期刊文献+
共找到25篇文章
< 1 2 >
每页显示 20 50 100
Fiber optic monitoring of an anti-slide pile in a retrogressive landslide
1
作者 Lei Zhang Honghu Zhu +1 位作者 Heming Han Bin Shi 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第1期333-343,共11页
Anti-slide piles are one of the most important reinforcement structures against landslides,and evalu-ating the working conditions is of great significance for landslide mitigation.The widely adopted analytical methods... Anti-slide piles are one of the most important reinforcement structures against landslides,and evalu-ating the working conditions is of great significance for landslide mitigation.The widely adopted analytical methods of pile internal forces include cantilever beam method and elastic foundation beam method.However,due to many assumptions involved in calculation,the analytical models cannot be fully applicable to complex site situations,e.g.landslides with multi-sliding surfaces and pile-soil interface separation as discussed herein.In view of this,the combination of distributed fiber optic sensing(DFOS)and strain-internal force conversion methods was proposed to evaluate the working conditions of an anti-sliding pile in a typical retrogressive landslide in the Three Gorges reservoir area,China.Brillouin optical time domain reflectometry(BOTDR)was utilized to monitor the strain distri-bution along the pile.Next,by analyzing the relative deformation between the pile and its adjacent inclinometer,the pile-soil interface separation was profiled.Finally,the internal forces of the anti-slide pile were derived based on the strain-internal force conversion method.According to the ratio of calculated internal forces to the design values,the working conditions of the anti-slide pile could be evaluated.The results demonstrated that the proposed method could reveal the deformation pattern of the anti-slide pile system,and can quantitatively evaluate its working conditions. 展开更多
关键词 anti-slide pile Multi-sliding surface Pile-soil interface Brillouin optical time domain reflectometry (BOTDR) Geotechnical monitoring Reservoir landslide
下载PDF
Centrifuge and numerical modeling of h-type anti-slide pile reinforced soil-rock mixture slope
2
作者 ZHANG Hao XING Hao-feng +1 位作者 XUE Dao-rui TANNANT Dwayne 《Journal of Mountain Science》 SCIE CSCD 2023年第5期1441-1457,共17页
Due to the loose structure,high porosity and high permeability of soil-rock mixture slope,the slope is unstable and may cause huge economic losses and casualties.The h-type anti-slide pile is regarded as an effective ... Due to the loose structure,high porosity and high permeability of soil-rock mixture slope,the slope is unstable and may cause huge economic losses and casualties.The h-type anti-slide pile is regarded as an effective means to prevent the instability of soilrock mixture slope.In this paper,a centrifuge model test was conducted to investigate the stress distribution of the h-type anti-slide pile and the evolution process of soil arching during the loading.A numerical simulation model was built based on the similar relationship between the centrifuge model and the prototype to investigate the influence factors of the pile spacing,anchored depth,and crossbeam stiffness,and some recommendations were proposed for its application.The results show that the bending moment distribution of the rear pile exhibits Wshaped,while for the front pile,its distribution resembles V-shaped.The soil arching evolution process during loading is gradually dissipated from bottom to top and from far to near.During the loading,the change of bending moment can be divided into three stages,namely,the stabilization stage,the slow growth stage,and the rapid growth stage.In engineering projects,the recommended values of the pile spacing,anchored depth,and crossbeam stiffness are 4.0d,2.0d,and 2.0EI,where d and EI are the diameter and bending stiffness of the h-type anti-slide pile respectively. 展开更多
关键词 Centrifugemodel test Numerical simulation h-type anti-slide pile Soil-rock mixture slop Soil arching
下载PDF
Anchoring Depth Research of Anti-Slide Piles of Anchor Bar in Soil 被引量:6
3
作者 Xunchang Li,Yuming Men School of Geological Engineering and Surveying Engineering,Chang’an University,Xi’an 710054,China. 《地学前缘》 EI CAS CSCD 北大核心 2009年第S1期182-182,共1页
The model test result of earth force in the side of anti-slide pile of anchor bars was introduced.There are three groups of the tests.The loads were on the back side of the slope in two groups.The other one was loaded... The model test result of earth force in the side of anti-slide pile of anchor bars was introduced.There are three groups of the tests.The loads were on the back side of the slope in two groups.The other one was loaded just behind the pile by the jack.In order to get the force of the soil,some earth-pressure boxes were used to get the earth pressure on the side of the piles.The part of the max pressure and the earth pressure was mainly focused under the slip line 展开更多
关键词 anti-slide PILE of ANCHOR BAR model test ANCHORING DEPTH SLIP line
下载PDF
Shaking table test for reinforcement of soil slope with multiple sliding surfaces by reinforced double-row anti-slide piles 被引量:5
4
作者 WU Hong-gang PAI Li-fang 《Journal of Mountain Science》 SCIE CSCD 2022年第5期1419-1436,共18页
Despite the continuous advancements of engineering construction in high-intensity areas,many engineering landslides are still manufactured with huge thrust force,and double-row piles are effective to control such larg... Despite the continuous advancements of engineering construction in high-intensity areas,many engineering landslides are still manufactured with huge thrust force,and double-row piles are effective to control such large landslides.In this study,large shaking table test were performed to test and obtain multi-attribute seismic data such as feature image,acceleration,and dynamic soil pressure.Through the feature image processing analysis,the deformation characteristics for the slope reinforced by double-row piles were revealed.By analyzing the acceleration and the dynamic soil pressure time domain,the spatial dynamic response characteristics were revealed.Using Fast Fourier Transform and half-power bandwidth,the damping ratio of acceleration and dynamic soil pressure was obtained.Following that,the Seism Signal was used to calculate the spectral displacement of the accelerations to obtain the regional differences of spectral displacement.The results showed that the overall deformation mechanism of the slope originates from tension failure in the soil mass.The platform at the back of the slope was caused by seismic subsidence,and the peak acceleration ratio was positively correlated with the relative pile heights.The dynamic soil pressure of the front row piles showed an inverted"K"-shaped distribution,but that of the back row piles showed an"S"-shaped distribution.The predominant frequency of acceleration was 2.16 Hz,and the main frequency band was 0.7-6.87 Hz;for dynamic soil pressure,the two parameters became 1.15 Hz and 0.5-6.59 Hz,respectively.In conclusion,dynamic soil pressure was more sensitive to dampening effects than acceleration.Besides,compared to acceleration,dynamic soil pressure exhibited larger loss factors and lower resonance peaks.Finally,back row pile heads were highly sensitive to spectral displacement compared to front row pile heads.These findings may be of reference value for future seismic designs of double-row piles. 展开更多
关键词 Double row anti-slide piles multislide surface landslide Shaking table test ACCELERATION Dynamic soil pressure Dynamic response characteristic
下载PDF
Interval finite element method and its application on anti-slide stability analysis 被引量:3
5
作者 邵国建 苏静波 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2007年第4期521-529,共9页
The problem of interval correlation results in interval extension is discussed by the relationship of interval-valued functions and real-valued functions. The methods of reducing interval extension are given. Based on... The problem of interval correlation results in interval extension is discussed by the relationship of interval-valued functions and real-valued functions. The methods of reducing interval extension are given. Based on the ideas of the paper, the formulas of sub-interval perturbed finite element method based on the elements are given. The sub-interval amount is discussed and the approximate computation formula is given. At the same time, the computational precision is discussed and some measures of improving computational efficiency are given. Finally, based on sub-interval perturbed finite element method and anti-slide stability analysis method, the formula for computing the bounds of stability factor is given. It provides a basis for estimating and evaluating reasonably anti-slide stability of structures. 展开更多
关键词 interval correlation interval extension computational precision interval finite element method anti-slide stability
下载PDF
Sensitivity analysis of factors affecting gravity dam anti-sliding stability along a foundation surface using Sobol method
6
作者 Bo Xu Shi-da Wang 《Water Science and Engineering》 EI CAS CSCD 2023年第4期399-407,共9页
The anti-sliding stability of a gravity dam along its foundation surface is a key problem in the design of gravity dams.In this study,a sensitivity analysis framework was proposed for investigating the factors affecti... The anti-sliding stability of a gravity dam along its foundation surface is a key problem in the design of gravity dams.In this study,a sensitivity analysis framework was proposed for investigating the factors affecting gravity dam anti-sliding stability along the foundation surface.According to the design specifications,the loads and factors affecting the stability of a gravity dam were comprehensively selected.Afterwards,the sensitivity of the factors was preliminarily analyzed using the Sobol method with Latin hypercube sampling.Then,the results of the sensitivity analysis were verified with those obtained using the Garson method.Finally,the effects of different sampling methods,probability distribution types of factor samples,and ranges of factor values on the analysis results were evaluated.A case study of a typical gravity dam in Yunnan Province of China showed that the dominant factors affecting the gravity dam anti-sliding stability were the anti-shear cohesion,upstream and downstream water levels,anti-shear friction coefficient,uplift pressure reduction coefficient,concrete density,and silt height.Choice of sampling methods showed no significant effect,but the probability distribution type and the range of factor values greatly affected the analysis results.Therefore,these two elements should be sufficiently considered to improve the reliability of the dam anti-sliding stability analysis. 展开更多
关键词 Gravity dam anti-sliding stability Sensitivity analysis Sobol method Latin hypercube sampling
下载PDF
Experimental study on seismic reinforcement of bridge foundation on silty clay landslide with inclined interlayer
7
作者 Lei Da Xiao Hanmo +3 位作者 Ran Jianhua Luo Bin Jiang Guanlu Xue Tianlang 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2024年第1期193-207,共15页
A shaking table test for a bridge foundation reinforced by anti-slide piles on a silty clay landslide model with an inclined interlayer was performed.The deformation characteristics of the bridge foundation piles and ... A shaking table test for a bridge foundation reinforced by anti-slide piles on a silty clay landslide model with an inclined interlayer was performed.The deformation characteristics of the bridge foundation piles and anti-slide piles were analyzed in different loading conditions.The dynamic response law of a silty clay landslide with an inclined interlayer was summarized.The spacing between the rear anti-slide piles and bridge foundation should be reasonably controlled according to the seismic fortification requirements,to avoid the two peaks in the forced deformation of the bridge foundation piles.The“blocking effect”of the bridge foundation piles reduced the deformation of the forward anti-slide piles.The stress-strain response of silty clay was intensified as the vibration wave field appeared on the slope.Since the vibration intensified,the thrust distribution of the landslide underwent a process of shifting from triangle to inverted trapezoid,the difference in the acceleration response between the bearing platform and silty clay landslide tended to decrease,and the spectrum amplitude near the natural vibration frequency increased.The rear anti-slide piles were able to slow down the shear deformation of the soil in front of the piles and avoid excessive acceleration response of the bridge foundation piles. 展开更多
关键词 silty clay landslide inclined interlayer shaking table test anti-slide pile bridge foundation pile
下载PDF
高抗冲击能量钢带式跑车防护装置试验分析
8
作者 谭廷帅 《煤矿机械》 2024年第7期46-48,共3页
提出抗冲击能量为5 MJ的钢带式跑车防护装置主要部件的设计计算要求,介绍钢带式跑车防护装置的设计流程,通过性能试验验证温度、温升和安全系数等参数的科学性,为5 MJ及更高抗冲击能量的跑车防护装置的研发设计和使用提供重要参考。
关键词 抗冲击能量 钢带式 跑车防护装置 温升
下载PDF
Application of strength reduction method to dynamic anti-sliding stability analysis of high gravity dam with complex dam foundation 被引量:3
9
作者 Deng-hong CHEN Cheng-bin DU 《Water Science and Engineering》 EI CAS 2011年第2期212-224,共13页
Considering that there are some limitations in analyzing the anti-sliding seismic stability of dam-foundation systems with the traditional pseudo-static method and response spectrum method, the dynamic strength reduct... Considering that there are some limitations in analyzing the anti-sliding seismic stability of dam-foundation systems with the traditional pseudo-static method and response spectrum method, the dynamic strength reduction method was used to study the deep anti-sliding stability of a high gravity dam with a complex dam foundation in response to strong earthquake-induced ground action. Based on static anti-sliding stability analysis of the dam foundation undertaken by decreasing the shear strength parameters of the rock mass in equal proportion, the seismic time history analysis was carried out. The proposed instability criterion for the dynamic strength reduction method was that the peak values of dynamic displacements and plastic strain energy change suddenly with the increase of the strength reduction factor. The elasto-plastic behavior of the dam foundation was idealized using the Drucker-Prager yield criterion based on the associated flow rule assumption. The result of elasto-plastic time history analysis of an overflow dam monolith based on the dynamic strength reduction method was compared with that of the dynamic linear elastic analysis, and the reliability of elasto-plastic time history analysis was confirmed. The results also show that the safety factors of the dam-foundation system in the static and dynamic cases are 3.25 and 3.0, respectively, and that the F2 fault has a significant influence on the anti-sliding stability of the high gravity dam. It is also concluded that the proposed instability criterion for the dynamic strength reduction method is feasible. 展开更多
关键词 dynamic anti-sliding stability complex dam foundation dynamic strength reduction method instability criteria elasto-plastie model dynamic time history analysis gravity dam
下载PDF
Pre-Stressed Rope Reinforced Anti-Sliding Pile 被引量:1
10
作者 XU Jun WANG Chenghua 《Wuhan University Journal of Natural Sciences》 EI CAS 2006年第4期887-891,共5页
Pre-stressed rope reinforced anti-sliding pile is a composite anti-sliding structure. It is made up of pre-stressed rope and general anti-sliding pile. It can bring traditional anti-sliding pile's retaining performan... Pre-stressed rope reinforced anti-sliding pile is a composite anti-sliding structure. It is made up of pre-stressed rope and general anti-sliding pile. It can bring traditional anti-sliding pile's retaining performance into full play, and to treat with landslide fast and economically. The difference between them is that the pre-stressed rope will transfix the whole anti- sliding pile through a prearranged pipe in this structure. The working mechanics, the design method and economic benefit are studied. The results show that the pre-stressed rope reinforced anti-sliding pile can treat with the small and middle landslides or high slopes well and possess the notable advantage of technology and economic. 展开更多
关键词 pre-stressed rope anti-sliding pile composite anti-sliding structure
下载PDF
超音速反舰导弹下滑弹道最优设计 被引量:1
11
作者 张翼飞 邓方林 顾文锦 《弹箭与制导学报》 CSCD 北大核心 2003年第4期34-36,40,共4页
采用高空巡航和低空掠海飞行弹道相结合的超音速反舰导弹,由于其高低空弹道高度相差甚大,因而下滑段的弹道设计是一个难题。本文提出了一种超音速导弹下滑弹道的最优设计方案,推导了基于该方案的最优控制过载指令计算公式,并利用过载控... 采用高空巡航和低空掠海飞行弹道相结合的超音速反舰导弹,由于其高低空弹道高度相差甚大,因而下滑段的弹道设计是一个难题。本文提出了一种超音速导弹下滑弹道的最优设计方案,推导了基于该方案的最优控制过载指令计算公式,并利用过载控制原理对该方案进行了弹道仿真,仿真结果表明该方案具有较好控制效果,达到了预期的设计指标。 展开更多
关键词 超音速反舰导弹 下滑弹道 最优控制 过载指令 过载控制 弹道仿真 设计
下载PDF
风动潜孔锤用于抗滑桩施工的研究 被引量:1
12
作者 詹军 于清杨 《地质灾害与环境保护》 2001年第2期80-82,共3页
在介绍风动潜孔锤钻进特点的基础上 ,根据抗滑桩施工要求 ,分析风动潜孔锤用于抗滑桩施工的可行性 ,并举出应用实例。
关键词 风动潜孔锤 滑坡 抗滑桩 可行性 施工要求 加固方案
下载PDF
抗滑短桩的应力监测与分析 被引量:6
13
作者 雷用 郑颖人 蒋文明 《地下空间与工程学报》 CSCD 2007年第5期941-946,共6页
介绍了滑坡治理工程中采用的抗滑短桩桩前土体水平抗力、桩后土体水平作用力的现场监测实例,对监测结果进行了分析,得出了本工程中水平抗力和水平作用力在短桩施工完工后约50d才完全发挥并趋于稳定的认识,也得出了它们沿短桩桩身的分布... 介绍了滑坡治理工程中采用的抗滑短桩桩前土体水平抗力、桩后土体水平作用力的现场监测实例,对监测结果进行了分析,得出了本工程中水平抗力和水平作用力在短桩施工完工后约50d才完全发挥并趋于稳定的认识,也得出了它们沿短桩桩身的分布规律的认识。 展开更多
关键词 抗滑短桩 应力监测 水平抗力 水平作用力
下载PDF
铁路车辆自动防溜器装车试验研究 被引量:1
14
作者 唐永康 《国防交通工程与技术》 2018年第3期9-13,共5页
为了克服长期困扰铁路行业的车辆防溜作业强度大、效率低、安全可靠性差等问题,研制了铁路车辆自动防溜器。介绍了防溜器的工作原理,计算表明C70、C80型货车在空载和重载状况下铁路车辆自动防溜器的制动力能够得到保证。样品安装在58组... 为了克服长期困扰铁路行业的车辆防溜作业强度大、效率低、安全可靠性差等问题,研制了铁路车辆自动防溜器。介绍了防溜器的工作原理,计算表明C70、C80型货车在空载和重载状况下铁路车辆自动防溜器的制动力能够得到保证。样品安装在58组116辆C70A型货车上,开展了试验列车的性能测试、空重车坡道防溜和运行考核试验,证明研制的铁路车辆自动防溜器单车防溜制动力强,能保证车辆在坡度不大于12‰任何线路上实现自动防溜、安全停放。较之传统的人工作业防溜措施在经济、社会效益方面具有明显的优势。 展开更多
关键词 铁路车辆 自动防溜器 制动力 下滑力 坡道试验
下载PDF
正确区分和计算滑坡抗滑力与下滑力的重要性 被引量:2
15
作者 黄先光 《兰州交通大学学报》 CAS 2016年第1期100-105,共6页
针对包括现行规范在内的将滑坡抗滑力与下滑力不加严格区分和计算的普遍现象,首先从力学角度阐述了抗滑力与下滑力的界定标准是与滑动方向相反还是相同,再用稳定系数计算公式说明抗滑力和下滑力是比值关系、下滑力不能与抗滑力进行加减... 针对包括现行规范在内的将滑坡抗滑力与下滑力不加严格区分和计算的普遍现象,首先从力学角度阐述了抗滑力与下滑力的界定标准是与滑动方向相反还是相同,再用稳定系数计算公式说明抗滑力和下滑力是比值关系、下滑力不能与抗滑力进行加减运算,并用简单的算例证明了正确区分和计算抗滑力与下滑力的重要性,同时也证明了基于强度储备或强度折减的计算方法在原理上是不严谨的,只有原始的传递系数法是比较正确的,为滑坡稳定性和推力的正确计算提供了参考,也弥补了目前规范对传递系数法的一些误解和解释不足. 展开更多
关键词 滑坡 抗滑力 下滑力 区分 计算 传递系数法
下载PDF
Strength reduction and step-loading finite element approaches in geotechnical engineering 被引量:23
16
作者 Yingren Zheng Xiaosong Tang +2 位作者 Shangyi Zhao Chujian Deng Wenjie Lei 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE 2009年第1期21-30,共10页
The finite element limit analysis method has the advantages of both numerical and traditional limit equilibrium techniques and it is particularly useful to geotechnical engineering.This method has been developed in Ch... The finite element limit analysis method has the advantages of both numerical and traditional limit equilibrium techniques and it is particularly useful to geotechnical engineering.This method has been developed in China,following well-accepted international procedures,to enhance understanding of stability issues in a number of geotechnical settings.Great advancements have been made in basic theory,the improvement of computational precision,and the broadening of practical applications.This paper presents the results of research on(1) the efficient design of embedded anti-slide piles,(2) the stability analysis of reservoir slopes with strength reduction theory,and(3) the determination of the ultimate bearing capacity of foundations using step-loading FEM(overloading).These three applications are evidence of the design improvements and benefits made possible in geotechnical engineering by finite element modeling. 展开更多
关键词 finite element limit analysis method strength reduction step-loading embedded anti-slide piles reservoir slope FOUNDATION
下载PDF
Dynamic response of a slope reinforced by double-row antisliding piles and pre-stressed anchor cables 被引量:9
17
作者 FAN Gang ZHANG Jian-jing +1 位作者 QI Shun-chao WU Jin-biao 《Journal of Mountain Science》 SCIE CSCD 2019年第1期226-241,共16页
Large-scale shaking table tests were conducted to study the dynamic response of a slope reinforced by double-row anti-sliding piles and prestressed anchor cables. The test results show that the reinforcement suppresse... Large-scale shaking table tests were conducted to study the dynamic response of a slope reinforced by double-row anti-sliding piles and prestressed anchor cables. The test results show that the reinforcement suppressed the acceleration amplification effectively. The axial force time histories are decomposed into a baseline part and a vibration part in this study. The baseline part of axial force well revealed the seismic slope stability, the peak vibration values of axial force of the anchor cables changed significantly in different area of the slope under seismic excitations. The peak lateral earth pressure acting on the back of the anti-sliding pile located at the slope toe was much larger than that acting on the back of the anti-sliding pile located at the slope waist. The test results indicate an obvious load sharing ratio difference between these two anti-slide piles, the load sharing ratio between the two anti-sliding piles located at the slope toe and the slope waist varied mainly in a range of 2-5. The anti-slide pile at the slope waist suppressed the horizontal displacement of the slope surface. 展开更多
关键词 SLOPE stability anti-slidING PILE ANCHOR cable Seismic design SHAKING table test Earthquake
下载PDF
Limit analysis on seismic stability of anisotropic and nonhomogeneous slopes with anti-slide piles 被引量:8
18
作者 GONG WeiBing LI JingPei LI Lin 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2018年第1期140-146,共7页
This study employs the limit analysis method to evaluate the seismic stability of anisotropic and nonhomogeneous slopes stabilized with anti-slide piles. The pseudo-static approach is used to simplify the earthquake l... This study employs the limit analysis method to evaluate the seismic stability of anisotropic and nonhomogeneous slopes stabilized with anti-slide piles. The pseudo-static approach is used to simplify the earthquake load. The yield seismic acceleration factor is obtained from the optimization procedure and the results are verified with the published data. Then, the seismically-unstable slope is reinforced with anti-slide piles, and the seismic stability of the reinforced slope is explored. The results show that the anisotropy and nonhomogeneity of soils have significant effects on the stabilizing force required from the anti-slide piles and the optimal location of the pile is near the toe of the slope. 展开更多
关键词 limit analysis pseudo-static approach anti-slide pile optimal location
原文传递
Stability analysis of concrete gravity dam on complicated foundation with multiple slide planes 被引量:2
19
作者 Ren Xuhua Shu Jiaqing +1 位作者 Ben Nenghui Ren Hongyun 《Water Science and Engineering》 EI CAS 2008年第3期65-72,共8页
A key problem in gravity dam design is providing enough stability to prevent slide, and the difficulty increases if there are several weak structural planes in the dam foundation. Overload and material weakening were ... A key problem in gravity dam design is providing enough stability to prevent slide, and the difficulty increases if there are several weak structural planes in the dam foundation. Overload and material weakening were taken into account, and a .finite difference strength reserve method with partial safety factors based on the reliability method was developed and used to study the anti-slide stability of a concrete gravity dam on a complicated foundation with multiple slide planes. Possible slide paths were obtained, and the stability of the foundation with possible failure planes was evaluated through analysis of the stress distribution characteristics. The results reveal the mechanism and process of sliding due to weak structural planes and their deformations, and provide a reference for anti-slide stability analysis of gravity dams in complicated geological conditions. 展开更多
关键词 multiple slide .planes anti-slide stability mechanism of sliding partial coefficient finite difference method
下载PDF
Shaking Table Tests on Bridge Foundation Reinforced by Antislide Piles on Slope 被引量:1
20
作者 ZHOU Heng SU Qian +1 位作者 LIU Jie YUE Fei 《Earthquake Research in China》 CSCD 2019年第3期514-524,共11页
Based on the requirement of seismic reinforcement of bridge foundation on slope in the Chengdu-Lanzhou railway project,a shaking table model test of anti-slide pile protecting bridge foundation in landslide section is... Based on the requirement of seismic reinforcement of bridge foundation on slope in the Chengdu-Lanzhou railway project,a shaking table model test of anti-slide pile protecting bridge foundation in landslide section is designed and completed. By applying Wenchuan seismic waves with different acceleration peaks,the stress and deformation characteristics of bridge pile foundation and anti-slide pile are analyzed,and the failure mode is discussed. Results show that the dynamic response of bridge pile and anti-slide pile are affected by the peak value of seismic acceleration of earthquake,with which the stress and deformation of the structure increase. The maximum dynamic earth pressure and the moment of anti-slide piles are located near the sliding surface,while that of bridge piles are located at the top of the pile. Based on the dynamic response of structure,local reinforcement needs to be carried out to meet the requirement of the seismic design. The PGA amplification factor of the surface is greater than the inside,and it decreases with the increase of the input seismic acceleration peak. When the slope failure occurs,the tension cracks are mainly produced in the shallow sliding zone and the coarse particles at the foot of the slope are accumulated. 展开更多
关键词 SHAKING TABLE test anti-slide PILE Bridge PILE FOUNDATION Dynamic response Damage mode
下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部