Cost and safety are important considerations when designing the thickness of a protective reinforced concrete shelter.The blast perforation limit(BPL)is the minimum concrete shelter thickness that resists perforation ...Cost and safety are important considerations when designing the thickness of a protective reinforced concrete shelter.The blast perforation limit(BPL)is the minimum concrete shelter thickness that resists perforation under blast loading.To investigate the influence of the depth of embedment(DOE)and length-to-diameter ratio(L/D)of an explosive charge on the BPL,the results of an explosion test using a slender explosive partially embedded in a reinforced concrete slab were used to validate a refined finite element model.This model was then applied to conduct more than 300 simulations with strictly controlled variables,obtaining the BPLs for various concrete slabs subjected to charge DOEs ranging from0 to∞and L/D values ranging from 0.89 to 6.87.The numerical results were compared with the experimental results from published literature,further verifying the reliability of the simulation.The findings indicate that for the same explosive charge mass and L/D,the greater the DOE,the larger the critical residual thickness(Rc,defined as the difference between the BPL and DOE)up to a certain constant value;for the same explosive charge mass and DOE,the greater the L/D,the smaller the Rc.Thus,corresponding DOE and shape coefficients were introduced to derive a new equation for the BPL,providing a theoretical approach to the design and safety assessment of protective structures.展开更多
The dynamic characteristics of space charge in nanocomposite of low-density polyethylene (LDPE) mixed with inorganic nano- fillers. Different from previous qualitatively theoretical works, we investigated the influenc...The dynamic characteristics of space charge in nanocomposite of low-density polyethylene (LDPE) mixed with inorganic nano- fillers. Different from previous qualitatively theoretical works, we investigated the influence of trap depth, trap volume charge density and injection barrier height on the space charge and the electric field distribution in the nanocomposite under a DC external electric field (100 MV/m) systematically and quantificationally, through numerical simulations based on a bipolar charge transport model. The simulation re- sults showed that, the increase of trap depth would severely distort the balanced electric field distribution with the highest and the lowest electric field of 119 MV/m and 47 MV/m, respectively. It is concluded that the introduction of nanofillers creates more deep traps, which would block space charges by capturing most of them in the vicinity of electrode and hence reduce the local electric field largely. Further theoretical analysis of the simulation indicates that both the high permittivity and the low local electric field of the nanocomposite contri- buted to the increase of injection barrier height, and almost no charge could overcome an injection barrier higher than 1.25 eV. At last, a mechanism of space charge suppression in the LDPE nanocomposite was presented.展开更多
Change silt charge of water in the rivers can negatively be reflected in throughput the rivers beds,stability of coast,change of river structures,disappearance of boggy places,etc.In work questions of variabilit...Change silt charge of water in the rivers can negatively be reflected in throughput the rivers beds,stability of coast,change of river structures,disappearance of boggy places,etc.In work questions of variability silt charge waters in the river Sluch in time and on length of the river are considered.It is revealed that in time average and maximal silt charge waters decrease.While on length of the river change silt charge waters is shown not precisely,similar on some increase silt charge waters to a mouth of the river.The researches led by the factorial analysis and graphic-analytical method on the basis of long-term materials of measurement of charges of water have shown that,on a part of posts average depth of water in the river grows,and on others-cyclically changes with the general tendency to reduction.Average speed in them,accordingly,falls and grows.Stratification of interrelations of a silt charge with other factors on years is observed.The reasons of reduction of a silt charge are:1)agrarian and forest meliorative actions on a catchments of the river,hydraulic engineering construction;2)grassy bed of the river;3)change of a climate that promotes growth of temperature of a surface of soils and grassy bed of the river.In developed natural-climatic conditions expediently application on reservoirs of the antierosion organization of territory of the land tenure including agrarian-forests-meliorative actions that will allow to adjust outflow of a moisture from reservoirs to lower warming up of a surface of the soils,to provide against a high water protection and it will favorably be reflected in manufacture of agricultural production.展开更多
Lithium element has attracted remarkable attraction for energy storage devices, over the past 30 years. Lithium is a light element and exhibits the low atomic number 3, just after hydrogen and helium in the periodic t...Lithium element has attracted remarkable attraction for energy storage devices, over the past 30 years. Lithium is a light element and exhibits the low atomic number 3, just after hydrogen and helium in the periodic table. The lithium atom has a strong tendency to release one electron and constitute a positive charge, as Li<sup> </sup>. Initially, lithium metal was employed as a negative electrode, which released electrons. However, it was observed that its structure changed after the repetition of charge-discharge cycles. To remedy this, the cathode mainly consisted of layer metal oxide and olive, e.g., cobalt oxide, LiFePO<sub>4</sub>, etc., along with some contents of lithium, while the anode was assembled by graphite and silicon, etc. Moreover, the electrolyte was prepared using the lithium salt in a suitable solvent to attain a greater concentration of lithium ions. Owing to the lithium ions’ role, the battery’s name was mentioned as a lithium-ion battery. Herein, the presented work describes the working and operational mechanism of the lithium-ion battery. Further, the lithium-ion batteries’ general view and future prospects have also been elaborated.展开更多
为了探究炸药在土壤-混凝土复合防护工事的表层土壤的爆炸开坑情况及最佳爆破深度,在土壤-混凝土复合介质与单土壤介质两种条件下,对JH-2圆柱形装药在不同埋药深度中的爆炸进行了数值模拟。研究了药柱爆炸后爆坑的形成和发展规律。在8...为了探究炸药在土壤-混凝土复合防护工事的表层土壤的爆炸开坑情况及最佳爆破深度,在土壤-混凝土复合介质与单土壤介质两种条件下,对JH-2圆柱形装药在不同埋药深度中的爆炸进行了数值模拟。研究了药柱爆炸后爆坑的形成和发展规律。在8种不同埋药深度及有、无混凝土层的情况下,对比分析了爆坑的形状及尺寸。通过理论计算,得到80 g JH-2药柱在土中抛掷爆破时爆坑的最大半径及相应的埋药深度。对比研究了相同药量、不同埋药深度时土壤与土壤-混凝土两种工况下的爆坑形状与尺寸大小。结果表明:混凝土层反射的冲击波可以对土壤层表面进行二次破坏,使得爆坑的崩落区明显变大。通过试验验证发现,在埋药深度为350 mm时,80 g JH-2圆柱形装药可以在土壤-混凝土复合介质靶中形成一个大且稳定的爆坑,爆坑的形状、尺寸与仿真和理论计算结果吻合。展开更多
基金supported by the National Natural Science Foundation of China(Grant No.51978166)。
文摘Cost and safety are important considerations when designing the thickness of a protective reinforced concrete shelter.The blast perforation limit(BPL)is the minimum concrete shelter thickness that resists perforation under blast loading.To investigate the influence of the depth of embedment(DOE)and length-to-diameter ratio(L/D)of an explosive charge on the BPL,the results of an explosion test using a slender explosive partially embedded in a reinforced concrete slab were used to validate a refined finite element model.This model was then applied to conduct more than 300 simulations with strictly controlled variables,obtaining the BPLs for various concrete slabs subjected to charge DOEs ranging from0 to∞and L/D values ranging from 0.89 to 6.87.The numerical results were compared with the experimental results from published literature,further verifying the reliability of the simulation.The findings indicate that for the same explosive charge mass and L/D,the greater the DOE,the larger the critical residual thickness(Rc,defined as the difference between the BPL and DOE)up to a certain constant value;for the same explosive charge mass and DOE,the greater the L/D,the smaller the Rc.Thus,corresponding DOE and shape coefficients were introduced to derive a new equation for the BPL,providing a theoretical approach to the design and safety assessment of protective structures.
基金Project supported by National Basic Research Program of China (973 Program) (2014 CB239501, 2011CB209400), National Natural Science Foundation of China (NSFC 50877040).
文摘The dynamic characteristics of space charge in nanocomposite of low-density polyethylene (LDPE) mixed with inorganic nano- fillers. Different from previous qualitatively theoretical works, we investigated the influence of trap depth, trap volume charge density and injection barrier height on the space charge and the electric field distribution in the nanocomposite under a DC external electric field (100 MV/m) systematically and quantificationally, through numerical simulations based on a bipolar charge transport model. The simulation re- sults showed that, the increase of trap depth would severely distort the balanced electric field distribution with the highest and the lowest electric field of 119 MV/m and 47 MV/m, respectively. It is concluded that the introduction of nanofillers creates more deep traps, which would block space charges by capturing most of them in the vicinity of electrode and hence reduce the local electric field largely. Further theoretical analysis of the simulation indicates that both the high permittivity and the low local electric field of the nanocomposite contri- buted to the increase of injection barrier height, and almost no charge could overcome an injection barrier higher than 1.25 eV. At last, a mechanism of space charge suppression in the LDPE nanocomposite was presented.
文摘Change silt charge of water in the rivers can negatively be reflected in throughput the rivers beds,stability of coast,change of river structures,disappearance of boggy places,etc.In work questions of variability silt charge waters in the river Sluch in time and on length of the river are considered.It is revealed that in time average and maximal silt charge waters decrease.While on length of the river change silt charge waters is shown not precisely,similar on some increase silt charge waters to a mouth of the river.The researches led by the factorial analysis and graphic-analytical method on the basis of long-term materials of measurement of charges of water have shown that,on a part of posts average depth of water in the river grows,and on others-cyclically changes with the general tendency to reduction.Average speed in them,accordingly,falls and grows.Stratification of interrelations of a silt charge with other factors on years is observed.The reasons of reduction of a silt charge are:1)agrarian and forest meliorative actions on a catchments of the river,hydraulic engineering construction;2)grassy bed of the river;3)change of a climate that promotes growth of temperature of a surface of soils and grassy bed of the river.In developed natural-climatic conditions expediently application on reservoirs of the antierosion organization of territory of the land tenure including agrarian-forests-meliorative actions that will allow to adjust outflow of a moisture from reservoirs to lower warming up of a surface of the soils,to provide against a high water protection and it will favorably be reflected in manufacture of agricultural production.
文摘Lithium element has attracted remarkable attraction for energy storage devices, over the past 30 years. Lithium is a light element and exhibits the low atomic number 3, just after hydrogen and helium in the periodic table. The lithium atom has a strong tendency to release one electron and constitute a positive charge, as Li<sup> </sup>. Initially, lithium metal was employed as a negative electrode, which released electrons. However, it was observed that its structure changed after the repetition of charge-discharge cycles. To remedy this, the cathode mainly consisted of layer metal oxide and olive, e.g., cobalt oxide, LiFePO<sub>4</sub>, etc., along with some contents of lithium, while the anode was assembled by graphite and silicon, etc. Moreover, the electrolyte was prepared using the lithium salt in a suitable solvent to attain a greater concentration of lithium ions. Owing to the lithium ions’ role, the battery’s name was mentioned as a lithium-ion battery. Herein, the presented work describes the working and operational mechanism of the lithium-ion battery. Further, the lithium-ion batteries’ general view and future prospects have also been elaborated.
文摘为了探究炸药在土壤-混凝土复合防护工事的表层土壤的爆炸开坑情况及最佳爆破深度,在土壤-混凝土复合介质与单土壤介质两种条件下,对JH-2圆柱形装药在不同埋药深度中的爆炸进行了数值模拟。研究了药柱爆炸后爆坑的形成和发展规律。在8种不同埋药深度及有、无混凝土层的情况下,对比分析了爆坑的形状及尺寸。通过理论计算,得到80 g JH-2药柱在土中抛掷爆破时爆坑的最大半径及相应的埋药深度。对比研究了相同药量、不同埋药深度时土壤与土壤-混凝土两种工况下的爆坑形状与尺寸大小。结果表明:混凝土层反射的冲击波可以对土壤层表面进行二次破坏,使得爆坑的崩落区明显变大。通过试验验证发现,在埋药深度为350 mm时,80 g JH-2圆柱形装药可以在土壤-混凝土复合介质靶中形成一个大且稳定的爆坑,爆坑的形状、尺寸与仿真和理论计算结果吻合。