A real-time quantitative optical method to characterize crack propagation in colloidal photonic crystal film(CPCF)is developed based on particle deformation models and previous real-time crack observations. The crac...A real-time quantitative optical method to characterize crack propagation in colloidal photonic crystal film(CPCF)is developed based on particle deformation models and previous real-time crack observations. The crack propagation process and temperature dependence of the crack propagation rate in CPCF are investigated. By this method, the crack propagation rate is found to slow down gradually to zero when cracks become more numerous and dense. Meanwhile, with the temperature increasing, the crack propagation rate constant decreases. The negative temperature dependence of the crack propagation rate is due to the increase of van der Waals attraction, which finally results in the decrease of resultant force. The findings provide new insight into the crack propagation process in CPCF.展开更多
In order to deliver medical products (medicines, vaccines, blood packs, etc.) in time for needed areas, a method of transporting goods using drones is being studied. However, temperature-sensitive medical products may...In order to deliver medical products (medicines, vaccines, blood packs, etc.) in time for needed areas, a method of transporting goods using drones is being studied. However, temperature-sensitive medical products may decay due to outside temperature changes. The time required to transport over the distance may vary a lot as well. As a result, the likelihood of the goods deteriorating is very high. There is a need for a study on cargo bay to prevent this and to protect the medical goods. In this paper, in order to protect the temperature sensitive medical goods, the inside cargo bay is equipped with the cooling fan device and the electric heating elements. These elements can be monitored and controlled according to the user’s discretion. By using the web server built inside the cloud server, the temperature can be controlled in real-time from anywhere without the limitation of distance. We built the proposed device, and installed it on the drone cargo bay. The test results show that the cargo bay can be temperature-controlled, and the setting can be maintained over a great distance. The user can watch the temperature variations during the transport and ascertain the goodness of the medical supply with the data. It is expected that such development can greatly enhance the utility of the drone operations, especially for the medical supply transport applications.展开更多
Effects of increasing Mn^2+, Cu^2+, or Zn^2+ on SOD expressions were studied in cucumber seedlings under low temperature stress. Both gene expressions and activities of Cu/Zn-SOD and Mn-SOD in cucumber seedling lea...Effects of increasing Mn^2+, Cu^2+, or Zn^2+ on SOD expressions were studied in cucumber seedlings under low temperature stress. Both gene expressions and activities of Cu/Zn-SOD and Mn-SOD in cucumber seedling leaves were induced by increasing Mn^2+, Cu^2+, or Zn^2+ under low temperature stress, especially 48 h afterwards. The activities of Cu/Zn-SOD and Mn-SOD at 0 and 48 h after treatment were in accordance with their gene expression levels, which implied that the transcriptional regulation plays key roles in regulating their activities at the early stage of low temperature stress. Gene expressions of Cu/Zn-SOD and Mn-SOD declined at 96 h, but Cu/Zn-SOD and Mn-SOD activities still remain high, which suggested that Cu/Zn-SOD and Mn-SOD activities might be regulated by other factors after transcription at the later stage of low temperature stress. Therefore, we concluded that the increasing Mn^2+, Cu^2+, or Zn^2+ could increase the capacity of scavenging ROS in cucumber seedlings under low temperature stress by inducing gene expressions of Cu/ Zn-SOD and Mn-SOD, elevating activities of Cu/Zn-SOD, Mn-SOD, or regulating other factors after transcription.展开更多
AIM:To investigate the luminal esophageal temperature(LET) at the time of delivery of energy for pulmonary vein isolation(PVI).METHODS:This study included a total of 110 patients with atrial fibrillation who underwent...AIM:To investigate the luminal esophageal temperature(LET) at the time of delivery of energy for pulmonary vein isolation(PVI).METHODS:This study included a total of 110 patients with atrial fibrillation who underwent their first PVI procedure in our laboratory between March 2010 and February 2011.The LET was monitored in all patients.We measured the number of times that LET reached the cut-off temperature,the time when LET reached the cut-off temperature,the maximum temperature(T max) of the LET,and the time to return to the original preenergy delivery temperature once the delivery of energy was stopped.RESULTS:Seventy-eight patients reached the cut-off temperature.It took 6 s at the shortest time for the LET to reach the cut-off temperature,and 216.5 ± 102.9 s for the temperature to return to the level before the de-livery of energy.Some patients experienced a transient drop in the LET(TDLET) just before energy delivery.Ablation at these sites always produced a rise to the LET cut-off temperature.TDLET was not observed at sites where the LET did not rise.Thus,the TDLET before the energy delivery was useful to distinguish a high risk of esophageal injury before delivery of energy.CONCLUSION:Sites with a TDLET before energy delivery should be ablated with great caution or,perhaps,not at all.展开更多
An early-maturity indica rice variety Zhefu 49, whose grain quality and starch structure are sensitive to environmental temperature, was subjected to different temperatures (32℃ for high temperature and 22℃ for opt...An early-maturity indica rice variety Zhefu 49, whose grain quality and starch structure are sensitive to environmental temperature, was subjected to different temperatures (32℃ for high temperature and 22℃ for optimum temperature) at the grain filling stage in plant growth chambers, and the different expressions of three isoform genes (SBEI, SBEIII and SBE/V) encoding starch branching enzyme (SBE) in the endosperms were studied by the real-time fluorescence quantitative PCR (FQ-PCR) method. Effects of high temperature on the SBE expression in developing rice endosperrns were isoform-dependent. High temperature significantly down-regulated the expressions of SBEI and SBEIII, while up-regulated the expression of SBEIV. Compared with SBEIV and SBEIII, the expression of SBEI gene in Zhefu 49 rice endosperms was more sensitive to temperature variation at the grain filling stage. This study indicates that changes in weather/climate conditions especially temperature stress influence rice grain formation and its quality as evidenced by isoform expression.展开更多
Taking a specific production process as an example, this paper introduces the design of multi slot and unequal temperature PID controller based on single chip microcomputer. The mathematical implementation method...Taking a specific production process as an example, this paper introduces the design of multi slot and unequal temperature PID controller based on single chip microcomputer. The mathematical implementation method of PID algorithm and the design method of the hardware and software are discussed, The principle diagram of the hardware circuit implementing the control algorithm and the features of the software possessed are also presented.展开更多
The thermodynamic aspect of a compression type heat pump (HP) is briefly described and special attention is given to investigation of condensing temperature influence on heat pump efficiency in heating mode, express...The thermodynamic aspect of a compression type heat pump (HP) is briefly described and special attention is given to investigation of condensing temperature influence on heat pump efficiency in heating mode, expressed by its coefficient of performance (COP). Heat pumps are usually applied for the purposes of heating and cooling of energy efficient buildings where they have advantages in low-temperature systems, as it is well documented in the paper. The comparison of real thermodynamic processes with thermodynamically most favorable Camot's process is made. The results in the paper show that COP is diminishing with increasing of condensing temperature and also depends on real properties of working fluids. The impact of compressor efficiency for two real working media is also analyzed in the paper. There is significant diminishing of COP with diminishing of compressor efficiency. The intension of the paper is to help better understanding of this very effective and prosperous technology, and to encourage its development, production, and efficient application.展开更多
AC impedance spectroscopy in pure room temperature ionic liquids (RTILs) and RTIL-water mixture was measured at the temperature of range from 30 ℃ down to -30 ℃. The cations of RTILs are N,N-diethyl-N-methyl-N-(2...AC impedance spectroscopy in pure room temperature ionic liquids (RTILs) and RTIL-water mixture was measured at the temperature of range from 30 ℃ down to -30 ℃. The cations of RTILs are N,N-diethyl-N-methyl-N-(2-methoxyethyl) ammonium ([DEME]), 1-ethyl-3-methylimidazolium ([C2mim]) and l-butyl-3-methylimidazolium ([Camim]), the anions are tetrafluoroborate ([BF4]) and bis(trifluoromethanesulfonyl)imide ([TFSI]). In all pure RTILs, there are two kinds of local minima in real part of the AC impedance Zreal. By adding water to [DEME][BF4] (0 mol% 〈 x 〈 94 mol%) at room temperature, the local minimum value at higher frequency decreased remarkably at the fixed frequency with increasing water concentration. Above 94 mol% H20, a quite different profile of the AC impedance spectroscopy was obtained. In addition to Zreal. temperature dependence of an imaginary part of the impedance Zimag had an isosbestic point below 94 mol%. The isosbestic point disappeared above 94 mol%. The isosbestic point in Zing reveals an interaction between [DEME][BFa] and H2O.展开更多
基金Project supported by the National Basic Research Program of China(Grant Nos.2012CB932903 and 2012CB932904)the National Natural Science Foundation of China(Grant Nos.51372270,11474333,and 21173260)
文摘A real-time quantitative optical method to characterize crack propagation in colloidal photonic crystal film(CPCF)is developed based on particle deformation models and previous real-time crack observations. The crack propagation process and temperature dependence of the crack propagation rate in CPCF are investigated. By this method, the crack propagation rate is found to slow down gradually to zero when cracks become more numerous and dense. Meanwhile, with the temperature increasing, the crack propagation rate constant decreases. The negative temperature dependence of the crack propagation rate is due to the increase of van der Waals attraction, which finally results in the decrease of resultant force. The findings provide new insight into the crack propagation process in CPCF.
文摘In order to deliver medical products (medicines, vaccines, blood packs, etc.) in time for needed areas, a method of transporting goods using drones is being studied. However, temperature-sensitive medical products may decay due to outside temperature changes. The time required to transport over the distance may vary a lot as well. As a result, the likelihood of the goods deteriorating is very high. There is a need for a study on cargo bay to prevent this and to protect the medical goods. In this paper, in order to protect the temperature sensitive medical goods, the inside cargo bay is equipped with the cooling fan device and the electric heating elements. These elements can be monitored and controlled according to the user’s discretion. By using the web server built inside the cloud server, the temperature can be controlled in real-time from anywhere without the limitation of distance. We built the proposed device, and installed it on the drone cargo bay. The test results show that the cargo bay can be temperature-controlled, and the setting can be maintained over a great distance. The user can watch the temperature variations during the transport and ascertain the goodness of the medical supply with the data. It is expected that such development can greatly enhance the utility of the drone operations, especially for the medical supply transport applications.
基金supported by a grant from the National Natural Science Foundation of China (30571271)
文摘Effects of increasing Mn^2+, Cu^2+, or Zn^2+ on SOD expressions were studied in cucumber seedlings under low temperature stress. Both gene expressions and activities of Cu/Zn-SOD and Mn-SOD in cucumber seedling leaves were induced by increasing Mn^2+, Cu^2+, or Zn^2+ under low temperature stress, especially 48 h afterwards. The activities of Cu/Zn-SOD and Mn-SOD at 0 and 48 h after treatment were in accordance with their gene expression levels, which implied that the transcriptional regulation plays key roles in regulating their activities at the early stage of low temperature stress. Gene expressions of Cu/Zn-SOD and Mn-SOD declined at 96 h, but Cu/Zn-SOD and Mn-SOD activities still remain high, which suggested that Cu/Zn-SOD and Mn-SOD activities might be regulated by other factors after transcription at the later stage of low temperature stress. Therefore, we concluded that the increasing Mn^2+, Cu^2+, or Zn^2+ could increase the capacity of scavenging ROS in cucumber seedlings under low temperature stress by inducing gene expressions of Cu/ Zn-SOD and Mn-SOD, elevating activities of Cu/Zn-SOD, Mn-SOD, or regulating other factors after transcription.
文摘AIM:To investigate the luminal esophageal temperature(LET) at the time of delivery of energy for pulmonary vein isolation(PVI).METHODS:This study included a total of 110 patients with atrial fibrillation who underwent their first PVI procedure in our laboratory between March 2010 and February 2011.The LET was monitored in all patients.We measured the number of times that LET reached the cut-off temperature,the time when LET reached the cut-off temperature,the maximum temperature(T max) of the LET,and the time to return to the original preenergy delivery temperature once the delivery of energy was stopped.RESULTS:Seventy-eight patients reached the cut-off temperature.It took 6 s at the shortest time for the LET to reach the cut-off temperature,and 216.5 ± 102.9 s for the temperature to return to the level before the de-livery of energy.Some patients experienced a transient drop in the LET(TDLET) just before energy delivery.Ablation at these sites always produced a rise to the LET cut-off temperature.TDLET was not observed at sites where the LET did not rise.Thus,the TDLET before the energy delivery was useful to distinguish a high risk of esophageal injury before delivery of energy.CONCLUSION:Sites with a TDLET before energy delivery should be ablated with great caution or,perhaps,not at all.
文摘An early-maturity indica rice variety Zhefu 49, whose grain quality and starch structure are sensitive to environmental temperature, was subjected to different temperatures (32℃ for high temperature and 22℃ for optimum temperature) at the grain filling stage in plant growth chambers, and the different expressions of three isoform genes (SBEI, SBEIII and SBE/V) encoding starch branching enzyme (SBE) in the endosperms were studied by the real-time fluorescence quantitative PCR (FQ-PCR) method. Effects of high temperature on the SBE expression in developing rice endosperrns were isoform-dependent. High temperature significantly down-regulated the expressions of SBEI and SBEIII, while up-regulated the expression of SBEIV. Compared with SBEIV and SBEIII, the expression of SBEI gene in Zhefu 49 rice endosperms was more sensitive to temperature variation at the grain filling stage. This study indicates that changes in weather/climate conditions especially temperature stress influence rice grain formation and its quality as evidenced by isoform expression.
文摘Taking a specific production process as an example, this paper introduces the design of multi slot and unequal temperature PID controller based on single chip microcomputer. The mathematical implementation method of PID algorithm and the design method of the hardware and software are discussed, The principle diagram of the hardware circuit implementing the control algorithm and the features of the software possessed are also presented.
文摘The thermodynamic aspect of a compression type heat pump (HP) is briefly described and special attention is given to investigation of condensing temperature influence on heat pump efficiency in heating mode, expressed by its coefficient of performance (COP). Heat pumps are usually applied for the purposes of heating and cooling of energy efficient buildings where they have advantages in low-temperature systems, as it is well documented in the paper. The comparison of real thermodynamic processes with thermodynamically most favorable Camot's process is made. The results in the paper show that COP is diminishing with increasing of condensing temperature and also depends on real properties of working fluids. The impact of compressor efficiency for two real working media is also analyzed in the paper. There is significant diminishing of COP with diminishing of compressor efficiency. The intension of the paper is to help better understanding of this very effective and prosperous technology, and to encourage its development, production, and efficient application.
文摘AC impedance spectroscopy in pure room temperature ionic liquids (RTILs) and RTIL-water mixture was measured at the temperature of range from 30 ℃ down to -30 ℃. The cations of RTILs are N,N-diethyl-N-methyl-N-(2-methoxyethyl) ammonium ([DEME]), 1-ethyl-3-methylimidazolium ([C2mim]) and l-butyl-3-methylimidazolium ([Camim]), the anions are tetrafluoroborate ([BF4]) and bis(trifluoromethanesulfonyl)imide ([TFSI]). In all pure RTILs, there are two kinds of local minima in real part of the AC impedance Zreal. By adding water to [DEME][BF4] (0 mol% 〈 x 〈 94 mol%) at room temperature, the local minimum value at higher frequency decreased remarkably at the fixed frequency with increasing water concentration. Above 94 mol% H20, a quite different profile of the AC impedance spectroscopy was obtained. In addition to Zreal. temperature dependence of an imaginary part of the impedance Zimag had an isosbestic point below 94 mol%. The isosbestic point disappeared above 94 mol%. The isosbestic point in Zing reveals an interaction between [DEME][BFa] and H2O.