For submanifolds in a cosymplectic space form tangent to the structure vector field ξ, two important inequalities with Ricci curvature, scalar curvature and the squared mean curvature are obtained. These results are ...For submanifolds in a cosymplectic space form tangent to the structure vector field ξ, two important inequalities with Ricci curvature, scalar curvature and the squared mean curvature are obtained. These results are also applied to get corresponding consequences for anti-invariant submanifolds.展开更多
文摘This paper obtainues the integral formulas of anti-invariant minimal submedfolds of a Sasakian space form, and then applies them to spectral geometry.
基金Supported by the Natural Science Foundation of Henan(004051900)
文摘For submanifolds in a cosymplectic space form tangent to the structure vector field ξ, two important inequalities with Ricci curvature, scalar curvature and the squared mean curvature are obtained. These results are also applied to get corresponding consequences for anti-invariant submanifolds.