期刊文献+
共找到5,410篇文章
< 1 2 250 >
每页显示 20 50 100
The Research and Application of the Anti-Interference Techniques of Electronic Device in Power System 被引量:1
1
作者 吴维宁 张文亮 +1 位作者 吴峡 李建建 《Electricity》 2001年第4期40-43,共4页
This paper presents the study and application of the electronic device anti-interference techniques underhigh voltage and/or heavy current electro-magnetic circumstance in power system.[
关键词 electric power system electronic measurement and/or control device anti-interference measures
下载PDF
Anti-interference beam pattern design based on second-order cone programming optimization 被引量:1
2
作者 戴文舒 鲍凯凯 +1 位作者 王萍 王黎明 《Journal of Measurement Science and Instrumentation》 CAS CSCD 2016年第3期255-260,共6页
When signal-to-interference ratio is low, the energy of strong interference leaked from the side lobe of beam pattern will infect the detection of weak target. Therefore, the beam pattern needs to be op... When signal-to-interference ratio is low, the energy of strong interference leaked from the side lobe of beam pattern will infect the detection of weak target. Therefore, the beam pattern needs to be optimized. The existing Dolph-Chebyshev weighting method can get the lowest side lobe level under given main lobe width, but for the other non-uniform circular array and nonlinear array, the low side lobe pattern needs to be designed specially. The second order cone programming optimization (SOCP) algorithm proposed in the paper transforms the optimization of the beam pattern into a standard convex optimization problem. Thus there is a paradigm to follow for any array formation, which not only achieves the purpose of Dolph-Chebyshev weighting, but also solves the problem of the increased side lobe when the signal is at end fire direction The simulation proves that the SOCP algorithm can detect the weak target better than the conventional beam forming. 展开更多
关键词 anti-interference beam pattern second-order cone programming optimization (SOCP) weak signal detection
下载PDF
Reconfigurable anti-interference RF transceiver for cognitive radio application
3
作者 游长江 柳靖 +1 位作者 张晓东 朱晓维 《Journal of Southeast University(English Edition)》 EI CAS 2011年第2期123-127,共5页
An RF transceiver composed of a zero-IF receiver and a direct up-conversion transmitter for cognitive radio applications is presented. The adjustable channel filter array in the receiver is used to suppress adjacent c... An RF transceiver composed of a zero-IF receiver and a direct up-conversion transmitter for cognitive radio applications is presented. The adjustable channel filter array in the receiver is used to suppress adjacent channel interference in televisions signal coexistence environments. The low noise amplifier (LNA) with wide dynamic range and high linearity is employed to enhance the anti-interference competence of the zero-IF receiver. Meanwhile, the high linearity power amplifier (PA) .is used to promote the adjacent channel power ratio (ACPR) characteristic of the direct up-conversion transmitter. The measured error vector magnitude (EVM) results show that the anti-interference competence of the zero-IF receiver is dramatically enhanced by employing a channel filter array. The measured ACPR of the direct up-conversion transmitter is -47. 98 dBc on the channel centered at 714 MHz when the output power is 27 dBm. 展开更多
关键词 ZERO-IF direct up-conversion anti-interfereNCE cognitive radio white space spectrum
下载PDF
Static-shift suppression and anti-interference signal processing for CSAMT based on Guided Image Filtering 被引量:2
4
作者 Enhua Jiang Rujun Chen +2 位作者 Debin Zhu Weiqiang Liu Regean Pitiya 《Earthquake Research Advances》 CSCD 2022年第1期44-55,共12页
Shallow conductive heterogeneity can lead to static shifts ain the apparent resistivity sounding curve of controlled-source audio-frequency magnetotellurics(CSAMT).The static effect will shift the apparent resistivity... Shallow conductive heterogeneity can lead to static shifts ain the apparent resistivity sounding curve of controlled-source audio-frequency magnetotellurics(CSAMT).The static effect will shift the apparent resistivity curves along with axial log-log coordinates.Such an effect,if not properly processed,can distort the resistivity of rock formation and the depth of interfaces,and even make the geological structures unrecognizable.In this paper,we discuss the reasons and characteristics of the static shift and summarize the previous studies regarding static shift correction.Then,we propose the Guided Image Filtering algorithm to suppress static shifts in CSAMT.In detail,we use the multi-window superposition method to superimpose 1D signals into a 2D matrix image,which is subsequently processed with Guided Image Filtering.In the synthetic model study and field examples,the Guided Image Filtering algorithm has effectively corrected and suppressed static shifts,and finally improved the precision of data interpretation. 展开更多
关键词 CSAMT Static shift Guided image filtering anti-interfereNCE
下载PDF
Anti-interference ultra-wideband system based on spreading and interleaving 被引量:1
5
作者 Zhang Shibing Zhang Lijun 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2007年第2期236-242,共7页
To suppress the interference in the ultra-wideband (AI-UWB) system is a challenging problem. An anti-interference multiband orthogonal frequency-division multiplexing ultra-wideband (AI-UWB) system, based on sprea... To suppress the interference in the ultra-wideband (AI-UWB) system is a challenging problem. An anti-interference multiband orthogonal frequency-division multiplexing ultra-wideband (AI-UWB) system, based on spreading and interleaving is addressed. It will exploit the frequency diversity across the subcarriers and provide the robustness to narrow-band interference, by spreading the coded bit streams within each sub-band and interleaving across all sub-bands. Simulating results show that the spreading and interleaving provide about 5 dB to 10 dB advantages over the conventional multiband orthogonal frequency-division multiplexing ultra-wideband system in signal-to-interference ratio. Spreading and interleaving is an effective cure for enhancing the robustness to narrowband interference. 展开更多
关键词 Communications technology anti-interfereNCE SPREADING INTERLEAVING Ultra-wideband.
下载PDF
LCD面板C/FOG工艺制造虚拟计量方法研究 被引量:1
6
作者 刘暾东 黄智斌 +2 位作者 高凤强 郑鹏 谢玉练 《仪器仪表学报》 EI CAS CSCD 北大核心 2024年第1期16-25,共10页
针对液晶显示器(LCD)面板的“Chip/FPC on Glass”(C/FOG)工艺生产制造过程中存在的计量延迟大、生产异常无法提前预测的问题,本文提出一种基于神经网络的C/FOG工艺生产制造虚拟计量方法。该方法利用生产机台上的传感器采集生产过程中... 针对液晶显示器(LCD)面板的“Chip/FPC on Glass”(C/FOG)工艺生产制造过程中存在的计量延迟大、生产异常无法提前预测的问题,本文提出一种基于神经网络的C/FOG工艺生产制造虚拟计量方法。该方法利用生产机台上的传感器采集生产过程中的过程状态数据,构建基于多尺度一维卷积及通道注意力模型(MS1DC-CA)的虚拟计量模型。通过多个尺度的卷积核提取不同尺度范围内的状态数据特征。在对含有缺失值的原始数据预处理中,提出了基于粒子群算法改进的K近邻填补方法(PSO-KNN Imputation)进行缺失值填充,保留特征的同时,减少因填充值引入的干扰。最后在实际生产采集的数据上进行实验对比分析,实际不良率主要集中在0.1%~0.5%,该虚拟计量模型的拟合均方误差为0.397 7‱,低于其他现有拟合模型,在平均绝对误差、对称平均绝对百分比误差和拟合优度3种评价指标下也均优于其他现有的拟合模型,具有良好的预测性能。 展开更多
关键词 C/fog工艺 虚拟计量 缺失值填充 多尺度一维卷积 通道注意力
下载PDF
Anti-interference self-alignment algorithm by attitude optimization estimation for SINS on a rocking base
7
作者 XUE Haijian WANG Tao +2 位作者 CAI Xinghui WANG Jintao LIU Fei 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2023年第5期1333-1342,共10页
The performance of a strapdown inertial navigation system(SINS)largely depends on the accuracy and rapidness of the initial alignment.A novel anti-interference self-alignment algorithm by attitude optimization estimat... The performance of a strapdown inertial navigation system(SINS)largely depends on the accuracy and rapidness of the initial alignment.A novel anti-interference self-alignment algorithm by attitude optimization estimation for SINS on a rocking base is presented in this paper.The algorithm transforms the initial alignment into the initial attitude determination problem by using infinite vector observations to remove the angular motions,the SINS alignment is heuristically established as an optimiza-tion problem of finding the minimum eigenvector.In order to further improve the alignment precision,an adaptive recursive weighted least squares(ARWLS)curve fitting algorithm is used to fit the translational motion interference-contaminated reference vectors according to their time domain characteristics.Simulation studies and experimental results favorably demonstrate its rapidness,accuracy and robustness. 展开更多
关键词 strapdown inertial navigation system(SINS) initial alignment anti-interfereNCE rocking base adaptive recursive weighted least squares(ARWLS)
下载PDF
Influences of tree characters on throughfall and stemflow from rainfall and fog in Popa Mountain Park, Myanmar
8
作者 Yadanar Zaw Hiroki Oue 《Journal of Forestry Research》 SCIE EI CAS CSCD 2024年第6期210-219,共10页
Available water for communities is insufficient in the central part of Myanmar due to limited rainfall and surface water resources. Over the last two decades, afforestation and reforestation projects have been impleme... Available water for communities is insufficient in the central part of Myanmar due to limited rainfall and surface water resources. Over the last two decades, afforestation and reforestation projects have been implemented in this region to provide sufficient water to local communities, expecting forested areas to store more rainwater than other land uses. However, there has been no research and very limited information on rainfall partitioning into throughfall(TF) and stemflow(SF), particularly concerning tree characters. Gross rainfall, TF under different canopy types, and SF of different tree types were measured in 2019. TF and SF were frequently observed even without rain but under foggy conditions. Therefore, both were partitioned into TF and SF from rainfall and fog individually. Sparser canopies resulted in larger TF from rainfall than denser canopies. However, a denser canopy delivered larger TF from fog than a sparser one. TF rates from rainfall in sparser and denser canopies were 54.5% and 51.5%, respectively, while those from fog were 15.2% and 27.2%, respectively. As a result, total TF rate in the denser canopy(70.7%) was significantly larger than that from the sparser one(64.3%). Short trees with small crown projection area and smooth bark(Type Ⅰ) resulted in larger SF from rainfall than taller trees with large crown projection area and rough bark(Type Ⅱ). However, Type Ⅱ trees resulted in larger SF from fog. SF rates by rainfall from Type Ⅰ and Ⅱ trees were 17.5% and 12.2%, respectively, while those by fog were 22.2% and 39.5%, respectively. No significant total SF rates were found for Type Ⅰ(22.5%) and Ⅱ trees(20.1%). A denser canopy results in larger TF, and Type Ⅰ trees result in larger SF. In an area where foggy conditions occur frequently and for a lengthy period, however, Type Ⅱ trees will result in larger SF. These three tree characters(dense canopies, short trees with small crown projection area and smooth bark, and tall trees with large crown projection area and rough bark) should be considered for afforestation and reforestation projects in the Popa Mountain Park to enhance net water input by forests. 展开更多
关键词 Gross rainfall fog interception THROUGHFALL STEMFLOW
下载PDF
Anti-interference Strategy of 20-Hi Cold Mill Automatic Gauge Control
9
作者 ZHANG Zhen ZHU Bingquan CHEN Haifeng 《Instrumentation》 2022年第3期10-18,共9页
Automatic gauge control(AGC in the article)is the key technology of product thickness accuracy and flatness quality in modern cold rolling mill.Most traditional AGC control algorithms need stable external system condi... Automatic gauge control(AGC in the article)is the key technology of product thickness accuracy and flatness quality in modern cold rolling mill.Most traditional AGC control algorithms need stable external system conditions and hard to stabilize under complex interference that meets coverage requirements.This paper presents a new anti-interference strategy for AGC control of 20-Hi cold reversing mill.The proposed algorithm introduces a united dynamic weights algorithm of feed forward-mass flow to avoid the complex interference problem in AGC control,the relevant control strategy is provided to eliminate the adverse effects.At the same time,the D-value between feed forward-mass flow pre-computation and thickness measurement deviation is dynamic compared,the final gap position regulation is calculated by developing a set of united dynamic weights between feed forward control and mass flow control.Finally,the output of controllers is sent to actuator though a constant rate smoothing.The proposed strategy is compared with conventional AGC control on Experimental platform and project application,the results show that the proposed strategy is more stable than comparison method and majority of system uncertainty produced by mentioned interference is significantly eliminated. 展开更多
关键词 20-Hi Cold Mill Complex Interference AGC Control United Dynamic Weights anti-interfereNCE
下载PDF
Privacy-preserved learning from non-i.i.d data in fog-assisted IoT:A federated learning approach
10
作者 Mohamed Abdel-Basset Hossam Hawash +2 位作者 Nour Moustafa Imran Razzak Mohamed Abd Elfattah 《Digital Communications and Networks》 SCIE CSCD 2024年第2期404-415,共12页
With the prevalence of the Internet of Things(IoT)systems,smart cities comprise complex networks,including sensors,actuators,appliances,and cyber services.The complexity and heterogeneity of smart cities have become v... With the prevalence of the Internet of Things(IoT)systems,smart cities comprise complex networks,including sensors,actuators,appliances,and cyber services.The complexity and heterogeneity of smart cities have become vulnerable to sophisticated cyber-attacks,especially privacy-related attacks such as inference and data poisoning ones.Federated Learning(FL)has been regarded as a hopeful method to enable distributed learning with privacypreserved intelligence in IoT applications.Even though the significance of developing privacy-preserving FL has drawn as a great research interest,the current research only concentrates on FL with independent identically distributed(i.i.d)data and few studies have addressed the non-i.i.d setting.FL is known to be vulnerable to Generative Adversarial Network(GAN)attacks,where an adversary can presume to act as a contributor participating in the training process to acquire the private data of other contributors.This paper proposes an innovative Privacy Protection-based Federated Deep Learning(PP-FDL)framework,which accomplishes data protection against privacy-related GAN attacks,along with high classification rates from non-i.i.d data.PP-FDL is designed to enable fog nodes to cooperate to train the FDL model in a way that ensures contributors have no access to the data of each other,where class probabilities are protected utilizing a private identifier generated for each class.The PP-FDL framework is evaluated for image classification using simple convolutional networks which are trained using MNIST and CIFAR-10 datasets.The empirical results have revealed that PF-DFL can achieve data protection and the framework outperforms the other three state-of-the-art models with 3%–8%as accuracy improvements. 展开更多
关键词 Privacy preservation Federated learning Deep learning fog computing Smart cities
下载PDF
A Lightweight Intrusion Detection System Using Convolutional Neural Network and Long Short-Term Memory in Fog Computing
11
作者 Hawazen Alzahrani Tarek Sheltami +2 位作者 Abdulaziz Barnawi Muhammad Imam Ansar Yaser 《Computers, Materials & Continua》 SCIE EI 2024年第9期4703-4728,共26页
The Internet of Things(IoT)links various devices to digital services and significantly improves the quality of our lives.However,as IoT connectivity is growing rapidly,so do the risks of network vulnerabilities and th... The Internet of Things(IoT)links various devices to digital services and significantly improves the quality of our lives.However,as IoT connectivity is growing rapidly,so do the risks of network vulnerabilities and threats.Many interesting Intrusion Detection Systems(IDSs)are presented based on machine learning(ML)techniques to overcome this problem.Given the resource limitations of fog computing environments,a lightweight IDS is essential.This paper introduces a hybrid deep learning(DL)method that combines convolutional neural networks(CNN)and long short-term memory(LSTM)to build an energy-aware,anomaly-based IDS.We test this system on a recent dataset,focusing on reducing overhead while maintaining high accuracy and a low false alarm rate.We compare CICIoT2023,KDD-99 and NSL-KDD datasets to evaluate the performance of the proposed IDS model based on key metrics,including latency,energy consumption,false alarm rate and detection rate metrics.Our findings show an accuracy rate over 92%and a false alarm rate below 0.38%.These results demonstrate that our system provides strong security without excessive resource use.The practicality of deploying IDS with limited resources is demonstrated by the successful implementation of IDS functionality on a Raspberry Pi acting as a Fog node.The proposed lightweight model,with a maximum power consumption of 6.12 W,demonstrates its potential to operate effectively on energy-limited devices such as low-power fog nodes or edge devices.We prioritize energy efficiency whilemaintaining high accuracy,distinguishing our scheme fromexisting approaches.Extensive experiments demonstrate a significant reduction in false positives,ensuring accurate identification of genuine security threats while minimizing unnecessary alerts. 展开更多
关键词 Intrusion detection fog computing CNN LSTM energy consumption
下载PDF
Joint Optimization of Energy Consumption and Network Latency in Blockchain-Enabled Fog Computing Networks
12
作者 Huang Xiaoge Yin Hongbo +3 位作者 Cao Bin Wang Yongsheng Chen Qianbin Zhang Jie 《China Communications》 SCIE CSCD 2024年第4期104-119,共16页
Fog computing is considered as a solution to accommodate the emergence of booming requirements from a large variety of resource-limited Internet of Things(IoT)devices.To ensure the security of private data,in this pap... Fog computing is considered as a solution to accommodate the emergence of booming requirements from a large variety of resource-limited Internet of Things(IoT)devices.To ensure the security of private data,in this paper,we introduce a blockchain-enabled three-layer device-fog-cloud heterogeneous network.A reputation model is proposed to update the credibility of the fog nodes(FN),which is used to select blockchain nodes(BN)from FNs to participate in the consensus process.According to the Rivest-Shamir-Adleman(RSA)encryption algorithm applied to the blockchain system,FNs could verify the identity of the node through its public key to avoid malicious attacks.Additionally,to reduce the computation complexity of the consensus algorithms and the network overhead,we propose a dynamic offloading and resource allocation(DORA)algorithm and a reputation-based democratic byzantine fault tolerant(R-DBFT)algorithm to optimize the offloading decisions and decrease the number of BNs in the consensus algorithm while ensuring the network security.Simulation results demonstrate that the proposed algorithm could efficiently reduce the network overhead,and obtain a considerable performance improvement compared to the related algorithms in the previous literature. 展开更多
关键词 blockchain energy consumption fog computing network Internet of Things LATENCY
下载PDF
Target Detection Algorithm in Foggy Scenes Based on Dual Subnets
13
作者 Yuecheng Yu Liming Cai +3 位作者 Anqi Ning Jinlong Shi Xudong Chen Shixin Huang 《Computers, Materials & Continua》 SCIE EI 2024年第2期1915-1931,共17页
Under the influence of air humidity,dust,aerosols,etc.,in real scenes,haze presents an uneven state.In this way,the image quality and contrast will decrease.In this case,It is difficult to detect the target in the ima... Under the influence of air humidity,dust,aerosols,etc.,in real scenes,haze presents an uneven state.In this way,the image quality and contrast will decrease.In this case,It is difficult to detect the target in the image by the universal detection network.Thus,a dual subnet based on multi-task collaborative training(DSMCT)is proposed in this paper.Firstly,in the training phase,the Gated Context Aggregation Network(GCANet)is used as the supervisory network of YOLOX to promote the extraction of clean information in foggy scenes.In the test phase,only the YOLOX branch needs to be activated to ensure the detection speed of the model.Secondly,the deformable convolution module is used to improve GCANet to enhance the model’s ability to capture details of non-homogeneous fog.Finally,the Coordinate Attention mechanism is introduced into the Vision Transformer and the backbone network of YOLOX is redesigned.In this way,the feature extraction ability of the network for deep-level information can be enhanced.The experimental results on artificial fog data set FOG_VOC and real fog data set RTTS show that the map value of DSMCT reached 86.56%and 62.39%,respectively,which was 2.27%and 4.41%higher than the current most advanced detection model.The DSMCT network has high practicality and effectiveness for target detection in real foggy scenes. 展开更多
关键词 Target detection fog target detection YOLOX twin network multi-task learning
下载PDF
Hierarchical Privacy Protection Model in Advanced Metering Infrastructure Based on Cloud and Fog Assistance
14
作者 Linghong Kuang Wenlong Shi Jing Zhang 《Computers, Materials & Continua》 SCIE EI 2024年第8期3193-3219,共27页
The Advanced Metering Infrastructure(AMI),as a crucial subsystem in the smart grid,is responsible for measuring user electricity consumption and plays a vital role in communication between providers and consumers.Howe... The Advanced Metering Infrastructure(AMI),as a crucial subsystem in the smart grid,is responsible for measuring user electricity consumption and plays a vital role in communication between providers and consumers.However,with the advancement of information and communication technology,new security and privacy challenges have emerged for AMI.To address these challenges and enhance the security and privacy of user data in the smart grid,a Hierarchical Privacy Protection Model in Advanced Metering Infrastructure based on Cloud and Fog Assistance(HPPM-AMICFA)is proposed in this paper.The proposed model integrates cloud and fog computing with hierarchical threshold encryption,offering a flexible and efficient privacy protection solution that significantly enhances data security in the smart grid.The methodology involves setting user protection levels by processing missing data and utilizing fuzzy comprehensive analysis to evaluate user importance,thereby assigning appropriate protection levels.Furthermore,a hierarchical threshold encryption algorithm is developed to provide differentiated protection strategies for fog nodes based on user IDs,ensuring secure aggregation and encryption of user data.Experimental results demonstrate that HPPM-AMICFA effectively resists various attack strategies while minimizing time costs,thereby safeguarding user data in the smart grid. 展开更多
关键词 AMI cloud and fog assistance fuzzy comprehensive analysis hierarchical threshold encryption
下载PDF
Design and Develop Function for Research Based Application of Intelligent Internet-of-Vehicles Model Based on Fog Computing
15
作者 Abduladheem Fadhil Khudhur Ayca Kurnaz Türkben Sefer Kurnaz 《Computers, Materials & Continua》 SCIE EI 2024年第12期3805-3824,共20页
The fast growth in Internet-of-Vehicles(IoV)applications is rendering energy efficiency management of vehicular networks a highly important challenge.Most of the existing models are failing to handle the demand for en... The fast growth in Internet-of-Vehicles(IoV)applications is rendering energy efficiency management of vehicular networks a highly important challenge.Most of the existing models are failing to handle the demand for energy conservation in large-scale heterogeneous environments.Based on Large Energy-Aware Fog(LEAF)computing,this paper proposes a new model to overcome energy-inefficient vehicular networks by simulating large-scale network scenarios.The main inspiration for this work is the ever-growing demand for energy efficiency in IoV-most particularly with the volume of generated data and connected devices.The proposed LEAF model enables researchers to perform simulations of thousands of streaming applications over distributed and heterogeneous infrastructures.Among the possible reasons is that it provides a realistic simulation environment in which compute nodes can dynamically join and leave,while different kinds of networking protocols-wired and wireless-can also be employed.The novelty of this work is threefold:for the first time,the LEAF model integrates online decision-making algorithms for energy-aware task placement and routing strategies that leverage power usage traces with efficiency optimization in mind.Unlike existing fog computing simulators,data flows and power consumption are modeled as parameterizable mathematical equations in LEAF to ensure scalability and ease of analysis across a wide range of devices and applications.The results of evaluation show that LEAF can cover up to 98.75%of the distance,with devices ranging between 1 and 1000,showing significant energy-saving potential through A wide-area network(WAN)usage reduction.These findings indicate great promise for fog computing in the future-in particular,models like LEAF for planning energy-efficient IoV infrastructures. 展开更多
关键词 fog computing internet of vehicles LEAF segmentation DISTANCE power consumption CLOUD vehicle nodes wireless
下载PDF
Enhanced Hybrid Equilibrium Strategy in Fog-Cloud Computing Networks with Optimal Task Scheduling
16
作者 Muchang Rao Hang Qin 《Computers, Materials & Continua》 SCIE EI 2024年第5期2647-2672,共26页
More devices in the Intelligent Internet of Things(AIoT)result in an increased number of tasks that require low latency and real-time responsiveness,leading to an increased demand for computational resources.Cloud com... More devices in the Intelligent Internet of Things(AIoT)result in an increased number of tasks that require low latency and real-time responsiveness,leading to an increased demand for computational resources.Cloud computing’s low-latency performance issues in AIoT scenarios have led researchers to explore fog computing as a complementary extension.However,the effective allocation of resources for task execution within fog environments,characterized by limitations and heterogeneity in computational resources,remains a formidable challenge.To tackle this challenge,in this study,we integrate fog computing and cloud computing.We begin by establishing a fog-cloud environment framework,followed by the formulation of a mathematical model for task scheduling.Lastly,we introduce an enhanced hybrid Equilibrium Optimizer(EHEO)tailored for AIoT task scheduling.The overarching objective is to decrease both the makespan and energy consumption of the fog-cloud system while accounting for task deadlines.The proposed EHEO method undergoes a thorough evaluation against multiple benchmark algorithms,encompassing metrics likemakespan,total energy consumption,success rate,and average waiting time.Comprehensive experimental results unequivocally demonstrate the superior performance of EHEO across all assessed metrics.Notably,in the most favorable conditions,EHEO significantly diminishes both the makespan and energy consumption by approximately 50%and 35.5%,respectively,compared to the secondbest performing approach,which affirms its efficacy in advancing the efficiency of AIoT task scheduling within fog-cloud networks. 展开更多
关键词 Artificial intelligence of things fog computing task scheduling equilibrium optimizer differential evaluation algorithm local search
下载PDF
Hybrid Approach for Cost Efficient Application Placement in Fog-Cloud Computing Environments
17
作者 Abdulelah Alwabel Chinmaya Kumar Swain 《Computers, Materials & Continua》 SCIE EI 2024年第6期4127-4148,共22页
Fog computing has recently developed as a new paradigm with the aim of addressing time-sensitive applications better than with cloud computing by placing and processing tasks in close proximity to the data sources.How... Fog computing has recently developed as a new paradigm with the aim of addressing time-sensitive applications better than with cloud computing by placing and processing tasks in close proximity to the data sources.However,the majority of the fog nodes in this environment are geographically scattered with resources that are limited in terms of capabilities compared to cloud nodes,thus making the application placement problem more complex than that in cloud computing.An approach for cost-efficient application placement in fog-cloud computing environments that combines the benefits of both fog and cloud computing to optimize the placement of applications and services while minimizing costs.This approach is particularly relevant in scenarios where latency,resource constraints,and cost considerations are crucial factors for the deployment of applications.In this study,we propose a hybrid approach that combines a genetic algorithm(GA)with the Flamingo Search Algorithm(FSA)to place application modules while minimizing cost.We consider four cost-types for application deployment:Computation,communication,energy consumption,and violations.The proposed hybrid approach is called GA-FSA and is designed to place the application modules considering the deadline of the application and deploy them appropriately to fog or cloud nodes to curtail the overall cost of the system.An extensive simulation is conducted to assess the performance of the proposed approach compared to other state-of-the-art approaches.The results demonstrate that GA-FSA approach is superior to the other approaches with respect to task guarantee ratio(TGR)and total cost. 展开更多
关键词 Placement mechanism application module placement fog computing cloud computing genetic algorithm flamingo search algorithm
下载PDF
Fitness Sharing Chaotic Particle Swarm Optimization (FSCPSO): A Metaheuristic Approach for Allocating Dynamic Virtual Machine (VM) in Fog Computing Architecture
18
作者 Prasanna Kumar Kannughatta Ranganna Siddesh Gaddadevara Matt +2 位作者 Chin-Ling Chen Ananda Babu Jayachandra Yong-Yuan Deng 《Computers, Materials & Continua》 SCIE EI 2024年第8期2557-2578,共22页
In recent decades,fog computing has played a vital role in executing parallel computational tasks,specifically,scientific workflow tasks.In cloud data centers,fog computing takes more time to run workflow applications... In recent decades,fog computing has played a vital role in executing parallel computational tasks,specifically,scientific workflow tasks.In cloud data centers,fog computing takes more time to run workflow applications.Therefore,it is essential to develop effective models for Virtual Machine(VM)allocation and task scheduling in fog computing environments.Effective task scheduling,VM migration,and allocation,altogether optimize the use of computational resources across different fog nodes.This process ensures that the tasks are executed with minimal energy consumption,which reduces the chances of resource bottlenecks.In this manuscript,the proposed framework comprises two phases:(i)effective task scheduling using a fractional selectivity approach and(ii)VM allocation by proposing an algorithm by the name of Fitness Sharing Chaotic Particle Swarm Optimization(FSCPSO).The proposed FSCPSO algorithm integrates the concepts of chaos theory and fitness sharing that effectively balance both global exploration and local exploitation.This balance enables the use of a wide range of solutions that leads to minimal total cost and makespan,in comparison to other traditional optimization algorithms.The FSCPSO algorithm’s performance is analyzed using six evaluation measures namely,Load Balancing Level(LBL),Average Resource Utilization(ARU),total cost,makespan,energy consumption,and response time.In relation to the conventional optimization algorithms,the FSCPSO algorithm achieves a higher LBL of 39.12%,ARU of 58.15%,a minimal total cost of 1175,and a makespan of 85.87 ms,particularly when evaluated for 50 tasks. 展开更多
关键词 fog computing fractional selectivity approach particle swarm optimization algorithm task scheduling virtual machine allocation
下载PDF
YOLO-FOG雾天目标检测算法
19
作者 谷芳 朱凯 《装备机械》 2024年第2期1-4,30,共5页
雾天条件下,图像质量较低,导致目标检测存在难度。传统的YOLOv5s算法可以在雾天环境中进行检测,但是检测速度慢。对此,提出一种名为YOLO-FOG的雾天目标检测算法,可以提高雾天环境中的检测速度。这一算法在主干网络部分使用RepVGG结构,... 雾天条件下,图像质量较低,导致目标检测存在难度。传统的YOLOv5s算法可以在雾天环境中进行检测,但是检测速度慢。对此,提出一种名为YOLO-FOG的雾天目标检测算法,可以提高雾天环境中的检测速度。这一算法在主干网络部分使用RepVGG结构,减小计算量,提高特征表示能力,加快推理速度,以提高检测的实时性。试验结果表明,针对RTTS数据集,自行车、公共汽车、汽车、摩托车、行人五类目标的平均精度依次可以达到81.72%、79.99%、89.24%、73.46%、83.34%,并且识别时间仅为每张0.065 s。YOLO-FOG雾天目标检测算法兼顾准确性和实时性,具有良好的应用前景。 展开更多
关键词 目标 检测 算法
下载PDF
Monitoring Sea Fog over the Yellow Sea and Bohai Bay Based on Deep Convolutional Neural Network
20
作者 HUANG Bin GAO Shi-bo +2 位作者 YU Run-ling ZHAO Wei ZHOU Guan-bo 《Journal of Tropical Meteorology》 SCIE 2024年第3期223-229,共7页
In this paper,we utilized the deep convolutional neural network D-LinkNet,a model for semantic segmentation,to analyze the Himawari-8 satellite data captured from 16 channels at a spatial resolution of 0.5 km,with a f... In this paper,we utilized the deep convolutional neural network D-LinkNet,a model for semantic segmentation,to analyze the Himawari-8 satellite data captured from 16 channels at a spatial resolution of 0.5 km,with a focus on the area over the Yellow Sea and the Bohai Sea(32°-42°N,117°-127°E).The objective was to develop an algorithm for fusing and segmenting multi-channel images from geostationary meteorological satellites,specifically for monitoring sea fog in this region.Firstly,the extreme gradient boosting algorithm was adopted to evaluate the data from the 16 channels of the Himawari-8 satellite for sea fog detection,and we found that the top three channels in order of importance were channels 3,4,and 14,which were fused into false color daytime images,while channels 7,13,and 15 were fused into false color nighttime images.Secondly,the simple linear iterative super-pixel clustering algorithm was used for the pixel-level segmentation of false color images,and based on super-pixel blocks,manual sea-fog annotation was performed to obtain fine-grained annotation labels.The deep convolutional neural network D-LinkNet was built on the ResNet backbone and the dilated convolutional layers with direct connections were added in the central part to form a string-and-combine structure with five branches having different depths and receptive fields.Results show that the accuracy rate of fog area(proportion of detected real fog to detected fog)was 66.5%,the recognition rate of fog zone(proportion of detected real fog to real fog or cloud cover)was 51.9%,and the detection accuracy rate(proportion of samples detected correctly to total samples)was 93.2%. 展开更多
关键词 deep convolutional neural network satellite images sea fog detection multi-channel image fusion
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部