An integrated optical coherence tomography(OCT)and video rigid laryngoscope have been designed to acquire surface and subsurface tissue images of larynx simultaneously.The dual-modality system that is based on a commo...An integrated optical coherence tomography(OCT)and video rigid laryngoscope have been designed to acquire surface and subsurface tissue images of larynx simultaneously.The dual-modality system that is based on a common-path design with components as few as possible effec-tively maintains the light transmittance without compromising the imaging quality.In this paper,the field of view(FOV)of the system can reach 70°by use of a gradient index(GRIN)lens as the relay element and a four-lens group as the distal objective,respectively.The simulation showed that the modulation transfer function(MTF)value in each FOV of the rigid video endoscope at 160 lp/mm is greater than 0.1 while the root mean square(RMS)radii of the OCT beam in the center and edge of the FOV are 14.948μm and 73.609μm,respectively.The resolutions of both OCT and video endoscope meet the requirement of clinical application.In addition,all the components of the system are spherical,therefore the system can be of low cost and easy to assemble.展开更多
A contact problem for an infinitely long hollow cylinder is considered. The cylinder is compressed by an outer rigid ring with a circular profile. The material of the cylinder is linearly elastic and isotropic. The ex...A contact problem for an infinitely long hollow cylinder is considered. The cylinder is compressed by an outer rigid ring with a circular profile. The material of the cylinder is linearly elastic and isotropic. The extent of the contact region and the pressure distribution are sought. Governing equations of the elasticity theory for the axisymmetric problem in cylindrical coordinates are solved by Fourier transforms and general expressions for the displacements are obtained. Using the boundary conditions, the formulation is reduced to a singular integral equation. This equation is solved by using the Gaussian quadrature. Then the pressure distribution on the contact region is determined. Numerical results for the contact pressure and the distance characterizing the contact area are given in graphical form.展开更多
For the dynamics of a rigid body with a fixed point based on the quaternion and the corresponding generalized momenta, a displacement-based symplectic integration scheme for differential-algebraic equations is propose...For the dynamics of a rigid body with a fixed point based on the quaternion and the corresponding generalized momenta, a displacement-based symplectic integration scheme for differential-algebraic equations is proposed and applied to the Lagrange's equations based on dependent generalized momenta. Numerical experiments show that the algorithm possesses such characters as high precision and preserving system invariants. More importantly, the generalized momenta based Lagrange's equations show unique advantages over the traditional Lagrange's equations in symplectic integrations.展开更多
A boundary integral method was developed for simulating the motion and deformation of a viscous drop in an axisymmetric ambient Stokes flow near a rigid wall and for direct calculating the stress on the wall. Numerica...A boundary integral method was developed for simulating the motion and deformation of a viscous drop in an axisymmetric ambient Stokes flow near a rigid wall and for direct calculating the stress on the wall. Numerical experiments by the method were performed for different initial stand-off distances of the drop to the wall, viscosity ratios, combined surface tension and buoyancy parameters and ambient flow parameters. Numerical results show that due to the action of ambient flow and buoyancy the drop is compressed and stretched respectively in axial and radial directions when time goes. When the ambient flow action is weaker than that of the buoyancy the drop raises and bends upward and the stress on the wall induced by drop motion decreases when time advances. When the ambient flow action is stronger than that of the buoyancy the drop descends and becomes flatter and flatter as time goes. In this case when the initial stand-off distance is large the stress on the wall increases as the drop evolutes but when the stand-off distance is small the stress on the wall decreases as a result of combined effects of ambient flow, buoyancy and the stronger wall action to the flow. The action of the stress on the wall induced by drop motion is restricted in an area near the symmetric axis, which increases when the initial stand-off distance increases. When the initial stand-off distance increases the stress induced by drop motion decreases substantially. The surface tension effects resist the deformation and smooth the profile of the drop surfaces. The drop viscosity will reduce the deformation and migration of the drop.展开更多
In this paper, the functions of warping displacement interruption defined on the crack lines are taken for the fundamental unknown functions. The torsion problem of cracked circular cylinder is reduced to solving a sy...In this paper, the functions of warping displacement interruption defined on the crack lines are taken for the fundamental unknown functions. The torsion problem of cracked circular cylinder is reduced to solving a system of integral equations with strongly singular kernels. Using the numerical method of these equations, the torsional rigidities and the stress intensity factors are calculated to solve the torsion problem of circular cylinder with star-type and other different types of cracks. The numerical results are satisfactory.展开更多
A conventional complex variable boundary integral equation (CVBIE) in plane elasticity is provided. After using the Somigliana identity between a particular fundamental stress field and a physical stress field, an a...A conventional complex variable boundary integral equation (CVBIE) in plane elasticity is provided. After using the Somigliana identity between a particular fundamental stress field and a physical stress field, an additional integral equality is obtained. By adding both sides of this integral equality to both sides of the conventional CVBIE, the amended boundary integral equation (BIE) is obtained. The method based on the discretization of the amended BIE is called the amended influence matrix method. With this method, for the Neumann boundary value problem (BVP) of an interior region, a unique solution for the displacement can be obtained. Several numerical examples are provided to prove the efficiency of the suggested method.展开更多
A study is presented for the large deflection dynamic response of rigid- plastic circular plate resting on potential fluid under a rectangular pressure pulse load. By virtue of Hankel integral transform technique,this...A study is presented for the large deflection dynamic response of rigid- plastic circular plate resting on potential fluid under a rectangular pressure pulse load. By virtue of Hankel integral transform technique,this interaction problem is reduced to a problem of dynamic plastic response of the plate in vacuum.The closed-form solutions are derived for both middle and high pressure loads by solving the equations of motion with the large deflection in the range where both bending moments and membrane forces are important.Some numerical results are given.展开更多
基金funded by the National Key Research and Development Program of China(No.2017YFC0112401)the National Natural Science Foundation of China(Nos.61975246,61505267)the Science and Technology Program of Guangzhou(Nos.201607010167 and 201903010065)
文摘An integrated optical coherence tomography(OCT)and video rigid laryngoscope have been designed to acquire surface and subsurface tissue images of larynx simultaneously.The dual-modality system that is based on a common-path design with components as few as possible effec-tively maintains the light transmittance without compromising the imaging quality.In this paper,the field of view(FOV)of the system can reach 70°by use of a gradient index(GRIN)lens as the relay element and a four-lens group as the distal objective,respectively.The simulation showed that the modulation transfer function(MTF)value in each FOV of the rigid video endoscope at 160 lp/mm is greater than 0.1 while the root mean square(RMS)radii of the OCT beam in the center and edge of the FOV are 14.948μm and 73.609μm,respectively.The resolutions of both OCT and video endoscope meet the requirement of clinical application.In addition,all the components of the system are spherical,therefore the system can be of low cost and easy to assemble.
文摘A contact problem for an infinitely long hollow cylinder is considered. The cylinder is compressed by an outer rigid ring with a circular profile. The material of the cylinder is linearly elastic and isotropic. The extent of the contact region and the pressure distribution are sought. Governing equations of the elasticity theory for the axisymmetric problem in cylindrical coordinates are solved by Fourier transforms and general expressions for the displacements are obtained. Using the boundary conditions, the formulation is reduced to a singular integral equation. This equation is solved by using the Gaussian quadrature. Then the pressure distribution on the contact region is determined. Numerical results for the contact pressure and the distance characterizing the contact area are given in graphical form.
文摘For the dynamics of a rigid body with a fixed point based on the quaternion and the corresponding generalized momenta, a displacement-based symplectic integration scheme for differential-algebraic equations is proposed and applied to the Lagrange's equations based on dependent generalized momenta. Numerical experiments show that the algorithm possesses such characters as high precision and preserving system invariants. More importantly, the generalized momenta based Lagrange's equations show unique advantages over the traditional Lagrange's equations in symplectic integrations.
基金Project supported by the National Natural Science Foundation of China (No. 10272032)
文摘A boundary integral method was developed for simulating the motion and deformation of a viscous drop in an axisymmetric ambient Stokes flow near a rigid wall and for direct calculating the stress on the wall. Numerical experiments by the method were performed for different initial stand-off distances of the drop to the wall, viscosity ratios, combined surface tension and buoyancy parameters and ambient flow parameters. Numerical results show that due to the action of ambient flow and buoyancy the drop is compressed and stretched respectively in axial and radial directions when time goes. When the ambient flow action is weaker than that of the buoyancy the drop raises and bends upward and the stress on the wall induced by drop motion decreases when time advances. When the ambient flow action is stronger than that of the buoyancy the drop descends and becomes flatter and flatter as time goes. In this case when the initial stand-off distance is large the stress on the wall increases as the drop evolutes but when the stand-off distance is small the stress on the wall decreases as a result of combined effects of ambient flow, buoyancy and the stronger wall action to the flow. The action of the stress on the wall induced by drop motion is restricted in an area near the symmetric axis, which increases when the initial stand-off distance increases. When the initial stand-off distance increases the stress induced by drop motion decreases substantially. The surface tension effects resist the deformation and smooth the profile of the drop surfaces. The drop viscosity will reduce the deformation and migration of the drop.
基金Project supported by the Fund of the State Education Commission of China
文摘In this paper, the functions of warping displacement interruption defined on the crack lines are taken for the fundamental unknown functions. The torsion problem of cracked circular cylinder is reduced to solving a system of integral equations with strongly singular kernels. Using the numerical method of these equations, the torsional rigidities and the stress intensity factors are calculated to solve the torsion problem of circular cylinder with star-type and other different types of cracks. The numerical results are satisfactory.
文摘A conventional complex variable boundary integral equation (CVBIE) in plane elasticity is provided. After using the Somigliana identity between a particular fundamental stress field and a physical stress field, an additional integral equality is obtained. By adding both sides of this integral equality to both sides of the conventional CVBIE, the amended boundary integral equation (BIE) is obtained. The method based on the discretization of the amended BIE is called the amended influence matrix method. With this method, for the Neumann boundary value problem (BVP) of an interior region, a unique solution for the displacement can be obtained. Several numerical examples are provided to prove the efficiency of the suggested method.
基金The study is supported by National Natural Science Foundation of China.
文摘A study is presented for the large deflection dynamic response of rigid- plastic circular plate resting on potential fluid under a rectangular pressure pulse load. By virtue of Hankel integral transform technique,this interaction problem is reduced to a problem of dynamic plastic response of the plate in vacuum.The closed-form solutions are derived for both middle and high pressure loads by solving the equations of motion with the large deflection in the range where both bending moments and membrane forces are important.Some numerical results are given.