Melatonin(N-acetyl-5-methoxytryptamine)is known as the hormone of darkness because it is synthesized at night and involved in regulating the circadian clock.The hormone is primarily synthesized by the vertebrate pinea...Melatonin(N-acetyl-5-methoxytryptamine)is known as the hormone of darkness because it is synthesized at night and involved in regulating the circadian clock.The hormone is primarily synthesized by the vertebrate pineal gland,but is ubiquitous among invertebrates,unicellular organisms,plants,and even cyanobacteria(Hattori and Suzuki,2024).Melatonin is well-conserved evolutionarily and possesses several physiological functions,such as immune response,bone and glucose metabolism,and memory formation besides regulating the circadian rhythm.展开更多
未来6G网络将内生支持通信和AI一体化服务,赋能丰富多彩的新业务,支撑社会高效可持续发展。为此,借鉴了IT行业AI Agent的应用范式,基于电信应用场景创新地提出了6G AI Agent技术框架的三大设计理念,包括多模型融合、定制化Agent和插件...未来6G网络将内生支持通信和AI一体化服务,赋能丰富多彩的新业务,支撑社会高效可持续发展。为此,借鉴了IT行业AI Agent的应用范式,基于电信应用场景创新地提出了6G AI Agent技术框架的三大设计理念,包括多模型融合、定制化Agent和插件式环境交互,并基于该理念构建了6G AI Agent技术框架。通过环境交互层、Agent引擎层、模型调度层、模型基座层交互协同,实现了自主环境感知、自主任务生成和自主执行任务的能力。此外,以移动网络的智能感知任务为例,探索了AI Agent的使用场景及价值,为AI新技术在电信领域发展提供了新的思路和技术支撑。展开更多
Membrane fouling is one of the major obstacles for reaching a high flux over a prolonged period of ultrafiltration(UF)process.In this study,a sulfonated-polyethersulfone(SPES)/nano-TiO2 composite UF membrane with ...Membrane fouling is one of the major obstacles for reaching a high flux over a prolonged period of ultrafiltration(UF)process.In this study,a sulfonated-polyethersulfone(SPES)/nano-TiO2 composite UF membrane with good anti-fouling performance was fabricated by phase inversion and self-assembly methods.The TiO2 nanoparticle self-assembly on the SPES membrane surface was confirmed by X-ray photoelectron spectroscopy (XPS)and FT-IR spectrometer.The morphology and hydrophilicity were characterized by scanning electron microscopy(SEM),atomic force microscopy(AFM)and contact angle goniometer,respectively.The anti-fouling mechanism of composite UF membrane was discussed through the analysis of the micro-structure and component of UF membrane surface.The results showed that the TiO2 content and the micro-structure of the composite UF membrane surface had great influence on the separation and anti-fouling performance.展开更多
The magnetically responsive anti-fouling nanofiber membrane(MRANM)was fabricated for efficient oilwater emulsion separation,which could be cleaned using oscillating magnetic field.MRANM was prepared by grafting superp...The magnetically responsive anti-fouling nanofiber membrane(MRANM)was fabricated for efficient oilwater emulsion separation,which could be cleaned using oscillating magnetic field.MRANM was prepared by grafting superparamagnetic Fe_(3)O_(4) nanoparticles onto the surface of electrospun polyacrylonitrile nanofiber membrane(PANM).Compared with PANM,the water contact angle of MRANM decreased from 104°to 0°,indicating that the hydrophilicity of the membrane was significantly improved.For the emulsions of hexadecane,octane and rapeseed oil,the separation efficiency was 98.04%,96.59%and 92.67%,respectively.After the treatments in oscillating magnetic field,the separation efficiency kept above 95%after 8 times recycling,which indicated that the MRANM had good regenerability and reusability.The as-fabricated membrane with magnetic responsiveness facilitated an effective method for solving the membrane fouling problem during practical applications of separation high viscosity oil-water emulsion.展开更多
A cost-effective, high-performance and highly stable membrane has always been in intensively needed in aqueous organic-based flow batteries. Here we present a porous polybenzimidazole(PBI) membrane with positive charg...A cost-effective, high-performance and highly stable membrane has always been in intensively needed in aqueous organic-based flow batteries. Here we present a porous polybenzimidazole(PBI) membrane with positive charges that endow the membrane with a high rejection and an excellent anti-fouling ability for target organic molecule and asymmetric structure that affords a high conductivity for vanadiummethylene blue flow battery(V-MB FB). The morphologies and thickness of separating layer in particular of the porous PBI can be well adjusted by simply altering the polymer concentration in the cast solution and further afford the membrane with a controllable property in terms of both ion selectivity and ion conductivity. As a result, a V-MB FB assembled with a porous PBI membrane delivers a coulombic efficiency(CE) of 99.45% and an energy efficiency(EE) of 86.10% at a current density of 40 mA cm^(-2), which is 12% higher than that afforded by a Nafion 212 membrane. Most importantly, the V-MB FB demonstrates a methylene blue(MB) utilization of 97.55% at a theoretical capacity of 32.16 Ah L^(-1)(based on the concentration of MB in the electrolyte) because of the high ion conductivity of the membrane, which favors reducing the cost of a battery. The results suggest that the designed porous PBI membranes exhibit a very promising prospect for methylene blue-vanadium flow battery.展开更多
An electromagnetic anti-fouling technology(EAFT) was developed further. The operating principle of the EAFT was presented using fundamental physics laws. To validate the effect of EAFT and identify the mechanism, a ci...An electromagnetic anti-fouling technology(EAFT) was developed further. The operating principle of the EAFT was presented using fundamental physics laws. To validate the effect of EAFT and identify the mechanism, a circulating flow setup was built. A series of fouling tests were carried out with and without EAFT, measuring fouling thermal resistance as function of time, making scanning electron microscope images and analyzing the particles size distribution in solution by dynamics light scattering technology. The main results were as follows: 1) All the precipitated crystals in solution were calcite and there were little differences between with EAFT and without EAFT in the experimental range. 2) The number of precipitate nucleation in solution was small and the particle growth was slow without EAFT. In opposition to the case untreated, a rapid particle growth was observed and the number of nucleation was expected to be large, due to the fact that the EAFT effectively increases the ions and crystals collision frequency and effectiveness by utilizing the induced electric field. It is indicated that the particle growth is promoted mainly by coagulation process but not nucleation growth. 3) The EAFT could prolong the delay time of fouling greatly, and after the delay time, the thermal resistance quickly increased. Therefore, in order to mitigate scale significantly, the floccules in solution should be deposited beforehand in a low-lying area of the exchangers and let off in time.展开更多
Marine fouling is the settlement and growth of a variety of marine organisms, such as bacteria, diatoms, protozoa and algae spores on structures immersed in seawater, such as ship's hulls, navigation buoys, and sonar...Marine fouling is the settlement and growth of a variety of marine organisms, such as bacteria, diatoms, protozoa and algae spores on structures immersed in seawater, such as ship's hulls, navigation buoys, and sonar equipment. Anti-fouling refers to material or systems used to prevent the accumulation of biological material on submerged surfaces. Bio-fouling results in higher fuel consumption and can also facilitate the transport of harmful NIS (Non-Indigenous Species). Antifouling technologies incorporating biocides (e.g., Tributyltin) have been developed to prevent fouling. Their widespread use, however, raised concerns about their toxic effects on marine communities. The AFS Convention (International Convention on the Control of Harmful Anti-fouling Systems in Ships) is a 2001 IMO (International Maritime Organization) treaty, whereby states agree to ban the use of harmful anti-fouling paints and other anti-fouling systems that contain harmful substances. Particularly, the use of the organotinTributyltin is prohibited, since leaching of that chemical from the hulls of ships has been shown to cause deleterious effects on some sea creatures. Although the AFS Convention has entered into force, its full implementation has not yet been appropriately achieved. Most of the ratifying States have delegated the Classification Society to inspect their ships to ensure the implementation of the provisions of the Convention. Since painting ships takes place in dry docks, the full control falls in the hands of Classification Societies.展开更多
While newer,more efficient Lithium-ion batteries(LIBs)and extinguishing agents have been developed to reduce the occurrence of thermal runaway accidents,there is still a scarcity of research focused on the application...While newer,more efficient Lithium-ion batteries(LIBs)and extinguishing agents have been developed to reduce the occurrence of thermal runaway accidents,there is still a scarcity of research focused on the application of surfactants in different LIBs extinguishing agents,particularly in terms of patented technologies.The aim of this review paper is to provide an overview of the technological progress of LIBs and LIBs extinguishing agents in terms of patents in Korea,Japan,Europe,the United States,China,etc.The initial part of this review paper is sort out LIBs technology development in different regions.In addition,to compare LIBs extinguishing agent progress and challenges of liquid,solid,combination of multiple,and microencapsulated.The subsequent section of this review focuses on an in-depth analysis dedicated to the efficiency and challenges faced by the surfactants corresponding design principles of LIBs extinguishing agents,such as nonionic and anionic surfactants.A total of 451,760 LIBs-related patent and 20 LIBs-fire-extinguishing agent-related patent were included in the analyses.The extinguishing effect,cooling performance,and anti-recombustion on different agents have been highlighted.After a comprehensive comparison of these agents,this review suggests that temperature-sensitive hydrogel extinguishing agent is ideal for the effective control of LIBs fire.The progress and challenges of surfactants have been extensively examined,focusing on key factors such as surface activity,thermal stability,foaming properties,environmental friendliness,and electrical conductivity.Moreover,it is crucial to emphasize that the selection of a suitable surfactant must align with the extinguishing strategy of the extinguishing agent for optimal firefighting effectiveness.展开更多
General anesthetic agents can impact brain function through interactions with neurons and their effects on glial cells.Oligodendrocytes perform essential roles in the central nervous system,including myelin sheath for...General anesthetic agents can impact brain function through interactions with neurons and their effects on glial cells.Oligodendrocytes perform essential roles in the central nervous system,including myelin sheath formation,axonal metabolism,and neuroplasticity regulation.They are particularly vulnerable to the effects of general anesthetic agents resulting in impaired proliferation,differentiation,and apoptosis.Neurologists are increasingly interested in the effects of general anesthetic agents on oligodendrocytes.These agents not only act on the surface receptors of oligodendrocytes to elicit neuroinflammation through modulation of signaling pathways,but also disrupt metabolic processes and alter the expression of genes involved in oligodendrocyte development and function.In this review,we summarize the effects of general anesthetic agents on oligodendrocytes.We anticipate that future research will continue to explore these effects and develop strategies to decrease the incidence of adverse reactions associated with the use of general anesthetic agents.展开更多
基金supported by JSPS KAKENHI Grant Number JP22K11823 to AH and JP22J01508 to KW。
文摘Melatonin(N-acetyl-5-methoxytryptamine)is known as the hormone of darkness because it is synthesized at night and involved in regulating the circadian clock.The hormone is primarily synthesized by the vertebrate pineal gland,but is ubiquitous among invertebrates,unicellular organisms,plants,and even cyanobacteria(Hattori and Suzuki,2024).Melatonin is well-conserved evolutionarily and possesses several physiological functions,such as immune response,bone and glucose metabolism,and memory formation besides regulating the circadian rhythm.
文摘未来6G网络将内生支持通信和AI一体化服务,赋能丰富多彩的新业务,支撑社会高效可持续发展。为此,借鉴了IT行业AI Agent的应用范式,基于电信应用场景创新地提出了6G AI Agent技术框架的三大设计理念,包括多模型融合、定制化Agent和插件式环境交互,并基于该理念构建了6G AI Agent技术框架。通过环境交互层、Agent引擎层、模型调度层、模型基座层交互协同,实现了自主环境感知、自主任务生成和自主执行任务的能力。此外,以移动网络的智能感知任务为例,探索了AI Agent的使用场景及价值,为AI新技术在电信领域发展提供了新的思路和技术支撑。
基金Supported by the Natural Science Foundation of Shandong Province(Q2007B01)
文摘Membrane fouling is one of the major obstacles for reaching a high flux over a prolonged period of ultrafiltration(UF)process.In this study,a sulfonated-polyethersulfone(SPES)/nano-TiO2 composite UF membrane with good anti-fouling performance was fabricated by phase inversion and self-assembly methods.The TiO2 nanoparticle self-assembly on the SPES membrane surface was confirmed by X-ray photoelectron spectroscopy (XPS)and FT-IR spectrometer.The morphology and hydrophilicity were characterized by scanning electron microscopy(SEM),atomic force microscopy(AFM)and contact angle goniometer,respectively.The anti-fouling mechanism of composite UF membrane was discussed through the analysis of the micro-structure and component of UF membrane surface.The results showed that the TiO2 content and the micro-structure of the composite UF membrane surface had great influence on the separation and anti-fouling performance.
基金supported by the National Natural Science Founda-tion of China(22078347)National Natural Science Foundation of China(21961160745)+2 种基金Key Research and Development Program of Hebei Province,China(20374001D,21373303D)Science and Technology Program of Guanshanhu([2020]13)Program of Inno-vation Academy for Green Manufacture,CAS(IAGM2020C04).
文摘The magnetically responsive anti-fouling nanofiber membrane(MRANM)was fabricated for efficient oilwater emulsion separation,which could be cleaned using oscillating magnetic field.MRANM was prepared by grafting superparamagnetic Fe_(3)O_(4) nanoparticles onto the surface of electrospun polyacrylonitrile nanofiber membrane(PANM).Compared with PANM,the water contact angle of MRANM decreased from 104°to 0°,indicating that the hydrophilicity of the membrane was significantly improved.For the emulsions of hexadecane,octane and rapeseed oil,the separation efficiency was 98.04%,96.59%and 92.67%,respectively.After the treatments in oscillating magnetic field,the separation efficiency kept above 95%after 8 times recycling,which indicated that the MRANM had good regenerability and reusability.The as-fabricated membrane with magnetic responsiveness facilitated an effective method for solving the membrane fouling problem during practical applications of separation high viscosity oil-water emulsion.
基金financial support from NSFC (22075121)the Youth Innovation Promotion Association CAS (2019182)+1 种基金the Dalian Science and Technology Innovation Project (2020JJ26GX031)the DNL Cooperation Found,CAS(DNL201910)。
文摘A cost-effective, high-performance and highly stable membrane has always been in intensively needed in aqueous organic-based flow batteries. Here we present a porous polybenzimidazole(PBI) membrane with positive charges that endow the membrane with a high rejection and an excellent anti-fouling ability for target organic molecule and asymmetric structure that affords a high conductivity for vanadiummethylene blue flow battery(V-MB FB). The morphologies and thickness of separating layer in particular of the porous PBI can be well adjusted by simply altering the polymer concentration in the cast solution and further afford the membrane with a controllable property in terms of both ion selectivity and ion conductivity. As a result, a V-MB FB assembled with a porous PBI membrane delivers a coulombic efficiency(CE) of 99.45% and an energy efficiency(EE) of 86.10% at a current density of 40 mA cm^(-2), which is 12% higher than that afforded by a Nafion 212 membrane. Most importantly, the V-MB FB demonstrates a methylene blue(MB) utilization of 97.55% at a theoretical capacity of 32.16 Ah L^(-1)(based on the concentration of MB in the electrolyte) because of the high ion conductivity of the membrane, which favors reducing the cost of a battery. The results suggest that the designed porous PBI membranes exhibit a very promising prospect for methylene blue-vanadium flow battery.
文摘An electromagnetic anti-fouling technology(EAFT) was developed further. The operating principle of the EAFT was presented using fundamental physics laws. To validate the effect of EAFT and identify the mechanism, a circulating flow setup was built. A series of fouling tests were carried out with and without EAFT, measuring fouling thermal resistance as function of time, making scanning electron microscope images and analyzing the particles size distribution in solution by dynamics light scattering technology. The main results were as follows: 1) All the precipitated crystals in solution were calcite and there were little differences between with EAFT and without EAFT in the experimental range. 2) The number of precipitate nucleation in solution was small and the particle growth was slow without EAFT. In opposition to the case untreated, a rapid particle growth was observed and the number of nucleation was expected to be large, due to the fact that the EAFT effectively increases the ions and crystals collision frequency and effectiveness by utilizing the induced electric field. It is indicated that the particle growth is promoted mainly by coagulation process but not nucleation growth. 3) The EAFT could prolong the delay time of fouling greatly, and after the delay time, the thermal resistance quickly increased. Therefore, in order to mitigate scale significantly, the floccules in solution should be deposited beforehand in a low-lying area of the exchangers and let off in time.
文摘Marine fouling is the settlement and growth of a variety of marine organisms, such as bacteria, diatoms, protozoa and algae spores on structures immersed in seawater, such as ship's hulls, navigation buoys, and sonar equipment. Anti-fouling refers to material or systems used to prevent the accumulation of biological material on submerged surfaces. Bio-fouling results in higher fuel consumption and can also facilitate the transport of harmful NIS (Non-Indigenous Species). Antifouling technologies incorporating biocides (e.g., Tributyltin) have been developed to prevent fouling. Their widespread use, however, raised concerns about their toxic effects on marine communities. The AFS Convention (International Convention on the Control of Harmful Anti-fouling Systems in Ships) is a 2001 IMO (International Maritime Organization) treaty, whereby states agree to ban the use of harmful anti-fouling paints and other anti-fouling systems that contain harmful substances. Particularly, the use of the organotinTributyltin is prohibited, since leaching of that chemical from the hulls of ships has been shown to cause deleterious effects on some sea creatures. Although the AFS Convention has entered into force, its full implementation has not yet been appropriately achieved. Most of the ratifying States have delegated the Classification Society to inspect their ships to ensure the implementation of the provisions of the Convention. Since painting ships takes place in dry docks, the full control falls in the hands of Classification Societies.
基金supported by the National Key Research and Development Program of China (No.2017YFC0804700)the Opening Project of State Key Laboratory of Explosion Science and Technology,Beijing Institute of Technology (No.KFJJ23-23M)。
文摘While newer,more efficient Lithium-ion batteries(LIBs)and extinguishing agents have been developed to reduce the occurrence of thermal runaway accidents,there is still a scarcity of research focused on the application of surfactants in different LIBs extinguishing agents,particularly in terms of patented technologies.The aim of this review paper is to provide an overview of the technological progress of LIBs and LIBs extinguishing agents in terms of patents in Korea,Japan,Europe,the United States,China,etc.The initial part of this review paper is sort out LIBs technology development in different regions.In addition,to compare LIBs extinguishing agent progress and challenges of liquid,solid,combination of multiple,and microencapsulated.The subsequent section of this review focuses on an in-depth analysis dedicated to the efficiency and challenges faced by the surfactants corresponding design principles of LIBs extinguishing agents,such as nonionic and anionic surfactants.A total of 451,760 LIBs-related patent and 20 LIBs-fire-extinguishing agent-related patent were included in the analyses.The extinguishing effect,cooling performance,and anti-recombustion on different agents have been highlighted.After a comprehensive comparison of these agents,this review suggests that temperature-sensitive hydrogel extinguishing agent is ideal for the effective control of LIBs fire.The progress and challenges of surfactants have been extensively examined,focusing on key factors such as surface activity,thermal stability,foaming properties,environmental friendliness,and electrical conductivity.Moreover,it is crucial to emphasize that the selection of a suitable surfactant must align with the extinguishing strategy of the extinguishing agent for optimal firefighting effectiveness.
基金supported by the Natural Science Foundation of Zhejiang Province(LZ22H090002,2014C33170)National Natural Science Foundation of China(82171260,81641042,81471240)。
文摘General anesthetic agents can impact brain function through interactions with neurons and their effects on glial cells.Oligodendrocytes perform essential roles in the central nervous system,including myelin sheath formation,axonal metabolism,and neuroplasticity regulation.They are particularly vulnerable to the effects of general anesthetic agents resulting in impaired proliferation,differentiation,and apoptosis.Neurologists are increasingly interested in the effects of general anesthetic agents on oligodendrocytes.These agents not only act on the surface receptors of oligodendrocytes to elicit neuroinflammation through modulation of signaling pathways,but also disrupt metabolic processes and alter the expression of genes involved in oligodendrocyte development and function.In this review,we summarize the effects of general anesthetic agents on oligodendrocytes.We anticipate that future research will continue to explore these effects and develop strategies to decrease the incidence of adverse reactions associated with the use of general anesthetic agents.