This study aims to clarify the mechanisms for the grain boundary(GB)segregation through investigating the absorption of excess solute atoms at GBs in Al−Cu alloys by using the hybrid molecular dynamics/Monte Carlo sim...This study aims to clarify the mechanisms for the grain boundary(GB)segregation through investigating the absorption of excess solute atoms at GBs in Al−Cu alloys by using the hybrid molecular dynamics/Monte Carlo simulations.Two segregation mechanisms,substitutional and interstitial mechanisms,are observed.The intergranular defects,including dislocations,steps and vacancies,and the intervals in structural units are conductive to the prevalence of interstitial mechanism.And substitutional mechanism is favored by the highly ordered twin GBs.Furthermore,the two mechanisms affect the GB structure differently.It is quantified that interstitial mechanism is less destructive to GB structure than substitutional one,and often leads to a segregation level being up to about 6 times higher than the latter.These findings contribute to atomic scale insights into the microscopic mechanisms about how solute atoms are absorbed by GB structures,and clarify the correlation among intergranular structures,segregation mechanisms and kinetics.展开更多
Several eigenvalue properties of the third-order boundary value problems with distributional potentials are investigated.Firstly,we prove that the operators associated with the problems are self-adjoint and the corres...Several eigenvalue properties of the third-order boundary value problems with distributional potentials are investigated.Firstly,we prove that the operators associated with the problems are self-adjoint and the corresponding eigenvalues are real.Next,the continuity and differential properties of the eigenvalues of the problems are given,especially we find the differential expressions for the boundary conditions,the coefficient functions and the endpoints.Finally,we show a brief application to a kind of transmission boundary value problems of the problems studied here.展开更多
The focusing modified Korteweg-de Vries(mKdV)equation with multiple high-order poles under the nonzero boundary conditions is first investigated via developing a Riemann-Hilbert(RH)approach.We begin with the asymptoti...The focusing modified Korteweg-de Vries(mKdV)equation with multiple high-order poles under the nonzero boundary conditions is first investigated via developing a Riemann-Hilbert(RH)approach.We begin with the asymptotic property,symmetry and analyticity of the Jost solutions,and successfully construct the RH problem of the focusing mKdV equation.We solve the RH problem when 1/S_(11)(k)has a single highorder pole and multiple high-order poles.Furthermore,we derive the soliton solutions of the focusing mKdV equation which corresponding with a single high-order pole and multiple high-order poles,respectively.Finally,the dynamics of one-and two-soliton solutions are graphically discussed.展开更多
We study the initial-boundary value problem of the Navier-Stokes equations for incompressible fluids in a general domain in R^n with compact and smooth boundary, subject to the kinematic and vorticity boundary conditi...We study the initial-boundary value problem of the Navier-Stokes equations for incompressible fluids in a general domain in R^n with compact and smooth boundary, subject to the kinematic and vorticity boundary conditions on the non-flat boundary. We observe that, under the nonhomogeneous boundary conditions, the pressure p can be still recovered by solving the Neumann problem for the Poisson equation. Then we establish the well-posedness of the unsteady Stokes equations and employ the solution to reduce our initial-boundary value problem into an initial-boundary value problem with absolute boundary conditions. Based on this, we first establish the well-posedness for an appropriate local linearized problem with the absolute boundary conditions and the initial condition (without the incompressibility condition), which establishes a velocity mapping. Then we develop apriori estimates for the velocity mapping, especially involving the Sobolev norm for the time-derivative of the mapping to deal with the complicated boundary conditions, which leads to the existence of the fixed point of the mapping and the existence of solutions to our initial-boundary value problem. Finally, we establish that, when the viscosity coefficient tends zero, the strong solutions of the initial-boundary value problem in R^n(n ≥ 3) with nonhomogeneous vorticity boundary condition converge in L^2 to the corresponding Euler equations satisfying the kinematic condition.展开更多
In this paper, we consider a model system with two identical time-delayed coupled layers. Synchronization and anti-phase synchronization are exhibited in the reactive system without diffusion term. New segmented spira...In this paper, we consider a model system with two identical time-delayed coupled layers. Synchronization and anti-phase synchronization are exhibited in the reactive system without diffusion term. New segmented spiral waves, which are constituted by many thin trips, are found in each layer of two identical time-delayed coupled layers, and are different from the segmented spiral waves in a water-in-oil aerosol sodium bis(2-ethylhexyl) sulfosuccinate (AOT) microemulsion (ME) (BZ-AOT system), which consists of many small segments. "Anti-phase spiral wave synchronization" can be realized between the first layer and the second one. For different excitable parameters, we also give the minimum values of the coupling strength to generate segmented spiral waves and the tip orbits of spiral waves in the whole bilayer.展开更多
By focusing on impact-triggered phenomena having occurred synchronously with or shortly prior to formation boundaries, two glass sand pits (Upper Maastrichtian) located near Uhry, North Germany have been studied in re...By focusing on impact-triggered phenomena having occurred synchronously with or shortly prior to formation boundaries, two glass sand pits (Upper Maastrichtian) located near Uhry, North Germany have been studied in regard to the K/T boundary throughout the last 40 years during progressive exploitation of glass sand. However, a clastic sequence of sand, mass flow and pelite deposited in a deep channel of about 10 - 12 m in depth, eroded into the glass sand, surprisingly shows an Upper Eocene/Lower Oligocene age, well defined by a Dinocyst assemblage (Chiripteridium c. galea, Enneado cysta arcuata, Areoligera tauloma = D 12na - D 14na) from a 0.5 meter thick pelite that marks the Rupelian transgression within an estuarian system running northwest/southeastward. The section exposes a high energy mass flow and formerly solid frozen angular glass sand blocks of up to a meter-size embedded in fluvial sand of the channel base. Furthermore, erratic clastics of up to 0.4 meter in diameter appear at the pelite base. The “unusual” Dinocyst assemblage is of autochthonous origin and comprises the fresh water alga Pediastrum Kawraiskyias indicator for cold climate, hitherto only known from Quaternary. Missing pollen indicate a vegetation-less hinterland. Thus, there cannot be any doubt that around the E/O b. at least one “rare event” has happened as verified by short tremendous flooding and significant temperature fall (“cosmic winter”). According to the attitude of the global impact scientific community, these phenomena belong to the spectrum of “indirect effects” of major impacts. Radiometric ages of relevant major impact events underline that both impact craters of Popigai, Russia (100 Kilometer in diameter, 35.7 Ma) and Chesabreake, USA (85 Kilometer in diameter, 35.5 Ma) happened shortly before the E/O b.(33.75 Ma). In addition, a tektite strewn field along the eastern coast of the USA and micro-tektites (Gulf of Mexico, Caribbean Sea, Barbados) yield an age of ~34.4 Ma, close to the E/O b. Consequently, there does exist an extremely high probability that Uhry site hosts impact-triggered products at the E/O b. It should be stressed that the Upper Eocene Epoch comprises an amazingly high number of impact events during the time-span 34.2 - 37.0 Ma.展开更多
Based on the daily rainfall datasets from 740 stations in China from 1954 to 2005 and the NCEP/NCAR reanalysis data, the relationship between the north-south anti-phase distribution(APD) of rainfall during Meiyu perio...Based on the daily rainfall datasets from 740 stations in China from 1954 to 2005 and the NCEP/NCAR reanalysis data, the relationship between the north-south anti-phase distribution(APD) of rainfall during Meiyu periods and the Quasi-Biweekly Oscillation(QBWO) in the atmosphere was analyzed. Diagnostic results are as follows:(1) there was significant north-south oscillation of Meiyu rainfall during the 16 years from 1954 to 2005. Since the 1990 s, the APD enhanced significantly and showed 2- and 4-6-year period. In the region with more rainfall, the QBWO was always more active.(2) The APD of Meiyu and north-south movements of precipitation in eastern China belong to the same phase.(3) The 10-25 day filtered water vapor flux could spread to the area north of 30°N in 1991. The divergence of the water vapor flux which propagated from middle- and higher- latitudes to the of Yangtze-Huaihe River Basins(YHRB) was significant in 1991, but the latitudes that the water vapor flux could reach were further southward and there was no southward propagation of divergence in 1993.(4) The locations of Western Pacific Subtropical High(WPSH) and 10-25 day anti-cyclone, which modulated WPSH's advancement in and out of the South China Sea, were relatively northward in 1991. Furthermore, the vertical circulation showed north-south deviation between 1991 and 1993, just as other elements of the circulation did.展开更多
This paper demonstrates and analyses double heteroclinic tangency in a three-well potential model, which can produce three new types of bifurcations of basin boundaries including from smooth to Wada basin boundaries, ...This paper demonstrates and analyses double heteroclinic tangency in a three-well potential model, which can produce three new types of bifurcations of basin boundaries including from smooth to Wada basin boundaries, from fractal to Wada basin boundaries in which no changes of accessible periodic orbits happen, and from Wada to Wada basin boundaries. In a model of mechanical oscillator, it shows that a Wada basin boundary can be smooth.展开更多
In this paper, we developed the theory and algorithm of an elastic one-way boundary element method(BEM) and a corresponding hybrid elastic thin-slab propagator for earth media with sharp boundaries between strong co...In this paper, we developed the theory and algorithm of an elastic one-way boundary element method(BEM) and a corresponding hybrid elastic thin-slab propagator for earth media with sharp boundaries between strong contrast media. This approach can takes the advantage of accurate boundary condition of BEM and completely overcomes the weak contrast limitation of the perturbationtheory based one-way operator approach. The one-way BEM is a smooth boundary approximation, which avoids huge matrix operations in exact full BEM. In addition, the one-way BEM can model the primary-only transmitted and reflected waves and therefore is a valuable tool in elastic imaging and inversion. Through numerical tests for some simple models,we proved the validity and efficiency of the proposed method.展开更多
This paper suggests a scheme of electromagnetic chirality-induced negative refraction utilizing magneto-lectric cross coupling in a four-level atomic system. The negative refraction can be achieved with the two chiral...This paper suggests a scheme of electromagnetic chirality-induced negative refraction utilizing magneto-lectric cross coupling in a four-level atomic system. The negative refraction can be achieved with the two chirality coefficients having the same amplitude but the opposite phase, without requiring the simultaneous presence of an electric-dipole and a magnetic-dipole transition near the same transition frequency.展开更多
With rapid economic development,the size of urban land in China is expanding dramatically.The Urban Growth Boundary(UGB)is an expandable spatial boundary for urban construction in a certain period in order to control ...With rapid economic development,the size of urban land in China is expanding dramatically.The Urban Growth Boundary(UGB)is an expandable spatial boundary for urban construction in a certain period in order to control the urban sprawl.Reasonable delineation of UGB can inhibit the disorderly spread of urban space and guide the normal development of the city.It is of practical significance for the construction of green urban space.The study utilizes GIS technology to establish a land construction suitability evaluation system for Nankang city,which is experiencing rapid urban expansion,and outlines the preliminary UGB under the future land use simulation(FLUS)model.At the same time,considering the coupled coordination of"Production-Living-Ecological Space",and based on the suitability evaluation,we revised the preliminary UGB by combining the advantages of the patch-generating land use simulation(PLUS)model and the convex hull model to delineate the final UGB.The results show that:1)the comprehensive score of the evaluation of the suitability of the construction of land from high to low shows the distribution of the center of the city to the surrounding circle type spread,the center of the city has the highest suitability score.The results of convex hull model show that the urban expansion type of Nankang is epitaxial.In the future,the urban expansion will mainly occur in the northern part of the city.The PLUS model predicts an increase of 3359.97 hm^(2)of construction land in Nankang by 2035,of which 2022.97 hm^(2)is urban construction land.2)The FLUS model has a prediction accuracy of 86.3%and delineates a preliminary UGB area of 9215.07 hm^(2).3)We used the results of the construction suitability evaluation,PLUS model simulation results,and convex hull model predictions to revise the originally delineated UGB.The final delineated UGB area is 8895.67 hm^(2)and it is capable of meeting the future development of the study area.The results of the delineation can promote sustainable urban development,and the delineation methodology can provide a reference basis for the preparation of territorial spatial planning.展开更多
Multi-scale system remains a classical scientific problem in fluid dynamics,biology,etc.In the present study,a scheme of multi-scale Physics-informed neural networks is proposed to solve the boundary layer flow at hig...Multi-scale system remains a classical scientific problem in fluid dynamics,biology,etc.In the present study,a scheme of multi-scale Physics-informed neural networks is proposed to solve the boundary layer flow at high Reynolds numbers without any data.The flow is divided into several regions with different scales based on Prandtl's boundary theory.Different regions are solved with governing equations in different scales.The method of matched asymptotic expansions is used to make the flow field continuously.A flow on a semi infinite flat plate at a high Reynolds number is considered a multi-scale problem because the boundary layer scale is much smaller than the outer flow scale.The results are compared with the reference numerical solutions,which show that the msPINNs can solve the multi-scale problem of the boundary layer in high Reynolds number flows.This scheme can be developed for more multi-scale problems in the future.展开更多
A hydrodynamic boundary condition for the lattice Boltzmann model at impermeable boundaries is developed.This boundary condition satisfies both the no-slip condition and the fluid conservation at boundary nodes.Poiseu...A hydrodynamic boundary condition for the lattice Boltzmann model at impermeable boundaries is developed.This boundary condition satisfies both the no-slip condition and the fluid conservation at boundary nodes.Poiseuille flow and Couette flow are calculated with this technique to demonstrate the accuracy of the present boundary condition.展开更多
This paper is concerned with the Navier-Stokes/Allen-Cahn system,which is used to model the dynamics of immiscible two-phase flows.We consider a 1D free boundary problem and assume that the viscosity coefficient depen...This paper is concerned with the Navier-Stokes/Allen-Cahn system,which is used to model the dynamics of immiscible two-phase flows.We consider a 1D free boundary problem and assume that the viscosity coefficient depends on the density in the form ofη(ρ)=ρ^(α).The existence of unique global H^(2m)-solutions(m∈N)to the free boundary problem is proven for when 0<α<1/4.Furthermore,we obtain the global C^(∞)-solutions if the initial data is smooth.展开更多
Transition of flows past a pair of side-by-side circular cylinders are investigated by numerical simulations and the bifurcation analysis of the numerical results. Various flow patterns behind the cylinder-pair have b...Transition of flows past a pair of side-by-side circular cylinders are investigated by numerical simulations and the bifurcation analysis of the numerical results. Various flow patterns behind the cylinder-pair have been identified by the gap ratio (G) and Reynolds number (Re). This study focus on transition of in-phase and anti-phase vortex shedding synchronized forms. A nested Cartesian-grid formulation, in combination with an effective immersed boundary method and a two-step fractional-step procedure, has been adopted to simulate the flows. Numerical results reveal that the in-phase and anti-phase vortex shedding flows at Re = 100 can co-exist at 2.08 ≤G≤ 2.58. Hysteresis loop with increasing/decreasing G at constant Reynolds number Re = 100 is reported.展开更多
The boundary value problem plays a crucial role in the analytical investigation of continuum dynamics. In this paper, an analytical method based on the Dirac operator to solve the nonlinear and non-homogeneous boundar...The boundary value problem plays a crucial role in the analytical investigation of continuum dynamics. In this paper, an analytical method based on the Dirac operator to solve the nonlinear and non-homogeneous boundary value problem of rectangular plates is proposed. The key concept behind this method is to transform the nonlinear or non-homogeneous part on the boundary into a lateral force within the governing function by the Dirac operator, which linearizes and homogenizes the original boundary, allowing one to employ the modal superposition method for obtaining solutions to reconstructive governing equations. Once projected into the modal space, the harmonic balance method(HBM) is utilized to solve coupled ordinary differential equations(ODEs)of truncated systems with nonlinearity. To validate the convergence and accuracy of the proposed Dirac method, the results of typical examples, involving nonlinearly restricted boundaries, moment excitation, and displacement excitation, are compared with those of the differential quadrature element method(DQEM). The results demonstrate that when dealing with nonlinear boundaries, the Dirac method exhibits more excellent accuracy and convergence compared with the DQEM. However, when facing displacement excitation, there exist some discrepancies between the proposed approach and simulations;nevertheless, the proposed method still accurately predicts resonant frequencies while being uniquely capable of handling nonuniform displacement excitations. Overall, this methodology offers a convenient way for addressing nonlinear and non-homogenous plate boundaries.展开更多
Ferritic/martensitic(F/M)steel is widely used as a structural material in thermal and nuclear power plants.However,it is susceptible to intergranular damage,which is a critical issue,under service conditions.In this s...Ferritic/martensitic(F/M)steel is widely used as a structural material in thermal and nuclear power plants.However,it is susceptible to intergranular damage,which is a critical issue,under service conditions.In this study,to improve the resistance to intergranular damage of F/M steel,a thermomechanical process(TMP)was employed to achieve a grain boundary engineering(GBE)microstructure in F/M steel P92.The TMP,including cold-rolling thickness reduction of 6%,9%,and 12%,followed by austenitization at 1323 K for 40 min and tempering at 1053 K for 45 min,was applied to the as-received(AR)P92 steel.The prior austenite grain(PAG)size,prior austenite grain boundary character distribution(GBCD),and connectivity of prior austenite grain boundaries(PAGBs)were investigated.Compared to the AR specimen,the PAG size did not change significantly.The fraction of coincident site lattice boundaries(CSLBs,3≤Σ≤29)and Σ3^(n) boundaries along PAGBs decreased with increasing reduction ratio because the recrystallization fraction increased with increasing reduction ratio.The PAGB connectivity of the 6%deformed specimen slightly deteriorated compared with that of the AR specimen.Moreover,potentiodynamic polarization studies revealed that the intergranular damage resistance of the studied steel could be improved by increasing the fraction of CSLBs along the PAGBs,indicating that the TMP,which involves low deformation,could enhance the intergranular damage resistance.展开更多
This study investigates the three-dimensional(3D)effects introduced by the end walls for an aspect ratio of1 in ramp-induced shock wave boundary layer interactions.The simulations are performed using a symmetry bounda...This study investigates the three-dimensional(3D)effects introduced by the end walls for an aspect ratio of1 in ramp-induced shock wave boundary layer interactions.The simulations are performed using a symmetry boundary condition in the spanwise direction at free-stream Mach numbers in 3D.The simulations are performed using an in-house compressible supersonic solver“Open SBLIFVM”.Two free stream Mach numbers 2.5,and3 are used in the current work,and the simulated results are compared with the aspect ratio 1 simulations by Mangalagiri and Jammy.The inflow is initialized with a similarity solution;its Reynolds number based on the boundary layer thickness is adjusted such that the Reynolds number at the start of the ramp is kept at 3×10^(5)for all simulations.From the results,it is evident that the introduction of sidewalls resulted in a shorter centerline separation length when compared with the two-dimensional(2D)simulations.This contradicts the results at Mach 2 by Mangalgiri and Jammy where the vortex observed at Mach 2 in the central separation region disappeared with increasing free-stream Mach number.Additionally,the topology of interaction shifted from owl-like separation of the second kind to the first kind when the freestream Mach number increased from2 to 2.5.It can be concluded that the interaction topology is crucial to the increase or decrease of the central separation length when compared to 2D simulations.展开更多
Applying numerical simulation technology to investigate fluid-solid interaction involving complex curved bound-aries is vital in aircraft design,ocean,and construction engineering.However,current methods such as Latti...Applying numerical simulation technology to investigate fluid-solid interaction involving complex curved bound-aries is vital in aircraft design,ocean,and construction engineering.However,current methods such as Lattice Boltzmann(LBM)and the immersion boundary method based on solid ratio(IMB)have limitations in identifying custom curved boundaries.Meanwhile,IBM based on velocity correction(IBM-VC)suffers from inaccuracies and numerical instability.Therefore,this study introduces a high-accuracy curve boundary recognition method(IMB-CB),which identifies boundary nodes by moving the search box,and corrects the weighting function in LBM by calculating the solid ratio of the boundary nodes,achieving accurate recognition of custom curve boundaries.In addition,curve boundary image and dot methods are utilized to verify IMB-CB.The findings revealed that IMB-CB can accurately identify the boundary,showing an error of less than 1.8%with 500 lattices.Also,the flow in the custom curve boundary and aerodynamic characteristics of the NACA0012 airfoil are calculated and compared to IBM-VC.Results showed that IMB-CB yields lower lift and drag coefficient errors than IBM-VC,with a 1.45%drag coefficient error.In addition,the characteristic curve of IMB-CB is very stable,whereas that of IBM-VC is not.For the moving boundary problem,LBM-IMB-CB with discrete element method(DEM)is capable of accurately simulating the physical phenomena of multi-moving particle flow in complex curved pipelines.This research proposes a new curve boundary recognition method,which can significantly promote the stability and accuracy of fluid-solid interaction simulations and thus has huge applications in engineering.展开更多
In this study,a wavelet multi-resolution interpolation Galerkin method(WMIGM)is proposed to solve linear singularly perturbed boundary value problems.Unlike conventional wavelet schemes,the proposed algorithm can be r...In this study,a wavelet multi-resolution interpolation Galerkin method(WMIGM)is proposed to solve linear singularly perturbed boundary value problems.Unlike conventional wavelet schemes,the proposed algorithm can be readily extended to special node generation techniques,such as the Shishkin node.Such a wavelet method allows a high degree of local refinement of the nodal distribution to efficiently capture localized steep gradients.All the shape functions possess the Kronecker delta property,making the imposition of boundary conditions as easy as that in the finite element method.Four numerical examples are studied to demonstrate the validity and accuracy of the proposedwavelet method.The results showthat the use ofmodified Shishkin nodes can significantly reduce numerical oscillation near the boundary layer.Compared with many other methods,the proposed method possesses satisfactory accuracy and efficiency.The theoretical and numerical results demonstrate that the order of theε-uniform convergence of this wavelet method can reach 5.展开更多
基金supported by grants from the National Natural Science Foundation of China(Nos.52031017,51801237)the National Key Laboratory of Science and Technology on High-strength Structural Materials in Central South University,China(No.6142912200106).
文摘This study aims to clarify the mechanisms for the grain boundary(GB)segregation through investigating the absorption of excess solute atoms at GBs in Al−Cu alloys by using the hybrid molecular dynamics/Monte Carlo simulations.Two segregation mechanisms,substitutional and interstitial mechanisms,are observed.The intergranular defects,including dislocations,steps and vacancies,and the intervals in structural units are conductive to the prevalence of interstitial mechanism.And substitutional mechanism is favored by the highly ordered twin GBs.Furthermore,the two mechanisms affect the GB structure differently.It is quantified that interstitial mechanism is less destructive to GB structure than substitutional one,and often leads to a segregation level being up to about 6 times higher than the latter.These findings contribute to atomic scale insights into the microscopic mechanisms about how solute atoms are absorbed by GB structures,and clarify the correlation among intergranular structures,segregation mechanisms and kinetics.
基金supported by National Natural Science Foundation of China(No.12261066)the Natural Science Foundation of Inner Mongolia(No.2021MS01020 and No.2023LHMS01015).
文摘Several eigenvalue properties of the third-order boundary value problems with distributional potentials are investigated.Firstly,we prove that the operators associated with the problems are self-adjoint and the corresponding eigenvalues are real.Next,the continuity and differential properties of the eigenvalues of the problems are given,especially we find the differential expressions for the boundary conditions,the coefficient functions and the endpoints.Finally,we show a brief application to a kind of transmission boundary value problems of the problems studied here.
基金supported by the National Natural Science Foundation of China(Nos.12371255 and 11975306)the Natural Science Foundation of Jiangsu Province(No.BK20181351)+3 种基金the Six Talent Peaks Project in Jiangsu Province(No.JY-059)the 333 Project in Jiangsu Provincethe Fundamental Research Fund for the Central Universities(Nos.2019ZDPY07)the Graduate Innovation Program of China University of Mining and Technology(No.2022WLJCRCZL139).
文摘The focusing modified Korteweg-de Vries(mKdV)equation with multiple high-order poles under the nonzero boundary conditions is first investigated via developing a Riemann-Hilbert(RH)approach.We begin with the asymptotic property,symmetry and analyticity of the Jost solutions,and successfully construct the RH problem of the focusing mKdV equation.We solve the RH problem when 1/S_(11)(k)has a single highorder pole and multiple high-order poles.Furthermore,we derive the soliton solutions of the focusing mKdV equation which corresponding with a single high-order pole and multiple high-order poles,respectively.Finally,the dynamics of one-and two-soliton solutions are graphically discussed.
基金supported in part by the National Science Foundation under Grants DMS-0807551, DMS-0720925, and DMS-0505473the Natural Science Foundationof China (10728101)supported in part by EPSRC grant EP/F029578/1
文摘We study the initial-boundary value problem of the Navier-Stokes equations for incompressible fluids in a general domain in R^n with compact and smooth boundary, subject to the kinematic and vorticity boundary conditions on the non-flat boundary. We observe that, under the nonhomogeneous boundary conditions, the pressure p can be still recovered by solving the Neumann problem for the Poisson equation. Then we establish the well-posedness of the unsteady Stokes equations and employ the solution to reduce our initial-boundary value problem into an initial-boundary value problem with absolute boundary conditions. Based on this, we first establish the well-posedness for an appropriate local linearized problem with the absolute boundary conditions and the initial condition (without the incompressibility condition), which establishes a velocity mapping. Then we develop apriori estimates for the velocity mapping, especially involving the Sobolev norm for the time-derivative of the mapping to deal with the complicated boundary conditions, which leads to the existence of the fixed point of the mapping and the existence of solutions to our initial-boundary value problem. Finally, we establish that, when the viscosity coefficient tends zero, the strong solutions of the initial-boundary value problem in R^n(n ≥ 3) with nonhomogeneous vorticity boundary condition converge in L^2 to the corresponding Euler equations satisfying the kinematic condition.
基金The project supported by National Natural Science Foundation of China under Grant No.10647127National Natural Science Foundation of China for Major Projects under Grant No.10335010the Natural Science Foundation of Hebei Province of China under Grant No.A2006000128
文摘In this paper, we consider a model system with two identical time-delayed coupled layers. Synchronization and anti-phase synchronization are exhibited in the reactive system without diffusion term. New segmented spiral waves, which are constituted by many thin trips, are found in each layer of two identical time-delayed coupled layers, and are different from the segmented spiral waves in a water-in-oil aerosol sodium bis(2-ethylhexyl) sulfosuccinate (AOT) microemulsion (ME) (BZ-AOT system), which consists of many small segments. "Anti-phase spiral wave synchronization" can be realized between the first layer and the second one. For different excitable parameters, we also give the minimum values of the coupling strength to generate segmented spiral waves and the tip orbits of spiral waves in the whole bilayer.
文摘By focusing on impact-triggered phenomena having occurred synchronously with or shortly prior to formation boundaries, two glass sand pits (Upper Maastrichtian) located near Uhry, North Germany have been studied in regard to the K/T boundary throughout the last 40 years during progressive exploitation of glass sand. However, a clastic sequence of sand, mass flow and pelite deposited in a deep channel of about 10 - 12 m in depth, eroded into the glass sand, surprisingly shows an Upper Eocene/Lower Oligocene age, well defined by a Dinocyst assemblage (Chiripteridium c. galea, Enneado cysta arcuata, Areoligera tauloma = D 12na - D 14na) from a 0.5 meter thick pelite that marks the Rupelian transgression within an estuarian system running northwest/southeastward. The section exposes a high energy mass flow and formerly solid frozen angular glass sand blocks of up to a meter-size embedded in fluvial sand of the channel base. Furthermore, erratic clastics of up to 0.4 meter in diameter appear at the pelite base. The “unusual” Dinocyst assemblage is of autochthonous origin and comprises the fresh water alga Pediastrum Kawraiskyias indicator for cold climate, hitherto only known from Quaternary. Missing pollen indicate a vegetation-less hinterland. Thus, there cannot be any doubt that around the E/O b. at least one “rare event” has happened as verified by short tremendous flooding and significant temperature fall (“cosmic winter”). According to the attitude of the global impact scientific community, these phenomena belong to the spectrum of “indirect effects” of major impacts. Radiometric ages of relevant major impact events underline that both impact craters of Popigai, Russia (100 Kilometer in diameter, 35.7 Ma) and Chesabreake, USA (85 Kilometer in diameter, 35.5 Ma) happened shortly before the E/O b.(33.75 Ma). In addition, a tektite strewn field along the eastern coast of the USA and micro-tektites (Gulf of Mexico, Caribbean Sea, Barbados) yield an age of ~34.4 Ma, close to the E/O b. Consequently, there does exist an extremely high probability that Uhry site hosts impact-triggered products at the E/O b. It should be stressed that the Upper Eocene Epoch comprises an amazingly high number of impact events during the time-span 34.2 - 37.0 Ma.
基金Beijing Excellent Talents Cultivation ProjectOceanography Science Foundation for Youth Scholars of State Oceanic Administration(2013256)
文摘Based on the daily rainfall datasets from 740 stations in China from 1954 to 2005 and the NCEP/NCAR reanalysis data, the relationship between the north-south anti-phase distribution(APD) of rainfall during Meiyu periods and the Quasi-Biweekly Oscillation(QBWO) in the atmosphere was analyzed. Diagnostic results are as follows:(1) there was significant north-south oscillation of Meiyu rainfall during the 16 years from 1954 to 2005. Since the 1990 s, the APD enhanced significantly and showed 2- and 4-6-year period. In the region with more rainfall, the QBWO was always more active.(2) The APD of Meiyu and north-south movements of precipitation in eastern China belong to the same phase.(3) The 10-25 day filtered water vapor flux could spread to the area north of 30°N in 1991. The divergence of the water vapor flux which propagated from middle- and higher- latitudes to the of Yangtze-Huaihe River Basins(YHRB) was significant in 1991, but the latitudes that the water vapor flux could reach were further southward and there was no southward propagation of divergence in 1993.(4) The locations of Western Pacific Subtropical High(WPSH) and 10-25 day anti-cyclone, which modulated WPSH's advancement in and out of the South China Sea, were relatively northward in 1991. Furthermore, the vertical circulation showed north-south deviation between 1991 and 1993, just as other elements of the circulation did.
基金Project supported by the National Natural Science Foundation of China (Grant Nos 10432010 and 10472086)
文摘This paper demonstrates and analyses double heteroclinic tangency in a three-well potential model, which can produce three new types of bifurcations of basin boundaries including from smooth to Wada basin boundaries, from fractal to Wada basin boundaries in which no changes of accessible periodic orbits happen, and from Wada to Wada basin boundaries. In a model of mechanical oscillator, it shows that a Wada basin boundary can be smooth.
基金supported by National Scientific Foundation of China with Grant No. 41774067
文摘In this paper, we developed the theory and algorithm of an elastic one-way boundary element method(BEM) and a corresponding hybrid elastic thin-slab propagator for earth media with sharp boundaries between strong contrast media. This approach can takes the advantage of accurate boundary condition of BEM and completely overcomes the weak contrast limitation of the perturbationtheory based one-way operator approach. The one-way BEM is a smooth boundary approximation, which avoids huge matrix operations in exact full BEM. In addition, the one-way BEM can model the primary-only transmitted and reflected waves and therefore is a valuable tool in elastic imaging and inversion. Through numerical tests for some simple models,we proved the validity and efficiency of the proposed method.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 60768001 and 10464002)
文摘This paper suggests a scheme of electromagnetic chirality-induced negative refraction utilizing magneto-lectric cross coupling in a four-level atomic system. The negative refraction can be achieved with the two chirality coefficients having the same amplitude but the opposite phase, without requiring the simultaneous presence of an electric-dipole and a magnetic-dipole transition near the same transition frequency.
基金supported by the Humanities and Social Sciences Program of Jiangxi Universities(Grant No.GL21129)the Graduate Student Innovation Fund Program of Gannan Normal University(Grant No.YCX23A043)the Open Subject of Geography Discipline Construction of Gannan Normal University(Grant No.200084).
文摘With rapid economic development,the size of urban land in China is expanding dramatically.The Urban Growth Boundary(UGB)is an expandable spatial boundary for urban construction in a certain period in order to control the urban sprawl.Reasonable delineation of UGB can inhibit the disorderly spread of urban space and guide the normal development of the city.It is of practical significance for the construction of green urban space.The study utilizes GIS technology to establish a land construction suitability evaluation system for Nankang city,which is experiencing rapid urban expansion,and outlines the preliminary UGB under the future land use simulation(FLUS)model.At the same time,considering the coupled coordination of"Production-Living-Ecological Space",and based on the suitability evaluation,we revised the preliminary UGB by combining the advantages of the patch-generating land use simulation(PLUS)model and the convex hull model to delineate the final UGB.The results show that:1)the comprehensive score of the evaluation of the suitability of the construction of land from high to low shows the distribution of the center of the city to the surrounding circle type spread,the center of the city has the highest suitability score.The results of convex hull model show that the urban expansion type of Nankang is epitaxial.In the future,the urban expansion will mainly occur in the northern part of the city.The PLUS model predicts an increase of 3359.97 hm^(2)of construction land in Nankang by 2035,of which 2022.97 hm^(2)is urban construction land.2)The FLUS model has a prediction accuracy of 86.3%and delineates a preliminary UGB area of 9215.07 hm^(2).3)We used the results of the construction suitability evaluation,PLUS model simulation results,and convex hull model predictions to revise the originally delineated UGB.The final delineated UGB area is 8895.67 hm^(2)and it is capable of meeting the future development of the study area.The results of the delineation can promote sustainable urban development,and the delineation methodology can provide a reference basis for the preparation of territorial spatial planning.
文摘Multi-scale system remains a classical scientific problem in fluid dynamics,biology,etc.In the present study,a scheme of multi-scale Physics-informed neural networks is proposed to solve the boundary layer flow at high Reynolds numbers without any data.The flow is divided into several regions with different scales based on Prandtl's boundary theory.Different regions are solved with governing equations in different scales.The method of matched asymptotic expansions is used to make the flow field continuously.A flow on a semi infinite flat plate at a high Reynolds number is considered a multi-scale problem because the boundary layer scale is much smaller than the outer flow scale.The results are compared with the reference numerical solutions,which show that the msPINNs can solve the multi-scale problem of the boundary layer in high Reynolds number flows.This scheme can be developed for more multi-scale problems in the future.
基金Supported in part by Exxon R&E company,the Chinese Postdoctoral Foundation,and ShanghaiPostdoctoral Foundation.
文摘A hydrodynamic boundary condition for the lattice Boltzmann model at impermeable boundaries is developed.This boundary condition satisfies both the no-slip condition and the fluid conservation at boundary nodes.Poiseuille flow and Couette flow are calculated with this technique to demonstrate the accuracy of the present boundary condition.
基金supported by the Key Project of the NSFC(12131010)the NSFC(11771155,12271032)+1 种基金the NSF of Guangdong Province(2021A1515010249,2021A1515010303)supported by the NSFC(11971179,12371205)。
文摘This paper is concerned with the Navier-Stokes/Allen-Cahn system,which is used to model the dynamics of immiscible two-phase flows.We consider a 1D free boundary problem and assume that the viscosity coefficient depends on the density in the form ofη(ρ)=ρ^(α).The existence of unique global H^(2m)-solutions(m∈N)to the free boundary problem is proven for when 0<α<1/4.Furthermore,we obtain the global C^(∞)-solutions if the initial data is smooth.
文摘Transition of flows past a pair of side-by-side circular cylinders are investigated by numerical simulations and the bifurcation analysis of the numerical results. Various flow patterns behind the cylinder-pair have been identified by the gap ratio (G) and Reynolds number (Re). This study focus on transition of in-phase and anti-phase vortex shedding synchronized forms. A nested Cartesian-grid formulation, in combination with an effective immersed boundary method and a two-step fractional-step procedure, has been adopted to simulate the flows. Numerical results reveal that the in-phase and anti-phase vortex shedding flows at Re = 100 can co-exist at 2.08 ≤G≤ 2.58. Hysteresis loop with increasing/decreasing G at constant Reynolds number Re = 100 is reported.
基金Project supported by the National Natural Science Foundation of China (No. 12002195)the National Science Fund for Distinguished Young Scholars (No. 12025204)the Program of Shanghai Municipal Education Commission (No. 2019-01-07-00-09-E00018)。
文摘The boundary value problem plays a crucial role in the analytical investigation of continuum dynamics. In this paper, an analytical method based on the Dirac operator to solve the nonlinear and non-homogeneous boundary value problem of rectangular plates is proposed. The key concept behind this method is to transform the nonlinear or non-homogeneous part on the boundary into a lateral force within the governing function by the Dirac operator, which linearizes and homogenizes the original boundary, allowing one to employ the modal superposition method for obtaining solutions to reconstructive governing equations. Once projected into the modal space, the harmonic balance method(HBM) is utilized to solve coupled ordinary differential equations(ODEs)of truncated systems with nonlinearity. To validate the convergence and accuracy of the proposed Dirac method, the results of typical examples, involving nonlinearly restricted boundaries, moment excitation, and displacement excitation, are compared with those of the differential quadrature element method(DQEM). The results demonstrate that when dealing with nonlinear boundaries, the Dirac method exhibits more excellent accuracy and convergence compared with the DQEM. However, when facing displacement excitation, there exist some discrepancies between the proposed approach and simulations;nevertheless, the proposed method still accurately predicts resonant frequencies while being uniquely capable of handling nonuniform displacement excitations. Overall, this methodology offers a convenient way for addressing nonlinear and non-homogenous plate boundaries.
基金supported by the National Natural Science Foundation of China(Nos.12175231 and 11805131),Anhui Natural Science Foundation of China(No.2108085J05)Projects of International Cooperation and Exchanges NSFC(No.51111140389)the Collaborative Innovation Program of the Hefei Science Center,CAS(Nos.2021HSC-CIP020 and 2022HSCCIP009).
文摘Ferritic/martensitic(F/M)steel is widely used as a structural material in thermal and nuclear power plants.However,it is susceptible to intergranular damage,which is a critical issue,under service conditions.In this study,to improve the resistance to intergranular damage of F/M steel,a thermomechanical process(TMP)was employed to achieve a grain boundary engineering(GBE)microstructure in F/M steel P92.The TMP,including cold-rolling thickness reduction of 6%,9%,and 12%,followed by austenitization at 1323 K for 40 min and tempering at 1053 K for 45 min,was applied to the as-received(AR)P92 steel.The prior austenite grain(PAG)size,prior austenite grain boundary character distribution(GBCD),and connectivity of prior austenite grain boundaries(PAGBs)were investigated.Compared to the AR specimen,the PAG size did not change significantly.The fraction of coincident site lattice boundaries(CSLBs,3≤Σ≤29)and Σ3^(n) boundaries along PAGBs decreased with increasing reduction ratio because the recrystallization fraction increased with increasing reduction ratio.The PAGB connectivity of the 6%deformed specimen slightly deteriorated compared with that of the AR specimen.Moreover,potentiodynamic polarization studies revealed that the intergranular damage resistance of the studied steel could be improved by increasing the fraction of CSLBs along the PAGBs,indicating that the TMP,which involves low deformation,could enhance the intergranular damage resistance.
基金sponsored by the Department of Science and Technology,Science and Engineering Research Board(SERB),Core Research(Grant No.CRG/2020/03859)。
文摘This study investigates the three-dimensional(3D)effects introduced by the end walls for an aspect ratio of1 in ramp-induced shock wave boundary layer interactions.The simulations are performed using a symmetry boundary condition in the spanwise direction at free-stream Mach numbers in 3D.The simulations are performed using an in-house compressible supersonic solver“Open SBLIFVM”.Two free stream Mach numbers 2.5,and3 are used in the current work,and the simulated results are compared with the aspect ratio 1 simulations by Mangalagiri and Jammy.The inflow is initialized with a similarity solution;its Reynolds number based on the boundary layer thickness is adjusted such that the Reynolds number at the start of the ramp is kept at 3×10^(5)for all simulations.From the results,it is evident that the introduction of sidewalls resulted in a shorter centerline separation length when compared with the two-dimensional(2D)simulations.This contradicts the results at Mach 2 by Mangalgiri and Jammy where the vortex observed at Mach 2 in the central separation region disappeared with increasing free-stream Mach number.Additionally,the topology of interaction shifted from owl-like separation of the second kind to the first kind when the freestream Mach number increased from2 to 2.5.It can be concluded that the interaction topology is crucial to the increase or decrease of the central separation length when compared to 2D simulations.
基金WJD,JYZ,CLC,ZX,and ZGY were supported by the National Natural Science Foundation of China(Grant Number 51705143)the Education Department of Hunan Province(Grant Number 22B0464)the Postgraduate Scientific Research Innovation Project of Hunan Province(Grant Number QL20230249).
文摘Applying numerical simulation technology to investigate fluid-solid interaction involving complex curved bound-aries is vital in aircraft design,ocean,and construction engineering.However,current methods such as Lattice Boltzmann(LBM)and the immersion boundary method based on solid ratio(IMB)have limitations in identifying custom curved boundaries.Meanwhile,IBM based on velocity correction(IBM-VC)suffers from inaccuracies and numerical instability.Therefore,this study introduces a high-accuracy curve boundary recognition method(IMB-CB),which identifies boundary nodes by moving the search box,and corrects the weighting function in LBM by calculating the solid ratio of the boundary nodes,achieving accurate recognition of custom curve boundaries.In addition,curve boundary image and dot methods are utilized to verify IMB-CB.The findings revealed that IMB-CB can accurately identify the boundary,showing an error of less than 1.8%with 500 lattices.Also,the flow in the custom curve boundary and aerodynamic characteristics of the NACA0012 airfoil are calculated and compared to IBM-VC.Results showed that IMB-CB yields lower lift and drag coefficient errors than IBM-VC,with a 1.45%drag coefficient error.In addition,the characteristic curve of IMB-CB is very stable,whereas that of IBM-VC is not.For the moving boundary problem,LBM-IMB-CB with discrete element method(DEM)is capable of accurately simulating the physical phenomena of multi-moving particle flow in complex curved pipelines.This research proposes a new curve boundary recognition method,which can significantly promote the stability and accuracy of fluid-solid interaction simulations and thus has huge applications in engineering.
基金supported by the National Natural Science Foundation of China (No.12172154)the 111 Project (No.B14044)+1 种基金the Natural Science Foundation of Gansu Province (No.23JRRA1035)the Natural Science Foundation of Anhui University of Finance and Economics (No.ACKYC20043).
文摘In this study,a wavelet multi-resolution interpolation Galerkin method(WMIGM)is proposed to solve linear singularly perturbed boundary value problems.Unlike conventional wavelet schemes,the proposed algorithm can be readily extended to special node generation techniques,such as the Shishkin node.Such a wavelet method allows a high degree of local refinement of the nodal distribution to efficiently capture localized steep gradients.All the shape functions possess the Kronecker delta property,making the imposition of boundary conditions as easy as that in the finite element method.Four numerical examples are studied to demonstrate the validity and accuracy of the proposedwavelet method.The results showthat the use ofmodified Shishkin nodes can significantly reduce numerical oscillation near the boundary layer.Compared with many other methods,the proposed method possesses satisfactory accuracy and efficiency.The theoretical and numerical results demonstrate that the order of theε-uniform convergence of this wavelet method can reach 5.