Electrochemical techniques, X-ray diffraction (XRD), and scanning electron microscopy (SEM) were applied to study the corrosion behaviors of X65 steel in static solution with carbon dioxide (CO2) at 65℃. The re...Electrochemical techniques, X-ray diffraction (XRD), and scanning electron microscopy (SEM) were applied to study the corrosion behaviors of X65 steel in static solution with carbon dioxide (CO2) at 65℃. The results show that iron carbonate (FeCO3) deposits on the steel surface as a corrosion product scale. This iron carbonate scale acts as a barrier to CO2 corrosion, and can reduce the general corrosion rate. The protection ability of the scale is closely related to the scale morphological characteristics.展开更多
Structural strengthening of the nano porous silica films has been reported. The films were prepared with a base/acid two-step catalyzed TEOS-based sol-gel processing and dip-coating, and then baked in the mixed gas of...Structural strengthening of the nano porous silica films has been reported. The films were prepared with a base/acid two-step catalyzed TEOS-based sol-gel processing and dip-coating, and then baked in the mixed gas of ammonia and water vapor. The silica films were characterized with TEM, AFM, FTIR, spectrophotometer, ellipsometer, and abrasion test, respectively. The experimental results have shown that the films have a nanostructure with a low refractive index and can form an excellent scratch-resistant broadband anti-reflectance. The two-step catalysis noticeably strengthens the films, and the mixed gas treatment further improves mechanical strength of the silica network. Finally the strengthening mechanism has been discussed.展开更多
The electrochemical behaviors of high temperature oxide film formed on the sputtered microcrystalline coating of M38 alloy (mc-M38) were investigated by potentiodynamic and electrochemical impedance spectroscopy (...The electrochemical behaviors of high temperature oxide film formed on the sputtered microcrystalline coating of M38 alloy (mc-M38) were investigated by potentiodynamic and electrochemical impedance spectroscopy (EIS) techniques in 3.5% NaCl solution. Mott-Schottky analysis was used to study the semi-conductive properties of the surface oxide. The results of the capacitance measurements showed that the oxide films on both the coating and the cast alloy were p-type semiconducting characteristics. Both the carrier density (Na)and the flat band potential (Efb) were obviously frequency-dependent, and the optimal frequency range was from 1000 to 1500 Hz. The oxidized coating exhibited higher protectivity than the oxidized cast alloy due to the lower carrier density compared with that of the oxidized cast alloy. The EIS data of the long-term immersing tests suggested that the oxide film served as an inner-barrier layer against chloride ions. The penetration of the aggressive ions into the surface oxide resulted in the decreased polarization resistance as a function of the immersion time.展开更多
An explosive blast mitigation alternative has increased the safety of structures by using " catcher" systems. These systems " catch" or repel the failure of the window or in-fill wall pro-tecting l...An explosive blast mitigation alternative has increased the safety of structures by using " catcher" systems. These systems " catch" or repel the failure of the window or in-fill wall pro-tecting life and property from ballistic shards or fragments. They can be designed to be stand-alone in new construction and structural retrofits or used to augment structural hardening tech-niques. Cables, fabrics, and thin gauge sheet steel are examples of catcher systems used in the past. A new and evolving category of catcher systems are based on polymeric materials that can be used for both wall and window upgrades. These products are a proven blast mitigation concept and K&C Protective Technologies Pte Ltd (KCPT) together with Sherwin-Williams(SW) use KCPT′s blast engineering capacity and SW′s material engineering principles to create engineered systems for even greater in-use performance.展开更多
At present, the main attention of researchers is paid to the deterioration of heat transfer when heating the outer surface of the pipe with the liquid or steam, flowing inside it, in the presence of films or deposits ...At present, the main attention of researchers is paid to the deterioration of heat transfer when heating the outer surface of the pipe with the liquid or steam, flowing inside it, in the presence of films or deposits on its inner surface. However, when pipe is heating by heat carrier medium, flowing inside it, film on the inner pipe surface serve a dual protective function, protecting the pipe from corrosion and reducing its thermal stress. The article represents the results of the computational analysis of protective films influence on the thermal stressed state of headers and steam pipelines of combined-cycle power plants (CCPP) heat-recovery steam generators at different transient operating conditions particularly at startups from different initial temperature states and thermal shock. It is shown that protective films have a significant influence on the stresses magnitude and damage accumulation mainly for great temperature disturbances (for thermal shock). Calculations were carried out at various thicknesses of films and assuming that their thermal conductivity less than thermal conductivity of the steam pipelines metal.展开更多
The development of Chinese agriculture is now facing the grim situation of decreasing farmland area, increasing population and social demands, so the devel- opment of protected horticulture becomes necessary to solve ...The development of Chinese agriculture is now facing the grim situation of decreasing farmland area, increasing population and social demands, so the devel- opment of protected horticulture becomes necessary to solve the issue. This paper reviewed the characteristics of traditional horticulture films and application prospects of new functional films.展开更多
The phosphate protective film and micro-galvanic corrosion of biological Mg-3Zn-xNd (x = 0, 0.6, 1.2) alloys were investigated by scanning and transmission electron microscopy, quasi-in-situ observation, scanning Kelv...The phosphate protective film and micro-galvanic corrosion of biological Mg-3Zn-xNd (x = 0, 0.6, 1.2) alloys were investigated by scanning and transmission electron microscopy, quasi-in-situ observation, scanning Kelvin probe force microscopy (SKPFM) and electrochemical tests. The results revealed the Mg-Zn-Nd phases formed in Mg-3Zn alloy contained with Nd. Adding Nd resulted in a significant decline in the cracks of the phosphate protective film and micro-galvanic corrosion of alloys, which were recorded by quasi-in-situ observation. In addition, the Volta potential difference of Mg-Zn-Nd/α-Mg (~ 188 mV) was lower than MgZn/α-Mg (~ 419 mV) and Zn-rich/α-Mg (~ 260 mV), and the corrosion rates of alloys markedly decreased after the addition of 0.6 wt% Nd. The improvement in corrosion resistance of Nd-containing alloys was mainly attributed to the following: (i) the addition of Nd reduced the Volta potential difference (second phases/α-Mg);(ii) the phosphate protective film containing Nd_(2)O_(3) deposited on the surface of the alloys, effectively preventing the penetration of harmful anions.展开更多
Vanadium films were prepared on zinc surfaces by using a solution containing vanadate. Corrosion protection properties of vanadium-treated (V-treated), chromium-treated (Cr-treated), and untreated zinc surfaces in...Vanadium films were prepared on zinc surfaces by using a solution containing vanadate. Corrosion protection properties of vanadium-treated (V-treated), chromium-treated (Cr-treated), and untreated zinc surfaces in contact with a 3.5 wt.% NaC1 solution were studied using potentiodynamic polarization, electrochemical impedance spectroscopy (EIS), and neutral salt spray (NSS) tests. According to these results, the V-treated layer significantly improved the corrosion resistance of zinc surfaces. In comparison with the Cr-treated layer, the V-treated layer exhibited a better corrosion resistance. The composition of the V-treated layer was studied using X-ray photoelectron spectroscopy (XPS). XPS measurements indicated that the vanadium layer formed on zinc surfaces and the vanadium-rich coating was a hydrated oxide with a composition of V2O5, VO2, and its hydrates such as V2O5.nH2O and VO(OH)2.展开更多
This paper presents the principle,properties,advantage and disadvantage,associated problems and trend of laser protection with VO 2 film for infrared detectors in the range of 3~5μm and 8~12μm regions and suggest...This paper presents the principle,properties,advantage and disadvantage,associated problems and trend of laser protection with VO 2 film for infrared detectors in the range of 3~5μm and 8~12μm regions and suggests VO 2 film is a potential protection material for infrared detectors.展开更多
To increase corrosion resistance of the sample,its electrical impedance must be increased.Due to the fact that electrical impedance depends on elements such as electrical resistance,capacitance,and inductance,by incre...To increase corrosion resistance of the sample,its electrical impedance must be increased.Due to the fact that electrical impedance depends on elements such as electrical resistance,capacitance,and inductance,by increasing the electrical resistance,reducing the capacitance and inductance,electrical impedance and corrosion resistance can be increased.Based on the fact that these elements depend on the type of material and the geometry of the material,multilayer structures with different geometries are proposed.For this purpose,conventional multilayer thin films,multilayer thin film including zigzag structure(zigzag 1)and multilayer thin film including double zigzag structure(zigzag 2)of manganese nitride are considered to protect AISI 304 stainless steel against corrosion in salt solution.These multilayer coatings including zigzag structures are prepared by alternately using the conventional deposition of thin film and glancing angle deposition method.After deposition,the samples are placed in a furnace under nitrogen flux for nitriding.The cross sections of the structures are observed by field emission scanning electron microscopy(FESEM).Atomic force microscope(AFM)is used to make surface analyses of the samples.The results show that the multilayer thin films including zigzag structures have smaller grains than conventional multilayer thin films,and the zigzag 2 structure has the smaller grain than the other two samples,which is attributed to the effect of shadowing and porosity on the oblique angle deposition method.Crystallography structures of the samples are studied by using x-ray diffraction(XRD)pattern and the results show that nitride phase formation in zigzag 2 structure is better than that in zigzag 1 structure and conventional multilayer thin film.To investigate the corrosion resistances of the structures,electrochemical impedance spectroscopy(EIS)and potentiodynamic polarization tests are performed.The results reveal that the multilayer thin films with zigzag structures have better corrosion protection than the conventional multilayer thin films,and the zigzag structure 2 has the smallest corrosion current and the highest corrosion resistance.The electrical impedances of the samples are investigated by simulating equivalent circuits.The high corrosion resistance of zigzag 2 structure as compared with conventional multilayer structure and zigzag 1 structure,is attributed to the high electrical impedance of the structure due to its small capacitance and high electrical resistance.Finally,the surfaces of corroded samples are observed by scanning electron microscope(SEM).展开更多
The protective behavior for a molten AZ91D alloy in an open melting furnace was investigated under a protective gas mixture containing 3% SO2 and 97% CO2, and the protection mechanism was discussed. Experimental resul...The protective behavior for a molten AZ91D alloy in an open melting furnace was investigated under a protective gas mixture containing 3% SO2 and 97% CO2, and the protection mechanism was discussed. Experimental results show that the gas mixture provides effective protection for AZ91D melt in the temperature range from 680 ℃ to 730 ℃. The microstructure, chemical composition and phase composition of the surface film formed on the molten AZ91D alloy were analyzed using scanning electron microscopy (SEM) with energy dispersive spectrometer (EDS) and X-ray diffraction (XRD). The SEM results demonstrate that the surface films with an average thickness between 0.5 pm and 2 pm are dense and coherent in the protected temperature range. The EDS results reveal that the surface film mainly contains elements S, C, O, AI and Mg. The XRD results show that the surface film consists of MgO, MgS and a small amount of C phase.展开更多
Structure and properties of anti-reflection thin films of spherical silicon solar cells were investigated and discussed. Conversion efficiencies of spherical Si solar cells coated with F-doped SnO2 anti-reflection fil...Structure and properties of anti-reflection thin films of spherical silicon solar cells were investigated and discussed. Conversion efficiencies of spherical Si solar cells coated with F-doped SnO2 anti-reflection films were improved by annealing. Optical absorption and fluorescence of the solar cells increased after annealing. Lattice constants of F-doped SnO2 anti-reflection layers, which were investigated by X-ray diffraction, decreased after annealing. A mechanism of atomic diffusion of F in SnO2 was discussed. The present work indicated a guideline for spherical silicon solar cells with higher efficiencies.展开更多
文摘Electrochemical techniques, X-ray diffraction (XRD), and scanning electron microscopy (SEM) were applied to study the corrosion behaviors of X65 steel in static solution with carbon dioxide (CO2) at 65℃. The results show that iron carbonate (FeCO3) deposits on the steel surface as a corrosion product scale. This iron carbonate scale acts as a barrier to CO2 corrosion, and can reduce the general corrosion rate. The protection ability of the scale is closely related to the scale morphological characteristics.
基金the National Natural Science Foundation of China(No:69978017,20133040)Shanghai Key Subject Programme,Chinese Foundation of High Technology(2002AA842052)Shanghai Natural Science Foundation(02ZE14101)as well as Shanghai Nanotechnology Promotion Center(0159um039).
文摘Structural strengthening of the nano porous silica films has been reported. The films were prepared with a base/acid two-step catalyzed TEOS-based sol-gel processing and dip-coating, and then baked in the mixed gas of ammonia and water vapor. The silica films were characterized with TEM, AFM, FTIR, spectrophotometer, ellipsometer, and abrasion test, respectively. The experimental results have shown that the films have a nanostructure with a low refractive index and can form an excellent scratch-resistant broadband anti-reflectance. The two-step catalysis noticeably strengthens the films, and the mixed gas treatment further improves mechanical strength of the silica network. Finally the strengthening mechanism has been discussed.
文摘The electrochemical behaviors of high temperature oxide film formed on the sputtered microcrystalline coating of M38 alloy (mc-M38) were investigated by potentiodynamic and electrochemical impedance spectroscopy (EIS) techniques in 3.5% NaCl solution. Mott-Schottky analysis was used to study the semi-conductive properties of the surface oxide. The results of the capacitance measurements showed that the oxide films on both the coating and the cast alloy were p-type semiconducting characteristics. Both the carrier density (Na)and the flat band potential (Efb) were obviously frequency-dependent, and the optimal frequency range was from 1000 to 1500 Hz. The oxidized coating exhibited higher protectivity than the oxidized cast alloy due to the lower carrier density compared with that of the oxidized cast alloy. The EIS data of the long-term immersing tests suggested that the oxide film served as an inner-barrier layer against chloride ions. The penetration of the aggressive ions into the surface oxide resulted in the decreased polarization resistance as a function of the immersion time.
文摘An explosive blast mitigation alternative has increased the safety of structures by using " catcher" systems. These systems " catch" or repel the failure of the window or in-fill wall pro-tecting life and property from ballistic shards or fragments. They can be designed to be stand-alone in new construction and structural retrofits or used to augment structural hardening tech-niques. Cables, fabrics, and thin gauge sheet steel are examples of catcher systems used in the past. A new and evolving category of catcher systems are based on polymeric materials that can be used for both wall and window upgrades. These products are a proven blast mitigation concept and K&C Protective Technologies Pte Ltd (KCPT) together with Sherwin-Williams(SW) use KCPT′s blast engineering capacity and SW′s material engineering principles to create engineered systems for even greater in-use performance.
文摘At present, the main attention of researchers is paid to the deterioration of heat transfer when heating the outer surface of the pipe with the liquid or steam, flowing inside it, in the presence of films or deposits on its inner surface. However, when pipe is heating by heat carrier medium, flowing inside it, film on the inner pipe surface serve a dual protective function, protecting the pipe from corrosion and reducing its thermal stress. The article represents the results of the computational analysis of protective films influence on the thermal stressed state of headers and steam pipelines of combined-cycle power plants (CCPP) heat-recovery steam generators at different transient operating conditions particularly at startups from different initial temperature states and thermal shock. It is shown that protective films have a significant influence on the stresses magnitude and damage accumulation mainly for great temperature disturbances (for thermal shock). Calculations were carried out at various thicknesses of films and assuming that their thermal conductivity less than thermal conductivity of the steam pipelines metal.
基金Supported by Jiangsu Agricultural Science and Technology Innovation Fund[CX(13)3032]Jiangsu Six Category Outstanding Talent(NY-031)Nanjing Innovation Fund for Small and Mediumsized Technology-based Firms(2013074)~~
文摘The development of Chinese agriculture is now facing the grim situation of decreasing farmland area, increasing population and social demands, so the devel- opment of protected horticulture becomes necessary to solve the issue. This paper reviewed the characteristics of traditional horticulture films and application prospects of new functional films.
基金support by the National Natural Science Foundation of China(No.51961026).
文摘The phosphate protective film and micro-galvanic corrosion of biological Mg-3Zn-xNd (x = 0, 0.6, 1.2) alloys were investigated by scanning and transmission electron microscopy, quasi-in-situ observation, scanning Kelvin probe force microscopy (SKPFM) and electrochemical tests. The results revealed the Mg-Zn-Nd phases formed in Mg-3Zn alloy contained with Nd. Adding Nd resulted in a significant decline in the cracks of the phosphate protective film and micro-galvanic corrosion of alloys, which were recorded by quasi-in-situ observation. In addition, the Volta potential difference of Mg-Zn-Nd/α-Mg (~ 188 mV) was lower than MgZn/α-Mg (~ 419 mV) and Zn-rich/α-Mg (~ 260 mV), and the corrosion rates of alloys markedly decreased after the addition of 0.6 wt% Nd. The improvement in corrosion resistance of Nd-containing alloys was mainly attributed to the following: (i) the addition of Nd reduced the Volta potential difference (second phases/α-Mg);(ii) the phosphate protective film containing Nd_(2)O_(3) deposited on the surface of the alloys, effectively preventing the penetration of harmful anions.
文摘Vanadium films were prepared on zinc surfaces by using a solution containing vanadate. Corrosion protection properties of vanadium-treated (V-treated), chromium-treated (Cr-treated), and untreated zinc surfaces in contact with a 3.5 wt.% NaC1 solution were studied using potentiodynamic polarization, electrochemical impedance spectroscopy (EIS), and neutral salt spray (NSS) tests. According to these results, the V-treated layer significantly improved the corrosion resistance of zinc surfaces. In comparison with the Cr-treated layer, the V-treated layer exhibited a better corrosion resistance. The composition of the V-treated layer was studied using X-ray photoelectron spectroscopy (XPS). XPS measurements indicated that the vanadium layer formed on zinc surfaces and the vanadium-rich coating was a hydrated oxide with a composition of V2O5, VO2, and its hydrates such as V2O5.nH2O and VO(OH)2.
文摘This paper presents the principle,properties,advantage and disadvantage,associated problems and trend of laser protection with VO 2 film for infrared detectors in the range of 3~5μm and 8~12μm regions and suggests VO 2 film is a potential protection material for infrared detectors.
基金Project supported by the Funds from the University of Mohaghegh Ardabili and University of Tehran and the Iran National Science Foundation(INSF)the Centre of Excellence for Physics of Structure and Microscopic Properties of Matter,Department of Physics,University of Tehran.
文摘To increase corrosion resistance of the sample,its electrical impedance must be increased.Due to the fact that electrical impedance depends on elements such as electrical resistance,capacitance,and inductance,by increasing the electrical resistance,reducing the capacitance and inductance,electrical impedance and corrosion resistance can be increased.Based on the fact that these elements depend on the type of material and the geometry of the material,multilayer structures with different geometries are proposed.For this purpose,conventional multilayer thin films,multilayer thin film including zigzag structure(zigzag 1)and multilayer thin film including double zigzag structure(zigzag 2)of manganese nitride are considered to protect AISI 304 stainless steel against corrosion in salt solution.These multilayer coatings including zigzag structures are prepared by alternately using the conventional deposition of thin film and glancing angle deposition method.After deposition,the samples are placed in a furnace under nitrogen flux for nitriding.The cross sections of the structures are observed by field emission scanning electron microscopy(FESEM).Atomic force microscope(AFM)is used to make surface analyses of the samples.The results show that the multilayer thin films including zigzag structures have smaller grains than conventional multilayer thin films,and the zigzag 2 structure has the smaller grain than the other two samples,which is attributed to the effect of shadowing and porosity on the oblique angle deposition method.Crystallography structures of the samples are studied by using x-ray diffraction(XRD)pattern and the results show that nitride phase formation in zigzag 2 structure is better than that in zigzag 1 structure and conventional multilayer thin film.To investigate the corrosion resistances of the structures,electrochemical impedance spectroscopy(EIS)and potentiodynamic polarization tests are performed.The results reveal that the multilayer thin films with zigzag structures have better corrosion protection than the conventional multilayer thin films,and the zigzag structure 2 has the smallest corrosion current and the highest corrosion resistance.The electrical impedances of the samples are investigated by simulating equivalent circuits.The high corrosion resistance of zigzag 2 structure as compared with conventional multilayer structure and zigzag 1 structure,is attributed to the high electrical impedance of the structure due to its small capacitance and high electrical resistance.Finally,the surfaces of corroded samples are observed by scanning electron microscope(SEM).
基金supported by the Ministry of Science and Technology Project of China(2009, No. GJB20011)
文摘The protective behavior for a molten AZ91D alloy in an open melting furnace was investigated under a protective gas mixture containing 3% SO2 and 97% CO2, and the protection mechanism was discussed. Experimental results show that the gas mixture provides effective protection for AZ91D melt in the temperature range from 680 ℃ to 730 ℃. The microstructure, chemical composition and phase composition of the surface film formed on the molten AZ91D alloy were analyzed using scanning electron microscopy (SEM) with energy dispersive spectrometer (EDS) and X-ray diffraction (XRD). The SEM results demonstrate that the surface films with an average thickness between 0.5 pm and 2 pm are dense and coherent in the protected temperature range. The EDS results reveal that the surface film mainly contains elements S, C, O, AI and Mg. The XRD results show that the surface film consists of MgO, MgS and a small amount of C phase.
文摘Structure and properties of anti-reflection thin films of spherical silicon solar cells were investigated and discussed. Conversion efficiencies of spherical Si solar cells coated with F-doped SnO2 anti-reflection films were improved by annealing. Optical absorption and fluorescence of the solar cells increased after annealing. Lattice constants of F-doped SnO2 anti-reflection layers, which were investigated by X-ray diffraction, decreased after annealing. A mechanism of atomic diffusion of F in SnO2 was discussed. The present work indicated a guideline for spherical silicon solar cells with higher efficiencies.