magnetic properties of the infinite-layer cuprate SrCuO_(2)from a phonon perspective.We find that interesting fluctuations of charges,electrical dipoles,and local magnetic moments can be induced by the atomic displacements of phonon modes in SrCuO_(2)upon the hole doping.Among all optical phonon modes of SrCuO_(2)in the antiferromagnetic Néel state,only the A_(1g)mode that involves the full-breathing O vibrations along the Cu-O bonds can cause significant fluctuations of local magnetic moments on O atoms and dramatic charge redistributions between Cu and O atoms.Notably,due to the atomic displacements of the A_(1g)mode,both the charge fluctuations on Cu and the electrical dipoles on O show a dome-like evolution with increasing hole doping,quite similar to the experimentally observed behavior of the superconducting T_(c);in comparison,the fluctuations of local magnetic moments on O display a monotonic enhancement along with the hole doping.Further analyses indicate that around the optimal doping,there exists a large softening in the frequency of the A_(1g)phonon mode and a van Hove singularity in the electronic structure close to the Fermi level,suggesting potential electron-phonon coupling.Our work reveals the important role of the full-breathing O phonon mode playing in the infinite-layer SrCuO_(2),which may provide new insights in understanding the cuprate superconductivity.
文摘With the support by the National Natural Science Foundation of China and the Ministry of Science and Technology of China,a collaborative study led by Prof.Cheng Jinguang(程金光)from the Institute of Physics,Chinese Academy of Sciences found evidence for the presence of hole pockets and the enhanced spin fluctuations in the pressure-induced high-Tcsuperconductivity phase of FeSe,which was published