Interfacial solar-driven evaporation technology shows great potential in the field of industrial seawater desalination, and the development ofefficient and low-cost evaporation materials is key to achieving large-scale ...Interfacial solar-driven evaporation technology shows great potential in the field of industrial seawater desalination, and the development ofefficient and low-cost evaporation materials is key to achieving large-scale applications. Hydrogels are considered to be promising candidates;however, conventional hydrogel-based interfacial solar evaporators have difficulty in simultaneously meeting multiple requirements, including ahigh evaporation rate, salt resistance, and good mechanical properties. In this study, a Janus sponge-like hydrogel solar evaporator (CPAS) withexcellent comprehensive performance was successfully constructed. The introduction of biomass agar (AG) into the polyvinyl alcohol (PVA)hydrogel backbone reduced the enthalpy of water evaporation, optimized the pore structure, and improved the mechanical properties. Meanwhile, by introducing hydrophobic fumed nano-silica aerogel (SA) and a synergistic foaming-crosslinking process, the hydrogel spontaneouslyformed a Janus structure with a hydrophobic surface and hydrophilic bottom properties. Based on the reduction of the evaporation enthalpy andthe modulation of the pore structure, the CPAS evaporation rate reached 3.56 kg m^(-2) h^(-1) under one sun illumination. Most importantly, owingto the hydrophobic top surface and 3D-interconnected porous channels, the evaporator could work stably in high concentrations of salt-water(25 wt% NaCl), showing strong salt resistance. Efficient water evaporation, excellent salt resistance, scalable preparation processes, and low-costraw materials make CPAS extremely promising for practical applications.展开更多
The intensive development of tight reservoirs has positioned them as a strategic alternative to conventional oil and gas resources. Existing enhanced oil recovery(EOR) methods struggle to effectively exploring reservo...The intensive development of tight reservoirs has positioned them as a strategic alternative to conventional oil and gas resources. Existing enhanced oil recovery(EOR) methods struggle to effectively exploring reservoir oil, resulting in low recovery rates. Novel and effective means of developing tight reservoirs are urgently needed. Nanomaterials have shown promising applications in improving water flooding efficiency, with in-depth research into mechanisms that lower injection pressure and increase water injection volumes. However, the extent of improvement remains limited. In this study, a silicon quantum dots(Si-QDs) material was synthesized via a hydrothermal synthesis method and used to prepare a nanofluid for the efficient recovery of tight reservoir. The Si-QDs, with an approximate diameter of 3 nm and a spherical structure, were surface functionalized with benzenesulfonic acid groups to enhance the performance. The developed nanofluid demonstrated stability without aggregation at 120℃ and a salinity of 60000 mg/L. Core flooding experiments have demonstrated the attractive EOR capabilities of Si-QDs, shedding light of the EOR mechanisms. Si-QDs effectively improve the wettability of rocks, enhancing the sweeping coefficient of injected fluids and expanding sweeping area.Within this sweeping region, Si-QDs efficiently stripping adsorbed oil from the matrix, thus increasing sweeping efficiency. Furthermore, Si-QDs could modify the state of pore-confined crude oil, breaking it down into smaller particles that are easier to displacement in subsequent stages. Si-QDs exhibit compelling EOR potential, positioning them as a promising approach for effectively developing tight oil reservoirs.展开更多
In this study,four genotypes(Acva-1,Acva-2,Acva-3 and ZM-2) of Actinidia germplasm resources were grown in different NaCl concentrations(0,0.4,0.8 and 1.2 g L–1).The growth,physiological and biochemical indicators we...In this study,four genotypes(Acva-1,Acva-2,Acva-3 and ZM-2) of Actinidia germplasm resources were grown in different NaCl concentrations(0,0.4,0.8 and 1.2 g L–1).The growth,physiological and biochemical indicators were measured,and a graded scale was developed as the salt damage index(SDI) according to different damage symptoms in leaves.The results showed SDI increased gradually,and average number and length of new shoot decreased significantly.Three antioxidant enzymes(superoxide dismutase,peroxidase and catalase) and two osmotic adjustment substances(soluble sugar and proline) showed different changes in old and new leaves of four genotypes.SPAD values exhibited a decreased trend in the whole except in the new leaves of Acva-2.Malonaldehyde contents increased and root activity decreased with the increasing salt concentrations.Principal component analysis was used to assess the salt tolerance,and the results showed Acva-3,from Actinidia valvata Dunn.,had the strongest tolerance to salt,and could be a potential resistant resource to the salt-tolerance dedicated rootstock breeding of kiwifruit.展开更多
Humic acids(HAs)are widely used as filtrate and viscosity reducers in drilling fluids.However,their practical utility is limited due to poor stability in salt resistance and high-temperature resistance.Hightemperature...Humic acids(HAs)are widely used as filtrate and viscosity reducers in drilling fluids.However,their practical utility is limited due to poor stability in salt resistance and high-temperature resistance.Hightemperature coal pitch(CP)is a by-product from coal pyrolysis above 650℃.The substance's molecular structure is characterized by a dense arrangement of aromatic hydrocarbon and alkyl substituents.This unique structure gives it unique chemical properties and excellent drilling performance,surpassing traditional humic acids in drilling operations.Potassium humate is prepared from CP(CP-HA-K)by thermal catalysis.A new type of high-quality humic acid temperature-resistant viscosity-reducer(Graft CP-HA-K polymer)is synthesized with CP-HA-K,hydrolyzed polyacrylonitrile sodium salt(Na-HPAN),urea,formaldehyde,phenol and acrylamide(AAM)as raw materials.The experimental results demonstrate that the most favorable conditions for the catalytic preparation of CP-HA-K are 1 wt%catalyst dosage,30 wt%KOH dosage,a reaction temperature of 250℃,and a reaction time of 2 h,resulting in a maximum yield of CP-HA-K of 39.58%.The temperature resistance of the Graft CP-HA-K polymer is measured to be 177.39℃,which is 55.39℃ higher than that of commercial HA-K.This is due to the abundant presence of amide,hydroxyl,and amine functional groups in the Graft CP-HA-K polymer,which increase the length of the carbon chains,enhance the electrostatic repulsion on the surface of solid particles.After being aged to 120℃ for a specified duration,the Graft CP-HA-K polymer demonstrates significantly higher viscosity reduction(42.12%)compared to commercial HA-K(C-HA-K).Furthermore,the Graft CP-HA-K polymer can tolerate a high salt concentration of 8000 mg.L-1,measured after the addition of optimum amount of 3 wt%Graft CP-HA-K polymer.The action mechanism of Graft CP-HA-K polymer on high-temperature drilling fluid is that the Graft CP-HA-K polymer can increase the repulsive force between solid particles and disrupt bentonite's reticulation structure.Overall,this research provides novelty insights into the synthesis of artificial humic acid materials and the development of temperature-resistant viscosity reducers,offering a new avenue for the utilization of CP resources.展开更多
The variant LM1 was previously obtained using embryogenic cell suspension cultures of sweetpotato variety Lizixiang by gamma-ray induced mutation, and then its characteristics were stably inherited through six clonal ...The variant LM1 was previously obtained using embryogenic cell suspension cultures of sweetpotato variety Lizixiang by gamma-ray induced mutation, and then its characteristics were stably inherited through six clonal generations, thus this mutant was named LM1. In this study, systematic characterization of salt tolerance and Fusarium wilt resistance were performed between Lizixiang and mutant LM1. LM1 exhibited significantly higher salt tolerance compared to Lizixiang. The content of proline and activities of superoxide dismutase(SOD) and photosynthesis were significantly increased, while malonaldehyde(MDA) and H_2O_2 contents were significantly decreased compared to that of Lizixiang under salt stress. The inoculation test with Fusarium wilt showed that its Fusarium wilt resistance was also improved. The lignin, total phenolic, jasmonic acid(JA) contents and SOD activity were significantly higher, while H_2O_2 content was significantly lower in LM1 than that in Lizixiang. The expression level of salt stress-responsive and disease resistance-related genes was significantly higher in LM1 than that in Lizixiang under salt and Fusarium wilt stresses, respectively. This result provides a novel and valuable material for improving the salt tolerance and Fusarium wilt resistance of sweetpotato.展开更多
Investigation was made to confirm the stability of drought and salt stress tolerance in cauliflower (Brassica oleracea var.botrytis) mutants after regeneration and micropropagation. The N-nitroso-N-ethyleurea (NEU) an...Investigation was made to confirm the stability of drought and salt stress tolerance in cauliflower (Brassica oleracea var.botrytis) mutants after regeneration and micropropagation. The N-nitroso-N-ethyleurea (NEU) and N-nitroso-N-methylurea (NMU) induced mutants of cauliflower were created and screened for drought and salt stress tolerance. The highly tolerant mutants were selected, regenerated by tissue culture techniques, screened again for drought and salt tolerance under in-vitro and in-vivo conditions, correlated the response of in-vitro and in-vivo plants within a clone. Free proline levels in clones were correlated with stress tolerance. Results confirmed the persistence of mutations in clones with enhanced resistance levels to stresses over control plants. The regenerated in-vitro and in-vivo plants within a clone showed a positive significant correlation for drought (R2 = 0.663) and salt (R2 = 0.647) resistance that confirms the stability of mutation in clones after generations. Proline showed a positive and significant correlation with drought (R2 = 0.524) and salt (R2 = 0.786) tolerance. Conclusively, drought and salt resistance can be successfully enhanced in cauliflower by chemical mutagenesis. Further molecular analysis is recommended to study these mutants.展开更多
The diffusive boundary layer (DBL) is the zone for matter exchange between surface water and aquatic sediments. To elucidate the influence of DBL on salt release from saline sediments to freshwater, two experiments ...The diffusive boundary layer (DBL) is the zone for matter exchange between surface water and aquatic sediments. To elucidate the influence of DBL on salt release from saline sediments to freshwater, two experiments with or without wind blowing were conducted. According to the experiments, a 3.5 cm DBL is formed above the smoothed sediments at a steady wind field and this thickness is greater than other studies. The observed flux of salt through the DBL is 6% larger than the calculated value from Fick' s first law. The results indicate that molecular diffusion is the dominant mechanism for salt transport through the DBL. The presence of DBL suppresses the hydrodynamic enhancement for matter exchange between sediments and overlying water. Therefore, salts in the sediments of a polder reservoir may influence the water quality chronically.展开更多
The Sulige gas field is a typical low-pressure low-permeability tight sandstone gas reservoir. The reservoir has poor seepage capacity, strong heterogeneity, high mineralization of formation water and extremely scarce...The Sulige gas field is a typical low-pressure low-permeability tight sandstone gas reservoir. The reservoir has poor seepage capacity, strong heterogeneity, high mineralization of formation water and extremely scarce water resources on the site. These unfavorable factors have brought great difficulties to the on-site mining process. Now, a nano-composite green environmental protection slick water fracturing fluid system CQFR can be quickly dissolved because of the larger specific surface area, and the small molecular size makes the damage to the reservoir less than 5%, and the average drag reduction effect can reach more than 73%. It can quickly and well dissolve and maintain performance under high salinity conditions and fracturing flowback fluids. It responds well to the complex reservoir conditions on the construction site and makes the flowback fluid recyable, which greatly reduces the consumption of water resources on the construction site and effectively improves the construction efficiency and economic benefits.展开更多
Analysis of the gene expression differentiation in leaves of wheat (Triticum aestivum L.) cultivar Baofeng 7228, under salt stress, was carried out by Differential-Display Reverse Transcription-polymerase Chain Reac...Analysis of the gene expression differentiation in leaves of wheat (Triticum aestivum L.) cultivar Baofeng 7228, under salt stress, was carried out by Differential-Display Reverse Transcription-polymerase Chain Reaction (DDRT-PCR.) Twenty-seven differential cDNA fragments were obtained. The expression of the SR07 fragment was induced noticeably by salt treatment, and the nucleotide sequence homology of 87% between the SR07 fragment and PIPs (water channel proteins) was observed. Further research showed that a 561 bp open read frame was present in the SR07 fragment. Plant expression vector of pCAMBIA-SR07 was constructed and three transformants of tobacco (Nicotiana tobacum) mediated by Agrobacterium tumefaciens plasmid were obtained. Resistance to salt, PEG, and mannitol stresses of the three transformants were examined. No significant difference (P 〉 0.05) was observed between the control and the transformants in resistance to salt stress, but there was significant difference (P 〈 0.05) between the control and the transformants in resistance to PEG and mannitol stresses. Therefore, the expression of the SR07 fragment may play an important role in the water regulation of the plant.展开更多
Objective:To investigate the antibacterial aclivily of marine actinobacteria against multidrug resistance Staphylococcus aureus(MDRSA).Methods:Fifty one actinobacterial strains were isolated from salt pans soil,costal...Objective:To investigate the antibacterial aclivily of marine actinobacteria against multidrug resistance Staphylococcus aureus(MDRSA).Methods:Fifty one actinobacterial strains were isolated from salt pans soil,costal area in Kothapattanam,Ongole,Andhra Pradesh.Primary screening was done using cross-streak method against MDRSA.The bioaclive compounds are extracted from efficient actinobacteria using solvent extraction.The antimicrobial activity of crude and solvent extracts was perfomied using Kirby-Bauer method.MIC for ethyl acetate extract was determined by modified agar well diffusion method.The potent actinobacteria are identified using Nonomura key,Shirling and Gottlieb 1966 with Bergey's manual of determinative bacteriology.Results:Among the fifty one isolates screened for antibacterial activity,SRB25were found efficient against MDRSA.The ethyl acetate extracts showed high inhibition against test organism.MIC test was performed with the ethyl acetate extract against MDRSA and found to be 1 000μg/mL.The isolaled actinobacteria are identified as Streptomyces sp with the help of Nonomura key.Conclusions:The current investigation reveals that the marine actinobacteria from salt pan environment can be able to produce new drug molecules against drug resistant microorganisms.展开更多
The corrosion behaviors of 304SS, 316LSS, and Q235A in LiCl-KCl melts were investigated at 450℃ by Tafel curves and elec- trochemical impedance spectroscopy (EIS). 316LSS shows the best corrosion resistance behavio...The corrosion behaviors of 304SS, 316LSS, and Q235A in LiCl-KCl melts were investigated at 450℃ by Tafel curves and elec- trochemical impedance spectroscopy (EIS). 316LSS shows the best corrosion resistance behaviors among the three materials, including the most positive corrosion potential and the smallest corrosion current from the Tafel curves and the largest electron transfer resistance from the Nyquist plots. The results are in good agreement with the weight losses in the static corrosion experiments for 45 h. This may be attributed to the better corrosion resistance of Mo and Ni existing as alloy elements in 316LSS, which exhibit the lower corrosion current densities and more positive corrosion potentials than 316LSS in the same melts.展开更多
A new temperature-resistant and salt-tolerant mixed surfactant system(referred to as the SS system)for enhancing oil recovery at the Tahe Oilfield(Xinjiang,China)was evaluated.Based on the analysis of the crude oil,th...A new temperature-resistant and salt-tolerant mixed surfactant system(referred to as the SS system)for enhancing oil recovery at the Tahe Oilfield(Xinjiang,China)was evaluated.Based on the analysis of the crude oil,the formation water and rock components in the Tahe Oilfield,the long-term thermal stability,salt tolerance and the ability to change the wettability,interfacial activity and oil washing efficiency of the mixed surfactant system were studied.The system contains the anionic surfactant SDB and another cationic surfactant SDY.When the total mass concentration of the SS solution is 0.15 wt%,m(SDB)/m(SDY)ratio is 1 to 1,and excellent efficiencies are achieved for oil washing for five kinds of Tahe Oilfield crude oils(more than 60%).In addition,after adding cationic surfactant,the adsorption capacity of the surfactant is further reduced,reaching 0.261 mg/g.The oil displacement experiments indicate that under a temperature of 150°C and a salinity of 24.6×104 mg/L,the SS system enhances the oil recovery by over 10%after water flooding.The SS anionic–cationic surfactant system is first presented in the open literature that can be successfully applied to obtain predictions of Tahe Oilfield carbonate reservoirs with a high temperature and high salinity.展开更多
In order to improve the enhanced oil recovery of high-temperature and high-salt oilfields, a novel temperature-resistant and salt-tolerant surfactant (denoted as SDB-7) was synthesized and evaluated for the Tahe Oil...In order to improve the enhanced oil recovery of high-temperature and high-salt oilfields, a novel temperature-resistant and salt-tolerant surfactant (denoted as SDB-7) was synthesized and evaluated for the Tahe Oilfield (Xinjiang, China), which is representative of high-temperature and high-salt oilfields. It has a central reservoir temperature of 140 ℃ and salinity of 22.6× 10^4 mg/L. The temperature-resistant and salt-tolerant performance, interfacial activity, oil displacement efficiency, aging properties, and adsorption properties of the synthesized surfactant were evaluated for Tahe Oilfield flooding. The results showed that the SDB-7 was temperature-resistant and salt-tolerant capacity of 140 ℃ and 22.6×10^4 rag/ L, respectively, oil displacement efficiency under static condition of 84%, and adsorption loss of 0.4 mg/ g (less than 1 mg/g-oil sand). In the heat aging experiment (under the temperature of 140 ℃ for 60 days), the oil-water interracial tension and oil displacement efficiency of SDB-7 were almost unchanged. The oil displacement experiments showed that, under the temperature of 140 ℃ and the salinity of 22.6× 10^4 mg/L, the surfactant SDB-7 can enhance oil recovery by 14.5% after water flooding,suggesting that SDB-7 has a promising application in high temperature and high salinity (HT/HS) reservoir.展开更多
A high strength self-compacting pervious concrete(SCPC) with top-bottom interconnected pores was prepared in this paper. The frost-resisting durability of such SCPC in different deicing salt concentrations(0%, 3%, 5%,...A high strength self-compacting pervious concrete(SCPC) with top-bottom interconnected pores was prepared in this paper. The frost-resisting durability of such SCPC in different deicing salt concentrations(0%, 3%, 5%, 10%, and 20%) was investigated. The mass-loss rate, relative dynamic modulus of elasticity, compressive strength, flexural strength and hydraulic conductivity of SCPC after 300 freeze-thaw cycles were measured to evaluate the frost-resisting durability. In addition, the microstructures of SCPC near the top-bottom interconnected pores after 300 freeze-thaw cycles were observed by SEM. The results show that the high strength SCPC possesses much better frost-resisting durability than traditional pervious concrete(TPC) after 300 freeze-thaw cycles, which can be used in heavy loading roads. The most serious freeze-thaw damage emerges in the SCPC immersed in the 3% of Na Cl solution, while there is no obvious damage in 20% of Na Cl solution. Furthermore, it can be deduced that the high strength SCPC can be used for 100 years in a cold environment.展开更多
With four poplar clones, namely 84-323 (Populus deltoides cv. ?4-323?, 84-324 (Populus deltoides cv. ?4-324?, 79-35 (Populus ?euramericana cv. ?9-35?, and I-69 (Populus deltoides cv. 慙ux?I-69/55) as a control, resear...With four poplar clones, namely 84-323 (Populus deltoides cv. ?4-323?, 84-324 (Populus deltoides cv. ?4-324?, 79-35 (Populus ?euramericana cv. ?9-35?, and I-69 (Populus deltoides cv. 慙ux?I-69/55) as a control, researches on cold, drought and salt resistance of the clones were conducted. Electrolyte permeability under a series of low temperatures, relative water loss rate of detached leaves with time series and survival rate and growth performance in salt soil were measured. The results showed that 84-323, 84-324 and 79-35 were resistant to cold as same as I-69 (CK) and more resistant to drought and salinity than I-69 (CK).展开更多
In order to improve the leaching resistance of active ingredient-copper in ammoniacal copper quat-type D (ACQ-D) treated Chinese fir (Cunninghamia lanceolata Hook.), microwave post-treatments were carried out. The...In order to improve the leaching resistance of active ingredient-copper in ammoniacal copper quat-type D (ACQ-D) treated Chinese fir (Cunninghamia lanceolata Hook.), microwave post-treatments were carried out. The percentages of leached copper from ACQ-D treated Chinese fir with different microwave post-treatments were obtained after leaching tests by analyzing the copper retention in treated wood. The fixation mechanism of copper in the treated wood was determined with the help of SEM and FTIR spectra, while the valence conversion of copper after microwave post-treatments was studied by UV spectroscopy. Our experimental results show that the percentage of leached copper was reduced significantly after microwave post-treatment over time. This development was reinforced by allowing even more time for the treatment as well as with an increase in the power of microwave post-treatment. The leaching resistance of copper in wrapped samples was better than that in unwrapped samples, which is attributed to the combined effects of temperature and moisture content. Compared with air-dried samples, the valence conversion in the samples with microwave post-treatments changed slightly, which demonstrates that microwave post-treatments cannot impair the natural decay resistance of ACQ-D treated wood. SEM and FTIR spectra showed the presence of crystal particles formed by chemical reactions between copper and wood ingredients in wood cell walls and wood pits. Only a small amount of copper reacted with cellulose, while lignin and hemicellulose were the major bonding sites for copper in wood. Given the experimental results of mechanical properties, microwave post-treatments had a slight effect on the compression strength parallel to the grain and on the erystallinity of ACQ-D treated Chinese fir.展开更多
The correlations between thermal and physical properties were studied through thermal conductivity measurements, hardness tests, salt spray tests (AASS) among the surface treatment samples named K20, K40 with thicknes...The correlations between thermal and physical properties were studied through thermal conductivity measurements, hardness tests, salt spray tests (AASS) among the surface treatment samples named K20, K40 with thickness of 20, 40 μm respectively and raw sample named K00. In thermal conductivity measurements, there are little differences among the samples as K00, K20 and K40, they exhibit 153.39, 150.69 and 149.76 W/(m·K), respectively. According to hardness tests, K00, K20 and K40 exhibit 87.9, 259.7 and 344.8 in Vickers values. In the result of salt spray tests to examine the effects on corrosion resistance, K00, K20 and K40 exhibit the grade of 3?5, 2.0?9.8 and 10, respectively. The mutual relation of the above results was analyzed. It is found that the surface treatments do not affect the thermal conductivity of aluminum and result in the improvement of physical properties. As a result of the technology, the surface improvement of aluminum alloy specimen is achieved without thermal degradation. It validates the ability of the aluminum plate heat exchangers with surface treatment to enhance the corrosion resistance. Present work is performed as the first fundamental threshold in the process of aluminum plate heat exchangers development to check out its possibility, therefore the next step-experimental and numerical study of practical aluminum plate heat exchangers will be made.展开更多
This phyto-ecological study is on halophilic and salt-resistant vegetation of Oran region. The semiarid and sometimes arid climate has been defined and confirmed from a bioclimatic point of view. The pedological appro...This phyto-ecological study is on halophilic and salt-resistant vegetation of Oran region. The semiarid and sometimes arid climate has been defined and confirmed from a bioclimatic point of view. The pedological approach used shows a soil with sandy to silty-sandy texture, favoring regression of the vegetation and a halophilic vegetation set up. In this study, we analyze the floristic composition of the northern region of Hammam Boughrara using multiple floristic surveys conducted at three stations along the Tafna wadi. Dominated by Mediterranean and Saharo-Sindian elements, the relatively poor flora (88 species in total) is biologically characterized by a clear dominance of therophytes (>33%) and chamaephytes (>19%) to the detriment of phanerophytes.展开更多
Combined with the current research status in this area at home and abroad, with the improvement of salt and high temperature resistance as the research goal, the laboratory research of salt and high temperature resist...Combined with the current research status in this area at home and abroad, with the improvement of salt and high temperature resistance as the research goal, the laboratory research of salt and high temperature resistant drilling fluid system has been carried out, and lubricants, inhibitors and stabilizers have been optimized. The final drilling fluid formula is: water + 3% sepiolite + 0.3% Na<sub>2</sub>CO<sub>3</sub> + 3% RH-225 + 3% KCOOH + 3% G-SPH + 3% CQA-10 + 1.5% ZX-1 + Xinjiang barite, density 2.2 g/cm<sup>3</sup>, using hot-rolling furnace, environmental scanning electron microscope, high temperature and high pressure plugging instrument and Zeiss microscopes and other instruments use core immersion experiments, permeability recovery value experiments, and static stratification index methods to perform temperature resistance, reservoir protection, plugging performance, and static settlement stability performance of the configured drilling fluid., Inhibition performance, biological toxicity, salt resistance, anti-pollution performance have been tested, and it is concluded that the temperature resistance is good under the condition of 210°C, and the salt resistance can meet the requirements of 20% NaCl + 0.5% CaCl<sub>2</sub> concentration. It has a good reservoir protection effect, the permeability recovery value can reach more than 90%, the performance of restraining water dispersion and cuttings expansion is good, the heat roll recovery rate can reach more than 85%, and the SSSI value shows that its settlement stability performance is good;Its plugging performance is good under high temperature and high pressure. It laid the foundation for the next step to promote the field application of the drilling fluid system.展开更多
Salinity is one of the major environmental constraints limiting agricultural productivity in the world. The effects of salt stress on growth, ions and organic solutes accumulation were investigated in two amaranth (Am...Salinity is one of the major environmental constraints limiting agricultural productivity in the world. The effects of salt stress on growth, ions and organic solutes accumulation were investigated in two amaranth (Amaranthus cruentus) cultivars: Rouge (salt-resistant) and Locale (salt-sensitive). Young plants of these cultivars were exposed, in hydroponic system, to three concentrations of NaCl: 0, 30 and 90 mM. Growth parameters, ions, free proline and soluble sugars concentrations were determined after 2 weeks of stress. NaCl effect resulted in plant growth reduction in both cultivars but plants of cultivar Rouge were less affected compared to that of cv. Locale. Na+, proline and soluble sugars concentrations increased significantly in leaves and roots under salinity while K+, Ca2+ and Mg2+ concentrations decreased in both cultivars. Proline and soluble sugars increased significantly in leaves and roots of cultivar Locale whereas in cultivar Rouge, proline increase was significant only in roots and soluble sugars increase was significant only in leaves. The highest increase of Na+ concentration occurred in leaves of cv. Rouge coupled with the lowest reduction in K+ concentration. The highest increase of proline occurred in leaves of cultivar Locale whereas the highest increase of soluble sugars was observed in leaves of cultivar Rouge. The reduction of the Ca2+ concentration under salt stress was more accentuated in both leaves and roots of cultivar Rouge than cultivar Locale while cv. Rouge maintained higher content in Mg2+ either in leaves or in roots in the presence of NaCl than cultivar Locale. These results suggest an implication of Na+, K+ and Mg2+ in salt resistance in these cultivars and that soluble sugars may play an important role in salt-resistance in Amaranthus cruentus. However, proline appears as a symptom of injury in stressed plants rather than an indicator of resistance.展开更多
基金supported by the National Natural Science Foundation of China(22278110)China Postdoctoral Science Foundation(2022M720984)+1 种基金the Natural Science Foundation of Hebei Province of China(B2021202012)Tianjin Technical Innovation Guidance Special Project(20YDTPJC00630).
文摘Interfacial solar-driven evaporation technology shows great potential in the field of industrial seawater desalination, and the development ofefficient and low-cost evaporation materials is key to achieving large-scale applications. Hydrogels are considered to be promising candidates;however, conventional hydrogel-based interfacial solar evaporators have difficulty in simultaneously meeting multiple requirements, including ahigh evaporation rate, salt resistance, and good mechanical properties. In this study, a Janus sponge-like hydrogel solar evaporator (CPAS) withexcellent comprehensive performance was successfully constructed. The introduction of biomass agar (AG) into the polyvinyl alcohol (PVA)hydrogel backbone reduced the enthalpy of water evaporation, optimized the pore structure, and improved the mechanical properties. Meanwhile, by introducing hydrophobic fumed nano-silica aerogel (SA) and a synergistic foaming-crosslinking process, the hydrogel spontaneouslyformed a Janus structure with a hydrophobic surface and hydrophilic bottom properties. Based on the reduction of the evaporation enthalpy andthe modulation of the pore structure, the CPAS evaporation rate reached 3.56 kg m^(-2) h^(-1) under one sun illumination. Most importantly, owingto the hydrophobic top surface and 3D-interconnected porous channels, the evaporator could work stably in high concentrations of salt-water(25 wt% NaCl), showing strong salt resistance. Efficient water evaporation, excellent salt resistance, scalable preparation processes, and low-costraw materials make CPAS extremely promising for practical applications.
基金the financial support from the National Natural Science Foundation of China (Nos. 52074249, 51874261, 52304011)。
文摘The intensive development of tight reservoirs has positioned them as a strategic alternative to conventional oil and gas resources. Existing enhanced oil recovery(EOR) methods struggle to effectively exploring reservoir oil, resulting in low recovery rates. Novel and effective means of developing tight reservoirs are urgently needed. Nanomaterials have shown promising applications in improving water flooding efficiency, with in-depth research into mechanisms that lower injection pressure and increase water injection volumes. However, the extent of improvement remains limited. In this study, a silicon quantum dots(Si-QDs) material was synthesized via a hydrothermal synthesis method and used to prepare a nanofluid for the efficient recovery of tight reservoir. The Si-QDs, with an approximate diameter of 3 nm and a spherical structure, were surface functionalized with benzenesulfonic acid groups to enhance the performance. The developed nanofluid demonstrated stability without aggregation at 120℃ and a salinity of 60000 mg/L. Core flooding experiments have demonstrated the attractive EOR capabilities of Si-QDs, shedding light of the EOR mechanisms. Si-QDs effectively improve the wettability of rocks, enhancing the sweeping coefficient of injected fluids and expanding sweeping area.Within this sweeping region, Si-QDs efficiently stripping adsorbed oil from the matrix, thus increasing sweeping efficiency. Furthermore, Si-QDs could modify the state of pore-confined crude oil, breaking it down into smaller particles that are easier to displacement in subsequent stages. Si-QDs exhibit compelling EOR potential, positioning them as a promising approach for effectively developing tight oil reservoirs.
基金the fundings from the Agricultural Science and Technology Innovation Program,Chinese Academy of Agricultural Sciences (CAAS-ASTIP2016-ZFRI)the Central Public-Interest Scientific Institution Basal Research Fund,Zhengzhou Fruit Research Institute,CAAS (1610192017708)the Modern Agricultural Industry Technology of Henan Province,China (S2014-11)
文摘In this study,four genotypes(Acva-1,Acva-2,Acva-3 and ZM-2) of Actinidia germplasm resources were grown in different NaCl concentrations(0,0.4,0.8 and 1.2 g L–1).The growth,physiological and biochemical indicators were measured,and a graded scale was developed as the salt damage index(SDI) according to different damage symptoms in leaves.The results showed SDI increased gradually,and average number and length of new shoot decreased significantly.Three antioxidant enzymes(superoxide dismutase,peroxidase and catalase) and two osmotic adjustment substances(soluble sugar and proline) showed different changes in old and new leaves of four genotypes.SPAD values exhibited a decreased trend in the whole except in the new leaves of Acva-2.Malonaldehyde contents increased and root activity decreased with the increasing salt concentrations.Principal component analysis was used to assess the salt tolerance,and the results showed Acva-3,from Actinidia valvata Dunn.,had the strongest tolerance to salt,and could be a potential resistant resource to the salt-tolerance dedicated rootstock breeding of kiwifruit.
基金supported by the Key R&D projects in Xinjiang (2022B01042)Research and Innovation Team Cultivation Plan of Yili Normal University (#CXZK2021002)。
文摘Humic acids(HAs)are widely used as filtrate and viscosity reducers in drilling fluids.However,their practical utility is limited due to poor stability in salt resistance and high-temperature resistance.Hightemperature coal pitch(CP)is a by-product from coal pyrolysis above 650℃.The substance's molecular structure is characterized by a dense arrangement of aromatic hydrocarbon and alkyl substituents.This unique structure gives it unique chemical properties and excellent drilling performance,surpassing traditional humic acids in drilling operations.Potassium humate is prepared from CP(CP-HA-K)by thermal catalysis.A new type of high-quality humic acid temperature-resistant viscosity-reducer(Graft CP-HA-K polymer)is synthesized with CP-HA-K,hydrolyzed polyacrylonitrile sodium salt(Na-HPAN),urea,formaldehyde,phenol and acrylamide(AAM)as raw materials.The experimental results demonstrate that the most favorable conditions for the catalytic preparation of CP-HA-K are 1 wt%catalyst dosage,30 wt%KOH dosage,a reaction temperature of 250℃,and a reaction time of 2 h,resulting in a maximum yield of CP-HA-K of 39.58%.The temperature resistance of the Graft CP-HA-K polymer is measured to be 177.39℃,which is 55.39℃ higher than that of commercial HA-K.This is due to the abundant presence of amide,hydroxyl,and amine functional groups in the Graft CP-HA-K polymer,which increase the length of the carbon chains,enhance the electrostatic repulsion on the surface of solid particles.After being aged to 120℃ for a specified duration,the Graft CP-HA-K polymer demonstrates significantly higher viscosity reduction(42.12%)compared to commercial HA-K(C-HA-K).Furthermore,the Graft CP-HA-K polymer can tolerate a high salt concentration of 8000 mg.L-1,measured after the addition of optimum amount of 3 wt%Graft CP-HA-K polymer.The action mechanism of Graft CP-HA-K polymer on high-temperature drilling fluid is that the Graft CP-HA-K polymer can increase the repulsive force between solid particles and disrupt bentonite's reticulation structure.Overall,this research provides novelty insights into the synthesis of artificial humic acid materials and the development of temperature-resistant viscosity reducers,offering a new avenue for the utilization of CP resources.
基金supported by the National Natural Science Foundation of China(31371680)the Beijing Food Crops Innovation Consortium Program,China(BAIC092016)the earmarked fund for the China Agriculture Research System(CARS-11)
文摘The variant LM1 was previously obtained using embryogenic cell suspension cultures of sweetpotato variety Lizixiang by gamma-ray induced mutation, and then its characteristics were stably inherited through six clonal generations, thus this mutant was named LM1. In this study, systematic characterization of salt tolerance and Fusarium wilt resistance were performed between Lizixiang and mutant LM1. LM1 exhibited significantly higher salt tolerance compared to Lizixiang. The content of proline and activities of superoxide dismutase(SOD) and photosynthesis were significantly increased, while malonaldehyde(MDA) and H_2O_2 contents were significantly decreased compared to that of Lizixiang under salt stress. The inoculation test with Fusarium wilt showed that its Fusarium wilt resistance was also improved. The lignin, total phenolic, jasmonic acid(JA) contents and SOD activity were significantly higher, while H_2O_2 content was significantly lower in LM1 than that in Lizixiang. The expression level of salt stress-responsive and disease resistance-related genes was significantly higher in LM1 than that in Lizixiang under salt and Fusarium wilt stresses, respectively. This result provides a novel and valuable material for improving the salt tolerance and Fusarium wilt resistance of sweetpotato.
文摘Investigation was made to confirm the stability of drought and salt stress tolerance in cauliflower (Brassica oleracea var.botrytis) mutants after regeneration and micropropagation. The N-nitroso-N-ethyleurea (NEU) and N-nitroso-N-methylurea (NMU) induced mutants of cauliflower were created and screened for drought and salt stress tolerance. The highly tolerant mutants were selected, regenerated by tissue culture techniques, screened again for drought and salt tolerance under in-vitro and in-vivo conditions, correlated the response of in-vitro and in-vivo plants within a clone. Free proline levels in clones were correlated with stress tolerance. Results confirmed the persistence of mutations in clones with enhanced resistance levels to stresses over control plants. The regenerated in-vitro and in-vivo plants within a clone showed a positive significant correlation for drought (R2 = 0.663) and salt (R2 = 0.647) resistance that confirms the stability of mutation in clones after generations. Proline showed a positive and significant correlation with drought (R2 = 0.524) and salt (R2 = 0.786) tolerance. Conclusively, drought and salt resistance can be successfully enhanced in cauliflower by chemical mutagenesis. Further molecular analysis is recommended to study these mutants.
基金The National Science Foundation of China under contract No.40572142the Doctoral Foundation of the Ministry of Education of China under contract No.20040423016.
文摘The diffusive boundary layer (DBL) is the zone for matter exchange between surface water and aquatic sediments. To elucidate the influence of DBL on salt release from saline sediments to freshwater, two experiments with or without wind blowing were conducted. According to the experiments, a 3.5 cm DBL is formed above the smoothed sediments at a steady wind field and this thickness is greater than other studies. The observed flux of salt through the DBL is 6% larger than the calculated value from Fick' s first law. The results indicate that molecular diffusion is the dominant mechanism for salt transport through the DBL. The presence of DBL suppresses the hydrodynamic enhancement for matter exchange between sediments and overlying water. Therefore, salts in the sediments of a polder reservoir may influence the water quality chronically.
文摘The Sulige gas field is a typical low-pressure low-permeability tight sandstone gas reservoir. The reservoir has poor seepage capacity, strong heterogeneity, high mineralization of formation water and extremely scarce water resources on the site. These unfavorable factors have brought great difficulties to the on-site mining process. Now, a nano-composite green environmental protection slick water fracturing fluid system CQFR can be quickly dissolved because of the larger specific surface area, and the small molecular size makes the damage to the reservoir less than 5%, and the average drag reduction effect can reach more than 73%. It can quickly and well dissolve and maintain performance under high salinity conditions and fracturing flowback fluids. It responds well to the complex reservoir conditions on the construction site and makes the flowback fluid recyable, which greatly reduces the consumption of water resources on the construction site and effectively improves the construction efficiency and economic benefits.
基金This work was supported by the Foundation of Technological Department of Shaanxi Province (No. 06JK267)Basic Research Foundation of Xi’an University of Architecture & Technology (No. JC0507)
文摘Analysis of the gene expression differentiation in leaves of wheat (Triticum aestivum L.) cultivar Baofeng 7228, under salt stress, was carried out by Differential-Display Reverse Transcription-polymerase Chain Reaction (DDRT-PCR.) Twenty-seven differential cDNA fragments were obtained. The expression of the SR07 fragment was induced noticeably by salt treatment, and the nucleotide sequence homology of 87% between the SR07 fragment and PIPs (water channel proteins) was observed. Further research showed that a 561 bp open read frame was present in the SR07 fragment. Plant expression vector of pCAMBIA-SR07 was constructed and three transformants of tobacco (Nicotiana tobacum) mediated by Agrobacterium tumefaciens plasmid were obtained. Resistance to salt, PEG, and mannitol stresses of the three transformants were examined. No significant difference (P 〉 0.05) was observed between the control and the transformants in resistance to salt stress, but there was significant difference (P 〈 0.05) between the control and the transformants in resistance to PEG and mannitol stresses. Therefore, the expression of the SR07 fragment may play an important role in the water regulation of the plant.
基金financial support for the completion of this work
文摘Objective:To investigate the antibacterial aclivily of marine actinobacteria against multidrug resistance Staphylococcus aureus(MDRSA).Methods:Fifty one actinobacterial strains were isolated from salt pans soil,costal area in Kothapattanam,Ongole,Andhra Pradesh.Primary screening was done using cross-streak method against MDRSA.The bioaclive compounds are extracted from efficient actinobacteria using solvent extraction.The antimicrobial activity of crude and solvent extracts was perfomied using Kirby-Bauer method.MIC for ethyl acetate extract was determined by modified agar well diffusion method.The potent actinobacteria are identified using Nonomura key,Shirling and Gottlieb 1966 with Bergey's manual of determinative bacteriology.Results:Among the fifty one isolates screened for antibacterial activity,SRB25were found efficient against MDRSA.The ethyl acetate extracts showed high inhibition against test organism.MIC test was performed with the ethyl acetate extract against MDRSA and found to be 1 000μg/mL.The isolaled actinobacteria are identified as Streptomyces sp with the help of Nonomura key.Conclusions:The current investigation reveals that the marine actinobacteria from salt pan environment can be able to produce new drug molecules against drug resistant microorganisms.
基金financially supported by the National High-Tech Research and Development Program of China(No.2009AA06Z102)the National Natural Science Foundation of China(Nos.50934001 and 51054004)
文摘The corrosion behaviors of 304SS, 316LSS, and Q235A in LiCl-KCl melts were investigated at 450℃ by Tafel curves and elec- trochemical impedance spectroscopy (EIS). 316LSS shows the best corrosion resistance behaviors among the three materials, including the most positive corrosion potential and the smallest corrosion current from the Tafel curves and the largest electron transfer resistance from the Nyquist plots. The results are in good agreement with the weight losses in the static corrosion experiments for 45 h. This may be attributed to the better corrosion resistance of Mo and Ni existing as alloy elements in 316LSS, which exhibit the lower corrosion current densities and more positive corrosion potentials than 316LSS in the same melts.
基金The support from the China National High Technology Research and Development Program(No.2013AA064301)the National Natural Science Foundation of China(51274210)the Research Start-up Fund of Karamay Campus of China University of Petroleum-Beijing(XQZX20200013)is greatly appreciated.
文摘A new temperature-resistant and salt-tolerant mixed surfactant system(referred to as the SS system)for enhancing oil recovery at the Tahe Oilfield(Xinjiang,China)was evaluated.Based on the analysis of the crude oil,the formation water and rock components in the Tahe Oilfield,the long-term thermal stability,salt tolerance and the ability to change the wettability,interfacial activity and oil washing efficiency of the mixed surfactant system were studied.The system contains the anionic surfactant SDB and another cationic surfactant SDY.When the total mass concentration of the SS solution is 0.15 wt%,m(SDB)/m(SDY)ratio is 1 to 1,and excellent efficiencies are achieved for oil washing for five kinds of Tahe Oilfield crude oils(more than 60%).In addition,after adding cationic surfactant,the adsorption capacity of the surfactant is further reduced,reaching 0.261 mg/g.The oil displacement experiments indicate that under a temperature of 150°C and a salinity of 24.6×104 mg/L,the SS system enhances the oil recovery by over 10%after water flooding.The SS anionic–cationic surfactant system is first presented in the open literature that can be successfully applied to obtain predictions of Tahe Oilfield carbonate reservoirs with a high temperature and high salinity.
基金the China National High Technology Research and Development Program (No. 2013AA064301)National Natural Science Foundation of China (No. 51274210) for financial support
文摘In order to improve the enhanced oil recovery of high-temperature and high-salt oilfields, a novel temperature-resistant and salt-tolerant surfactant (denoted as SDB-7) was synthesized and evaluated for the Tahe Oilfield (Xinjiang, China), which is representative of high-temperature and high-salt oilfields. It has a central reservoir temperature of 140 ℃ and salinity of 22.6× 10^4 mg/L. The temperature-resistant and salt-tolerant performance, interfacial activity, oil displacement efficiency, aging properties, and adsorption properties of the synthesized surfactant were evaluated for Tahe Oilfield flooding. The results showed that the SDB-7 was temperature-resistant and salt-tolerant capacity of 140 ℃ and 22.6×10^4 rag/ L, respectively, oil displacement efficiency under static condition of 84%, and adsorption loss of 0.4 mg/ g (less than 1 mg/g-oil sand). In the heat aging experiment (under the temperature of 140 ℃ for 60 days), the oil-water interracial tension and oil displacement efficiency of SDB-7 were almost unchanged. The oil displacement experiments showed that, under the temperature of 140 ℃ and the salinity of 22.6× 10^4 mg/L, the surfactant SDB-7 can enhance oil recovery by 14.5% after water flooding,suggesting that SDB-7 has a promising application in high temperature and high salinity (HT/HS) reservoir.
基金Funded by the National Natural Science Foundation of China(No.51878081).
文摘A high strength self-compacting pervious concrete(SCPC) with top-bottom interconnected pores was prepared in this paper. The frost-resisting durability of such SCPC in different deicing salt concentrations(0%, 3%, 5%, 10%, and 20%) was investigated. The mass-loss rate, relative dynamic modulus of elasticity, compressive strength, flexural strength and hydraulic conductivity of SCPC after 300 freeze-thaw cycles were measured to evaluate the frost-resisting durability. In addition, the microstructures of SCPC near the top-bottom interconnected pores after 300 freeze-thaw cycles were observed by SEM. The results show that the high strength SCPC possesses much better frost-resisting durability than traditional pervious concrete(TPC) after 300 freeze-thaw cycles, which can be used in heavy loading roads. The most serious freeze-thaw damage emerges in the SCPC immersed in the 3% of Na Cl solution, while there is no obvious damage in 20% of Na Cl solution. Furthermore, it can be deduced that the high strength SCPC can be used for 100 years in a cold environment.
文摘With four poplar clones, namely 84-323 (Populus deltoides cv. ?4-323?, 84-324 (Populus deltoides cv. ?4-324?, 79-35 (Populus ?euramericana cv. ?9-35?, and I-69 (Populus deltoides cv. 慙ux?I-69/55) as a control, researches on cold, drought and salt resistance of the clones were conducted. Electrolyte permeability under a series of low temperatures, relative water loss rate of detached leaves with time series and survival rate and growth performance in salt soil were measured. The results showed that 84-323, 84-324 and 79-35 were resistant to cold as same as I-69 (CK) and more resistant to drought and salinity than I-69 (CK).
基金the FANEDD of China (No. 200352)the Fok Ying Tong Education Foundation (No. 101028) for financial support
文摘In order to improve the leaching resistance of active ingredient-copper in ammoniacal copper quat-type D (ACQ-D) treated Chinese fir (Cunninghamia lanceolata Hook.), microwave post-treatments were carried out. The percentages of leached copper from ACQ-D treated Chinese fir with different microwave post-treatments were obtained after leaching tests by analyzing the copper retention in treated wood. The fixation mechanism of copper in the treated wood was determined with the help of SEM and FTIR spectra, while the valence conversion of copper after microwave post-treatments was studied by UV spectroscopy. Our experimental results show that the percentage of leached copper was reduced significantly after microwave post-treatment over time. This development was reinforced by allowing even more time for the treatment as well as with an increase in the power of microwave post-treatment. The leaching resistance of copper in wrapped samples was better than that in unwrapped samples, which is attributed to the combined effects of temperature and moisture content. Compared with air-dried samples, the valence conversion in the samples with microwave post-treatments changed slightly, which demonstrates that microwave post-treatments cannot impair the natural decay resistance of ACQ-D treated wood. SEM and FTIR spectra showed the presence of crystal particles formed by chemical reactions between copper and wood ingredients in wood cell walls and wood pits. Only a small amount of copper reacted with cellulose, while lignin and hemicellulose were the major bonding sites for copper in wood. Given the experimental results of mechanical properties, microwave post-treatments had a slight effect on the compression strength parallel to the grain and on the erystallinity of ACQ-D treated Chinese fir.
文摘The correlations between thermal and physical properties were studied through thermal conductivity measurements, hardness tests, salt spray tests (AASS) among the surface treatment samples named K20, K40 with thickness of 20, 40 μm respectively and raw sample named K00. In thermal conductivity measurements, there are little differences among the samples as K00, K20 and K40, they exhibit 153.39, 150.69 and 149.76 W/(m·K), respectively. According to hardness tests, K00, K20 and K40 exhibit 87.9, 259.7 and 344.8 in Vickers values. In the result of salt spray tests to examine the effects on corrosion resistance, K00, K20 and K40 exhibit the grade of 3?5, 2.0?9.8 and 10, respectively. The mutual relation of the above results was analyzed. It is found that the surface treatments do not affect the thermal conductivity of aluminum and result in the improvement of physical properties. As a result of the technology, the surface improvement of aluminum alloy specimen is achieved without thermal degradation. It validates the ability of the aluminum plate heat exchangers with surface treatment to enhance the corrosion resistance. Present work is performed as the first fundamental threshold in the process of aluminum plate heat exchangers development to check out its possibility, therefore the next step-experimental and numerical study of practical aluminum plate heat exchangers will be made.
文摘This phyto-ecological study is on halophilic and salt-resistant vegetation of Oran region. The semiarid and sometimes arid climate has been defined and confirmed from a bioclimatic point of view. The pedological approach used shows a soil with sandy to silty-sandy texture, favoring regression of the vegetation and a halophilic vegetation set up. In this study, we analyze the floristic composition of the northern region of Hammam Boughrara using multiple floristic surveys conducted at three stations along the Tafna wadi. Dominated by Mediterranean and Saharo-Sindian elements, the relatively poor flora (88 species in total) is biologically characterized by a clear dominance of therophytes (>33%) and chamaephytes (>19%) to the detriment of phanerophytes.
文摘Combined with the current research status in this area at home and abroad, with the improvement of salt and high temperature resistance as the research goal, the laboratory research of salt and high temperature resistant drilling fluid system has been carried out, and lubricants, inhibitors and stabilizers have been optimized. The final drilling fluid formula is: water + 3% sepiolite + 0.3% Na<sub>2</sub>CO<sub>3</sub> + 3% RH-225 + 3% KCOOH + 3% G-SPH + 3% CQA-10 + 1.5% ZX-1 + Xinjiang barite, density 2.2 g/cm<sup>3</sup>, using hot-rolling furnace, environmental scanning electron microscope, high temperature and high pressure plugging instrument and Zeiss microscopes and other instruments use core immersion experiments, permeability recovery value experiments, and static stratification index methods to perform temperature resistance, reservoir protection, plugging performance, and static settlement stability performance of the configured drilling fluid., Inhibition performance, biological toxicity, salt resistance, anti-pollution performance have been tested, and it is concluded that the temperature resistance is good under the condition of 210°C, and the salt resistance can meet the requirements of 20% NaCl + 0.5% CaCl<sub>2</sub> concentration. It has a good reservoir protection effect, the permeability recovery value can reach more than 90%, the performance of restraining water dispersion and cuttings expansion is good, the heat roll recovery rate can reach more than 85%, and the SSSI value shows that its settlement stability performance is good;Its plugging performance is good under high temperature and high pressure. It laid the foundation for the next step to promote the field application of the drilling fluid system.
文摘Salinity is one of the major environmental constraints limiting agricultural productivity in the world. The effects of salt stress on growth, ions and organic solutes accumulation were investigated in two amaranth (Amaranthus cruentus) cultivars: Rouge (salt-resistant) and Locale (salt-sensitive). Young plants of these cultivars were exposed, in hydroponic system, to three concentrations of NaCl: 0, 30 and 90 mM. Growth parameters, ions, free proline and soluble sugars concentrations were determined after 2 weeks of stress. NaCl effect resulted in plant growth reduction in both cultivars but plants of cultivar Rouge were less affected compared to that of cv. Locale. Na+, proline and soluble sugars concentrations increased significantly in leaves and roots under salinity while K+, Ca2+ and Mg2+ concentrations decreased in both cultivars. Proline and soluble sugars increased significantly in leaves and roots of cultivar Locale whereas in cultivar Rouge, proline increase was significant only in roots and soluble sugars increase was significant only in leaves. The highest increase of Na+ concentration occurred in leaves of cv. Rouge coupled with the lowest reduction in K+ concentration. The highest increase of proline occurred in leaves of cultivar Locale whereas the highest increase of soluble sugars was observed in leaves of cultivar Rouge. The reduction of the Ca2+ concentration under salt stress was more accentuated in both leaves and roots of cultivar Rouge than cultivar Locale while cv. Rouge maintained higher content in Mg2+ either in leaves or in roots in the presence of NaCl than cultivar Locale. These results suggest an implication of Na+, K+ and Mg2+ in salt resistance in these cultivars and that soluble sugars may play an important role in salt-resistance in Amaranthus cruentus. However, proline appears as a symptom of injury in stressed plants rather than an indicator of resistance.