As a result of the high speed of anti-submarine patrol aircraft as well as their wide range, high efficiency and other characteristics, aerial torpedoes released by anti-submarine patrol aircraft have become the key a...As a result of the high speed of anti-submarine patrol aircraft as well as their wide range, high efficiency and other characteristics, aerial torpedoes released by anti-submarine patrol aircraft have become the key anti submarine tool. In order to improve operational efficiency, a deep study was made of the target detection probabilities for aerial torpedoes released by anti-submarine patrol aircraft. The operational modes of aerial torpedoes were analyzed and mathematical-simulation models were then established. The detection probabilities of three attacking modes were then calculated. Measures were developed for improving low probabilities of detection when attacking a probable target position. This study provides an important frame of reference for the operation of aerial torpedo released by anti-submarine patrol aircraft.展开更多
Utilizing artificial intelligence(AI)to protect smart coastal cities has become a novel vision for scientific and industrial institutions.One of these AI technologies is using efficient and secure multi-environment Un...Utilizing artificial intelligence(AI)to protect smart coastal cities has become a novel vision for scientific and industrial institutions.One of these AI technologies is using efficient and secure multi-environment Unmanned Vehicles(UVs)for anti-submarine attacks.This study’s contribution is the early detection of a submarine assault employing hybrid environment UVs that are controlled using swarm optimization and secure the information in between UVs using a decentralized cybersecurity strategy.The Dragonfly Algorithm is used for the orientation and clustering of the UVs in the optimization approach,and the Re-fragmentation strategy is used in the Network layer of the TCP/IP protocol as a cybersecurity solution.The research’s noteworthy findings demonstrate UVs’logistical capability to promptly detect the target and address the problem while securely keeping the drone’s geographical information.The results suggest that detecting the submarine early increases the likelihood of averting a collision.The dragonfly strategy of sensing the position of the submersible and aggregating around it demonstrates the reliability of swarm intelligence in increasing access efficiency.Securing communication between Unmanned Aerial Vehicles(UAVs)improves the level of secrecy necessary for the task.The swarm navigation is based on a peer-to-peer system,which allows each UAV to access information from its peers.This,in turn,helps the UAVs to determine the best route to take and to avoid collisions with other UAVs.The dragonfly strategy also increases the speed of the mission by minimizing the time spent finding the target.展开更多
The organization of coordinated attack and the selection of aiming point which affect hit probability were analyzed for the countermeasures taken by the hostile submarines at two helicopters' coordinated attack.A ...The organization of coordinated attack and the selection of aiming point which affect hit probability were analyzed for the countermeasures taken by the hostile submarines at two helicopters' coordinated attack.A computational model of coordinated attack parameters,a model of submarine maneuver,and a model of noise jammer were established.Compared to single helicopter' torpedo attack,the coordinated attack of two helicopters can effectively increase the hit probability of torpedo and achieve the higher target detecting probability under counterwork condition.展开更多
文摘As a result of the high speed of anti-submarine patrol aircraft as well as their wide range, high efficiency and other characteristics, aerial torpedoes released by anti-submarine patrol aircraft have become the key anti submarine tool. In order to improve operational efficiency, a deep study was made of the target detection probabilities for aerial torpedoes released by anti-submarine patrol aircraft. The operational modes of aerial torpedoes were analyzed and mathematical-simulation models were then established. The detection probabilities of three attacking modes were then calculated. Measures were developed for improving low probabilities of detection when attacking a probable target position. This study provides an important frame of reference for the operation of aerial torpedo released by anti-submarine patrol aircraft.
基金This work was funded by the research center of the Future University in Egypt,in 2023.
文摘Utilizing artificial intelligence(AI)to protect smart coastal cities has become a novel vision for scientific and industrial institutions.One of these AI technologies is using efficient and secure multi-environment Unmanned Vehicles(UVs)for anti-submarine attacks.This study’s contribution is the early detection of a submarine assault employing hybrid environment UVs that are controlled using swarm optimization and secure the information in between UVs using a decentralized cybersecurity strategy.The Dragonfly Algorithm is used for the orientation and clustering of the UVs in the optimization approach,and the Re-fragmentation strategy is used in the Network layer of the TCP/IP protocol as a cybersecurity solution.The research’s noteworthy findings demonstrate UVs’logistical capability to promptly detect the target and address the problem while securely keeping the drone’s geographical information.The results suggest that detecting the submarine early increases the likelihood of averting a collision.The dragonfly strategy of sensing the position of the submersible and aggregating around it demonstrates the reliability of swarm intelligence in increasing access efficiency.Securing communication between Unmanned Aerial Vehicles(UAVs)improves the level of secrecy necessary for the task.The swarm navigation is based on a peer-to-peer system,which allows each UAV to access information from its peers.This,in turn,helps the UAVs to determine the best route to take and to avoid collisions with other UAVs.The dragonfly strategy also increases the speed of the mission by minimizing the time spent finding the target.
文摘The organization of coordinated attack and the selection of aiming point which affect hit probability were analyzed for the countermeasures taken by the hostile submarines at two helicopters' coordinated attack.A computational model of coordinated attack parameters,a model of submarine maneuver,and a model of noise jammer were established.Compared to single helicopter' torpedo attack,the coordinated attack of two helicopters can effectively increase the hit probability of torpedo and achieve the higher target detecting probability under counterwork condition.