The deformation in sedimentary rock induced by train loads has potential threat to the safe operation of tunnels. This study investigated the influence of stratification structure on the infrared radiation and tempora...The deformation in sedimentary rock induced by train loads has potential threat to the safe operation of tunnels. This study investigated the influence of stratification structure on the infrared radiation and temporal damage mechanism of hard siltstone. The uniaxial compression tests, coupled with acoustic emission(AE) and infrared radiation temperature(IRT) were conducted on siltstones with different stratification effects. The results revealed that the stratigraphic structure significantly affects the stress-strain response and strength degradation characteristics. The mechanical parameters exhibit anisotropy characteristics, and the stratification effect exhibits a negative correlation with the cracking stress and peak stress. The failure modes caused by the stratification effect show remarkable anisotropic features, including splitting failure(Ⅰ: 0°-22.50°, Ⅱ: 90°), composite failure(45°), and shearing failure(67.50°). The AE temporal sequences demonstrate a stepwise response characteristic to the loading stress level. The AE intensity indicates that the stress sensitivity of shearing failure and composite failure is generally greater than that of splitting failure. The IRT field has spatiotemporal migration and progressive dissimilation with stress loading and its dissimilation degree increases under higher stress levels. The stronger the stratification effect, the greater the dissimilation degree of the IRT field. The abnormal characteristic points of average infrared radiation temperature(AIRT) variance at local stress drop and peak stress can be used as early and late precursors to identify fracture instability. Theoretical analysis shows that the competitive relationship between compaction strengthening and fracturing damage intensifies the dissimilation of the infrared thermal field for an increasing stress level. The present study provides a theoretical reference for disaster warnings in hard sedimentary rock mass.展开更多
Background:Green tea,mulberry leaf and corn silk are traditional herbs used in the prevention and treatment of diabetes in China for a long time,but their synergistic hypoglycemic effects and mechanisms remain unclear...Background:Green tea,mulberry leaf and corn silk are traditional herbs used in the prevention and treatment of diabetes in China for a long time,but their synergistic hypoglycemic effects and mechanisms remain unclear.Methods:The effective components of green tea,mulberry leaf and corn silk were extracted and enriched.Mixture design of experiments was used to study the influences of different combinations on the cell viability and glucose uptake level of L6 myoblasts,so as to determine the optimal synergistic hypoglycemic combination.The possible hypoglycemic mechanism of the optimal synergistic combination was explored by cytotoxicity assay,glucose uptake assay,and western blot.Results:Three polyphenol enrichment fractions of the herbs,30%ethanol elution fraction of green tea(GT),50%ethanol elution fraction of mulberry leaf(ML)and 60%ethanol elution fraction of corn silk(CS)were obtained.The antioxidant activities of GT-30%,ML-50%and CS-60%were superior to those of crude extracts,and showed strong potential inα-amylase andα-glucosidase inhibition activities.The optimal synergistic combination of crude extracts G7(crude extract of green tea:crude extract of mulberry leaf:crude extract of corn silk=1:5:3),polyphenol enrichment fractions R3(GT-30%:ML-50%:CS-60%=1:7:1)and monomers X2(epigallocatechin gallate:morusin:formononetin=3:1:2)were selected,respectively.G7,R3,and X2 showed promoting effects on the cell viability and glucose uptake of L6 myoblasts within the detected concentration range.In addition,G7,R3,and X2 could increase the expression levels of p-PI3K/PI3K and p-Akt/Akt in L6 myoblasts,and promote the translocation of Glut4,but G7 and R3 showed more significant effects.Conclusion:The synergistic hypoglycemic effects of green tea,mulberry leaf and corn silk had the characteristics of multiple-components and multiple-targets with p-PI3K/PI3K,p-Akt/Akt and the translocation of Glut4 signal pathways involved.The three traditional herbs might have the potential to be combined used for the prevention and treatment of diabetes based on the synergistic hypoglycemic effects.展开更多
In order to better understand the specific substituent effects on the electrochemical oxidation process of β-O-4 bond, a series of methoxyphenyl type β-O-4 dimer model compounds with different localized methoxyl gro...In order to better understand the specific substituent effects on the electrochemical oxidation process of β-O-4 bond, a series of methoxyphenyl type β-O-4 dimer model compounds with different localized methoxyl groups, including 2-(2-methoxyphenoxy)-1-phenylethanone, 2-(2-methoxyphenoxy)-1-phenylethanol, 2-(2-methoxyphenoxy)-1-(4-methoxyphenyl)ethanone, 2-(2-methoxyphenoxy)-1-(4-methoxyphenyl)ethanol, 2-(2,6-dimethoxyphenoxy)-1-(4-methoxyphenyl)ethanone, 2-(2,6-dimethoxyphenoxy)-1-(4-methoxyphenyl)ethanol have been selected and their electrochemical properties have been studied experimentally by cyclic voltammetry, and FT-IR spectroelectrochemistry. Combining with electrolysis products distribution analysis and density functional theory calculations, oxidation mechanisms of all six model dimers have been explored. In particular, a total effect from substituents of both para-methoxy(on the aryl ring closing to Cα) and Cα-OH on the oxidation mechanisms has been clearly observed, showing a significant selectivity on the Cα-Cβbond cleavage induced by electrochemical oxidations.展开更多
Mecobalamin, a form of vitamin B12 containing a central metal element (cobalt), is one of the most important mediators of nervous system function. In the clinic, it is often used to accelerate recovery of peripheral...Mecobalamin, a form of vitamin B12 containing a central metal element (cobalt), is one of the most important mediators of nervous system function. In the clinic, it is often used to accelerate recovery of peripheral nerves, but its molecular mechanism remains unclear. In the present study, we performed sciatic nerve crush injury in mice, followed by daily intraperitoneal administra-tion of mecobalamin (65 μg/kg or 130 μg/kg) or saline (negative control). Walking track analysis, histomorphological examination, and quantitative real-time PCR showed that mecobalamin signiifcantly improved functional recovery of the sciatic nerve, thickened the myelin sheath in myelinated nerve ifbers, and increased the cross-sectional area of target muscle cells. Further-more, mecobalamin upregulated mRNA expression of growth associated protein 43 in nerve tissue ipsilateral to the injury, and of neurotrophic factors (nerve growth factor, brain-derived nerve growth factor and ciliary neurotrophic factor) in the L4–6 dorsal root ganglia. Our ifndings indicate that the molecular mechanism underlying the therapeutic effect of mecobalamin after sciatic nerve injury involves the upregulation of multiple neurotrophic factor genes.展开更多
We analyzed the relationships linking overwintering death and frost cracking to temperature and sunlight as well as the effects of low temperatures and freeze–thaw cycles on bud-burst rates,relative electrical conduc...We analyzed the relationships linking overwintering death and frost cracking to temperature and sunlight as well as the effects of low temperatures and freeze–thaw cycles on bud-burst rates,relative electrical conductivity,and phloem and cambial ultrastructures of poplar.Overwintering death rates of poplar were not correlated with negative accumulated temperature or winter minimum temperature.Freeze–thaw cycles caused more bud damage than constant exposure to low temperatures.Resistance to freeze–thaw cycles differed among clones,and the budburst rate decreased with increasing exposure to freeze–thaw cycles.Cold-resistant clones had the lowest relative electrical conductivity.Chloroplasts exhibited the fastest and the most obvious reaction to freeze–thaw damage,whereas a single freeze–thaw cycle caused little damage to cambium ultrastructure.Several such cycles resulted in damage to plasma membranes,severe damage to organelles,dehydration of cells and cell death.We conclude that overwintering death of poplar is mainly attributed to the accumulation of effective freeze–thaw damage beyond the limits of freeze–thaw resistance.展开更多
To research the anchoring effect of large deformation bolt,tensile and drawing models are established.Then,the evolution laws of drawing force,bolt axial force and interfacial shear stress are analyzed.Additionally,th...To research the anchoring effect of large deformation bolt,tensile and drawing models are established.Then,the evolution laws of drawing force,bolt axial force and interfacial shear stress are analyzed.Additionally,the influence of structure element position on the anchoring effect of large deformation bolt is discussed.At last,the energy-absorbing support mechanism is discussed.Results show that during the drawing process of normal bolt,drawing force,bolt axial force and interfacial shear stress all gradually increase as increasing the drawing displacement,but when the large deformation bolt enters the structural deformation stage,these three values will keep stable;when the structure element of large deformation bolt approaches the drawing end,the fluctuation range of drawing force decreases,the distributions of bolt axial force and interfacial shear stress of anchorage section are steady and the increasing rate of interfacial shear stress decreases,which are advantageous for keeping the stress stability of the anchorage body.During the working process of large deformation bolt,the strain of bolt body is small,the working resistance is stable and the distributions of bolt axial force and interfacial shear stress are steady.When a rock burst event occurs,the bolt and bonding interface cannot easily break,which weakens the dynamic disaster degree.展开更多
Colorectal cancer(CRC) is a type of cancer with high morbidity and mortality rates worldwide and has become a global health problem. The conventional radiotherapy and chemotherapy regimen for CRC not only has a low cu...Colorectal cancer(CRC) is a type of cancer with high morbidity and mortality rates worldwide and has become a global health problem. The conventional radiotherapy and chemotherapy regimen for CRC not only has a low cure rate but also causes side effects. Many studies have shown that adequate intake of fruits and vegetables in the diet may have a protective effect on CRC occurrence, possibly due to the special biological protective effect of the phytochemicals in these foods. Numerous in vitro and in vivo studies have demonstrated that phytochemicals play strong antioxidant, anti-inflammatory and anti-cancer roles by regulating specific signaling pathways and molecular markers to inhibit the occurrence and development of CRC. This review summarizes the progress on CRC prevention using the phytochemicals sulforaphane, curcumin and resveratrol, and elaborates on the specific underlying mechanisms. Thus, we believe that phytochemicals might provide a novel therapeutic approach for CRC prevention, but future clinical studies are needed to confirm the specific preventive effect of phytochemicals on cancer.展开更多
Diabetes mellitus(DM)is a common multifactorial disease,causing various complications,such as chronic metabolism.The current therapies for diabetes mellitus are commercial diabetic drugs that have different definite s...Diabetes mellitus(DM)is a common multifactorial disease,causing various complications,such as chronic metabolism.The current therapies for diabetes mellitus are commercial diabetic drugs that have different definite side effect.However,polysaccharides mainly extracted from natural resources,have advantages of safety,accessibility,and anti-diabetic potential.We have summarized recent research of natural polysaccharides with hypoglycemic activities,focusing on different pharmacological mechanisms in various cell and animal models.The relationships of structure-hypoglycemic effect are also discussed in detail.This review could provide a comprehensive perspective for better understanding on development and mechanism of natural polysaccharides against diabetes mellitus,which have been required by clinical studies yet.展开更多
Inflammation is a common disease involved in the pathogenesis,complications,and sequelae of a large number of related diseases,and therefore considerable research has been directed toward developing anti-inflammatory ...Inflammation is a common disease involved in the pathogenesis,complications,and sequelae of a large number of related diseases,and therefore considerable research has been directed toward developing anti-inflammatory drugs for the prevention and treatment of these diseases.Traditional Chinese medicine(TCM)has been used to treat inflammatory and related diseases since ancient times.According to the re-view of abundant modern scientific researches,it is suggested that TCM exhibit anti-inflammatory effects at different levels,and via multiple pathways with various targets,and recently a series of in vitro and in vivo anti-inflammatory models have been developed for anti-inflammation research in TCM.Currently,the reported classic mechanisms of TCM and experimental models of its anti-inflammatory effects pro-vide reference points and guidance for further research and development of TCM.Importantly,the research clearly confirms that TCM is now and will continue to be an effective form of treatment for many types of inflammation and inflammation-related diseases.展开更多
Overweight or obesity has become a serious public health problem in the world, scientists are concentrating their efforts on exploring novel ways to treat obesity. Nowadays, the availabilities of bariatric surgery and...Overweight or obesity has become a serious public health problem in the world, scientists are concentrating their efforts on exploring novel ways to treat obesity. Nowadays, the availabilities of bariatric surgery and pharmacotherapy have enhanced obesity treatment, but it should has support from diet, physical exercise and lifestyle modification, especially the functional food. Resistant starch, an indigestible starch, has been studied for years for its beneficial effects on regulating blood glucose level and lipid metabolism. The aim of this review is to summarize the effect of resistant starch on weight loss and the possible mechanisms. According to numerous previous studies it could be concluded that resistant starch can reduce fat accumulation, enhance insulin sensitivity, regulate blood glucose level and lipid metabolism. Recent investigations have focused on the possible associations between resistant starch and incretins as well as gut microbiota. Resistant starch seems to be a promising dietary fiber for the prevention or treatment of obesity and its related diseases.展开更多
Since 2015,the newly discovered slit-type Danxia landform on the Chinese Loess Plateau has become a hot topic in the field of geomorphology worldwide.However,the relationships among its formation,evolutionary mechanis...Since 2015,the newly discovered slit-type Danxia landform on the Chinese Loess Plateau has become a hot topic in the field of geomorphology worldwide.However,the relationships among its formation,evolutionary mechanism,and mechanical characteristics of its strata and rocks are not clear.In this paper,the Ganquan canyon group is used as the research object.Basic physical and mechanical indices of sandstone in the Ganquan canyon group were measured through field investigation and indoor experiments,and the deterioration trends for the mechanical parameters of sandstone in this area under the action of infiltration,acid dry-wet cycles,and freeze-thaw cycles were revealed.Lastly,the formation and evolutionary mechanism of the slit-type Danxia landform were discussed.The results showed that:(1)The sandstone in the canyon group had a low cementation degree and weak cohesive force,which was easily weakened under the action of water,resulting in a decrease in compressive strength and elastic modulus.(2)Acidic dry-wet cycles caused the mineral composition of the sandstone to be dissolved,and the micropores continued to grow and develop until new cracks were produced.Macroscopically,the compressive strength and elastic modulus of sandstone were greatly reduced,and this damage was cumulative and staged.The greater the acidity,the greater the damage.(3)As the number of freeze-thaw cycles increased,the uniaxial compressive strength and elastic modulus of the sandstone decreased continuously.During the freeze-thaw cycle process,the growth and development of cracks were primarily in fracture mode and usually developed along parallel bedding positions.(4)The interaction of tectonic activity and lithology with different weathering processes was a key factor in the formation and evolution of the slit-type Danxia landform.In conclusion,the intricate process of weathering influenced by historical climatic fluctuations has been pivotal in shaping the topography of Danxia landform.展开更多
This study aims to observe the protective effects of ginsenoside Rbl on liver and lung in rats with septic shock and reveal its mechanism. Rats were randomly divided into three groups: sham, cecal ligation and punctu...This study aims to observe the protective effects of ginsenoside Rbl on liver and lung in rats with septic shock and reveal its mechanism. Rats were randomly divided into three groups: sham, cecal ligation and puncture (CLP), and CLP with ginsenoside Rb1. Then, the survival rate, arterial blood pressure, TLR4 mRNA, and TNF-α levels were determined. The liver and lung tissues were stained with hematoxylin-eosin (HE). The overall survival rate of the Rb1 group was significantly higher than that of the CLP group. Mean arterial blood pressure went down in both the CLP and Rb1 groups after CLP, and there was a significant difference both in the sham and Rb1 groups when compared with the CLP group. The Rb1 treatment group had markedly lower TLR4 mRNA expression and TNF-a levels than the CLP group. In the CLP group, pathology showed swelling, degeneration, necrosis, and neutrophii infiltration in the liver and alveolar epithelial cells. However, in the Rb1 group, there was mild degeneration and slight neutrophil infiltration, but no obvious necrosis. Rb1 may improve the survival rate, ameliorate arterial blood pressure, and protect the liver and lung in septic shock rats by downregulating the expression of TLR4 mRNA and inhibiting the production of TNF-α.展开更多
Through a self-developed model test system,the mechanical properties of silt and the deformation characteristics of airport runways were investigated during the period of subgrade wetting.Based on the test results,the...Through a self-developed model test system,the mechanical properties of silt and the deformation characteristics of airport runways were investigated during the period of subgrade wetting.Based on the test results,the reliability of the numerical simulation results was verified.Numerical models with different sizes were established.Under the same cushion parameter and loading width ranges,the effects of the cushion parameters and loading conditions on the mechanical responses of the cushion before and after subgrade wetting were analyzed.The results show that the internal friction angles of silt with different wetting degrees are approximately 34°.The cohesion is from 8 to 44 kPa,and the elastic modulus is from 15 to 34 MPa.Before and after subgrade wetting,the variation rates of the cushion horizontal tensile stresses with the same cushion parameters and loading width ranges are different under the influence of boundary effects.After subgrade wetting,the difference in the variation rates of the cushion horizontal tensile stresses under the same cushion parameter range decreases compared with that before subgrade wetting;however,this difference increases under the same loading width range.Before and after subgrade wetting,the influence of the boundary effect on the mechanical response evaluation of the cushion is not beneficial for optimizing the pavement design parameters.When the cushion thickness is more than 0.25 m,the influence of the boundary effect can be disregarded.展开更多
Appropriate drying process with optimized controlling of drying parameters plays a vital role in the improvement of the quality and performance of propellant products.However,few research on solvent transport dynamics...Appropriate drying process with optimized controlling of drying parameters plays a vital role in the improvement of the quality and performance of propellant products.However,few research on solvent transport dynamics within NC-based propellants was reported,and its effect on the evolution of mechanical properties was not interpreted yet.This study is conducted to gain a comprehensive understanding of hot-air drying for NC-based propellants and clarify the effect of temperature on solvent transport behavior and further the change of mechanical properties during drying.The drying kinetic curves show the drying time required is decreased but the steady solvent content is increased and the drying rate is obviously increased with the increase of hot-air temperatures,indicating hot-air temperatures have a significant effect on drying kinetics.A modified drying model was established,and results show it is more appropriate to describe solvent transport behavior within NC-based propellants.Moreover,two linear equations were established to exhibit the relationship between solvent content and its effect on the change of tensile properties,and the decrease of residual solvent content causes an obvious increase of tensile strength and tensile modulus of propellant products,indicating its mechanical properties can be partly improved by adjustment of residual solvent content.The outcomes can be used to clarify solvent transport mechanisms and optimize drying process parameters of double-based gun propellants.展开更多
Bacillus licheniformis has the biological characteristics of strong resistance to stress, high temperature, high pressure, pH and bile salt, which also has unique advantage in application safety, antibacterial activit...Bacillus licheniformis has the biological characteristics of strong resistance to stress, high temperature, high pressure, pH and bile salt, which also has unique advantage in application safety, antibacterial activity and stability. The recent research results on mechanism of B. licheniformis and its application effect in poultry production are elaborated in the paper.展开更多
The high demands for load-carrying capability and structural efficiency of composite-metal bolted joints trigger in-depth investigations on failure mechanisms of the joints in hygrothermal environments.However,few stu...The high demands for load-carrying capability and structural efficiency of composite-metal bolted joints trigger in-depth investigations on failure mechanisms of the joints in hygrothermal environments.However,few studies have been presented to exhaustively reveal hygrothermal effects on the failure of CFRP-metal bolted joints,which differ from CFRP-CFRP or metal-metal bolted joints because of the remarkably different material properties of CFRPs and metals.In this paper,hygrothermal effects on tensile failures of single-lap and double-lap CFRP-aluminum bolted joints were experimentally and numerically investigated.A novel numerical model,in which a hygrothermal-included progressive damage model of composites was established and elastic-plastic models of metals were built,was proposed to predict the failures of the CFRP-metal bolted joints in hygrothermal environments and validated by corresponding experiments.Different failure mechanisms of single-lap and double-lap CFRP-aluminum bolted joints,under 23°C/Dry and 70°C/Wet conditions,were revealed,respectively.It follows that both the collapse failures of the single-lap and double-lap bolted joints were dominated by the bearing failure of the CFRP hole laminate in the two conditions,indicating that the hygrothermal environment did not change the macro failure modes of the joints.However,the hygrothermal environment considerably shortened the damage propagation processes and reduced the strength of the joints.Besides,the hygrothermal environment weakened the load-transfer capability of the single-lap joint more severely than the double-lap joint because it aggravated the secondary bending effects of the single-lap joint obviously.展开更多
The effects of RKM in comparison with pectin, algin and agar on lipid levels in serum and liver and on liver histopathology in rats were studied. In addition, the effects of all the tested materials on the composition...The effects of RKM in comparison with pectin, algin and agar on lipid levels in serum and liver and on liver histopathology in rats were studied. In addition, the effects of all the tested materials on the composition and output of fecal bile acid were observed. All four kinds of dietary fiber were given at a level of 5% of diet to young male rats of Wistar strain fed on a lipid-rich diet contalning 5 % lard, 1% cholesteral and 0. 25 % cholate. All the dietary fibers tested have similar effects on serum lipid composition. In all groups, these substances prevent ed increases in total cholesterol in fasting serum, but the level of triglyceride was tmchangd.The concentrations of totaI cholesterol and triglyceride in the liver were lower in the RKM group than in the control group and the other three groups. Hepatic histopathological exami nation also showed the most significant lipotropic effect in the RKM group. The daily output of fecal bile acids (CDCA+GDCA) was significantly increased in the four experimental groups than in the normal group and the control group. The increase of CDCA was more significant than GDCA, suggesting that the increase of fecal bile acids, especially CDCA, may be one of the mechanisms by which RKM and the other three dietary fibers exerts a hypocholesterolemic effect展开更多
Background:To explore the potential mechanism of action of the active ingredients of Smilacis Glabrae Rhizoma(SGR)in the treatment of migraine using network pharmacology and in vivo experiments.Methods:Through the sea...Background:To explore the potential mechanism of action of the active ingredients of Smilacis Glabrae Rhizoma(SGR)in the treatment of migraine using network pharmacology and in vivo experiments.Methods:Through the search of Traditional Chinese Medicines Systems Pharmacology Database and Analysis Platform,Genecards,Drugbank and other databases,we obtained active ingredients,targets of SGR and related disease targets of migraine,and took the intersection for protein-protein interactions analysis.After constructing the network diagram,network topology analysis was performed to derive the core targets and key active ingredients,and Gene Ontology enrichment and Kyoto Encyclopedia of Genes and Genomes enrichment analyses were performed.Finally,molecular docking was performed and validated by in vivo experiments.In vivo experiments,18 male BALB/c mice were selected,and the SGR group was fed with SGR drinking tablet concentrate,and nitroglycerin injection was used to construct a mouse model of migraine.Enzyme-linked immunosorbent assay test was used to detect the levels of TNF-α,IL-1β,IL-6,and AKT1 in plasma.Results:The results showed that the core targets of SGR for the treatment of migraine were TNF-α,IL-1β,IL-6,and AKT1.These core targets and key active ingredients had better binding ability.Compared with the blank group,the number of head scratching in the model group increased.Compared with the model group,there was a significant reduction of the number of head scratching in the SGR group.In comparison with the blank group,the protein level in the plasma in the model group was markedly higher.Compared with the model group,the protein level in the SGR group was significantly lower.Conclusion:SGR has the characteristics of improving migraine based on multi-targets,multi-components and multi-pathways,and the mechanism of action may be related to the inhibition of the release of inflammatory factors,neuron protection,and interference with apoptosis and other processes.展开更多
Lonicerae japonicae Flos(LF)is a kind of healthcare food with hepatoprotective function.This study was designed to explore the spectrum-effect relationships between UPLC fingerprints and the hepatoprotective effects o...Lonicerae japonicae Flos(LF)is a kind of healthcare food with hepatoprotective function.This study was designed to explore the spectrum-effect relationships between UPLC fingerprints and the hepatoprotective effects of LF.Fingerprints of ten batches of LF were established by UPLC-PDA.The inhibitory levels of AST and ALT were used as pharmacological indexes,and secoxyloganin,isochlorogenic acid A and isochlorogenic acid C were screened as hepatoprotective active compounds by grey relational analysis(GRA)and partial least squares regression analysis(PLSR).Caspase-3 was obtained by network pharmacology as a key target of hepatoprotective active compounds.Molecular docking is used to explore the interaction between small molecules and proteins.This work provided a general model of the combination of UPLC-PDA and hepatoprotective effect to study the spectrum-effect relationship of LF,which can be used to considerable methods and insight for the fundamental research of the material basis of similar healthcare food.展开更多
基金National Natural Science Foundation of China(No.52178393)2023 High-level Talent Research Project from Yancheng Institute of Technology(No.xjr2023019)+1 种基金Open Fund Project of Shaanxi Key Laboratory of Geotechnical and Underground Space Engineering(Grant No.YT202302)Science and Technology Innovation Team of Shaanxi Innovation Capability Support Plan(No.2020TD005).
文摘The deformation in sedimentary rock induced by train loads has potential threat to the safe operation of tunnels. This study investigated the influence of stratification structure on the infrared radiation and temporal damage mechanism of hard siltstone. The uniaxial compression tests, coupled with acoustic emission(AE) and infrared radiation temperature(IRT) were conducted on siltstones with different stratification effects. The results revealed that the stratigraphic structure significantly affects the stress-strain response and strength degradation characteristics. The mechanical parameters exhibit anisotropy characteristics, and the stratification effect exhibits a negative correlation with the cracking stress and peak stress. The failure modes caused by the stratification effect show remarkable anisotropic features, including splitting failure(Ⅰ: 0°-22.50°, Ⅱ: 90°), composite failure(45°), and shearing failure(67.50°). The AE temporal sequences demonstrate a stepwise response characteristic to the loading stress level. The AE intensity indicates that the stress sensitivity of shearing failure and composite failure is generally greater than that of splitting failure. The IRT field has spatiotemporal migration and progressive dissimilation with stress loading and its dissimilation degree increases under higher stress levels. The stronger the stratification effect, the greater the dissimilation degree of the IRT field. The abnormal characteristic points of average infrared radiation temperature(AIRT) variance at local stress drop and peak stress can be used as early and late precursors to identify fracture instability. Theoretical analysis shows that the competitive relationship between compaction strengthening and fracturing damage intensifies the dissimilation of the infrared thermal field for an increasing stress level. The present study provides a theoretical reference for disaster warnings in hard sedimentary rock mass.
基金the grant from National Key Research and Development Program of China(Grant No.2021YFE0110000)the grant from Tianjin Municipal Science and Technology Foundation(Grant No.22JCYBJC00160).
文摘Background:Green tea,mulberry leaf and corn silk are traditional herbs used in the prevention and treatment of diabetes in China for a long time,but their synergistic hypoglycemic effects and mechanisms remain unclear.Methods:The effective components of green tea,mulberry leaf and corn silk were extracted and enriched.Mixture design of experiments was used to study the influences of different combinations on the cell viability and glucose uptake level of L6 myoblasts,so as to determine the optimal synergistic hypoglycemic combination.The possible hypoglycemic mechanism of the optimal synergistic combination was explored by cytotoxicity assay,glucose uptake assay,and western blot.Results:Three polyphenol enrichment fractions of the herbs,30%ethanol elution fraction of green tea(GT),50%ethanol elution fraction of mulberry leaf(ML)and 60%ethanol elution fraction of corn silk(CS)were obtained.The antioxidant activities of GT-30%,ML-50%and CS-60%were superior to those of crude extracts,and showed strong potential inα-amylase andα-glucosidase inhibition activities.The optimal synergistic combination of crude extracts G7(crude extract of green tea:crude extract of mulberry leaf:crude extract of corn silk=1:5:3),polyphenol enrichment fractions R3(GT-30%:ML-50%:CS-60%=1:7:1)and monomers X2(epigallocatechin gallate:morusin:formononetin=3:1:2)were selected,respectively.G7,R3,and X2 showed promoting effects on the cell viability and glucose uptake of L6 myoblasts within the detected concentration range.In addition,G7,R3,and X2 could increase the expression levels of p-PI3K/PI3K and p-Akt/Akt in L6 myoblasts,and promote the translocation of Glut4,but G7 and R3 showed more significant effects.Conclusion:The synergistic hypoglycemic effects of green tea,mulberry leaf and corn silk had the characteristics of multiple-components and multiple-targets with p-PI3K/PI3K,p-Akt/Akt and the translocation of Glut4 signal pathways involved.The three traditional herbs might have the potential to be combined used for the prevention and treatment of diabetes based on the synergistic hypoglycemic effects.
基金The authors gratefully acknowledge the financial support of the Natural Science Foundation of China,China(Grant No.21975082 and 21736003)the Guangdong Basic and Applied Basic Research Foundation(Grant Number:2019A1515011472 and 2022A1515011341)the Science and Technology Program of Guangzhou(Grant Number:202102080479).
文摘In order to better understand the specific substituent effects on the electrochemical oxidation process of β-O-4 bond, a series of methoxyphenyl type β-O-4 dimer model compounds with different localized methoxyl groups, including 2-(2-methoxyphenoxy)-1-phenylethanone, 2-(2-methoxyphenoxy)-1-phenylethanol, 2-(2-methoxyphenoxy)-1-(4-methoxyphenyl)ethanone, 2-(2-methoxyphenoxy)-1-(4-methoxyphenyl)ethanol, 2-(2,6-dimethoxyphenoxy)-1-(4-methoxyphenyl)ethanone, 2-(2,6-dimethoxyphenoxy)-1-(4-methoxyphenyl)ethanol have been selected and their electrochemical properties have been studied experimentally by cyclic voltammetry, and FT-IR spectroelectrochemistry. Combining with electrolysis products distribution analysis and density functional theory calculations, oxidation mechanisms of all six model dimers have been explored. In particular, a total effect from substituents of both para-methoxy(on the aryl ring closing to Cα) and Cα-OH on the oxidation mechanisms has been clearly observed, showing a significant selectivity on the Cα-Cβbond cleavage induced by electrochemical oxidations.
基金supported by Nanjing Medical University Technology Development Fund of China(General Program),No.2013NJMU182
文摘Mecobalamin, a form of vitamin B12 containing a central metal element (cobalt), is one of the most important mediators of nervous system function. In the clinic, it is often used to accelerate recovery of peripheral nerves, but its molecular mechanism remains unclear. In the present study, we performed sciatic nerve crush injury in mice, followed by daily intraperitoneal administra-tion of mecobalamin (65 μg/kg or 130 μg/kg) or saline (negative control). Walking track analysis, histomorphological examination, and quantitative real-time PCR showed that mecobalamin signiifcantly improved functional recovery of the sciatic nerve, thickened the myelin sheath in myelinated nerve ifbers, and increased the cross-sectional area of target muscle cells. Further-more, mecobalamin upregulated mRNA expression of growth associated protein 43 in nerve tissue ipsilateral to the injury, and of neurotrophic factors (nerve growth factor, brain-derived nerve growth factor and ciliary neurotrophic factor) in the L4–6 dorsal root ganglia. Our ifndings indicate that the molecular mechanism underlying the therapeutic effect of mecobalamin after sciatic nerve injury involves the upregulation of multiple neurotrophic factor genes.
基金supported by grants from the National Key Research and Development Program of China(Grant No.2016YFD0600401)the Liaoning Provincial Key Research Project for Agriculture(Grant No.2015103002)
文摘We analyzed the relationships linking overwintering death and frost cracking to temperature and sunlight as well as the effects of low temperatures and freeze–thaw cycles on bud-burst rates,relative electrical conductivity,and phloem and cambial ultrastructures of poplar.Overwintering death rates of poplar were not correlated with negative accumulated temperature or winter minimum temperature.Freeze–thaw cycles caused more bud damage than constant exposure to low temperatures.Resistance to freeze–thaw cycles differed among clones,and the budburst rate decreased with increasing exposure to freeze–thaw cycles.Cold-resistant clones had the lowest relative electrical conductivity.Chloroplasts exhibited the fastest and the most obvious reaction to freeze–thaw damage,whereas a single freeze–thaw cycle caused little damage to cambium ultrastructure.Several such cycles resulted in damage to plasma membranes,severe damage to organelles,dehydration of cells and cell death.We conclude that overwintering death of poplar is mainly attributed to the accumulation of effective freeze–thaw damage beyond the limits of freeze–thaw resistance.
基金Project(2019SDZY02)supported by the Major Scientific and Technological Innovation Project of Shandong Provincial Key Research Development Program,ChinaProject(51904165)supported by the National Natural Science Foundation of ChinaProject(ZR2019QEE026)supported by the Shandong Provincial Natural Science Foundation,China。
文摘To research the anchoring effect of large deformation bolt,tensile and drawing models are established.Then,the evolution laws of drawing force,bolt axial force and interfacial shear stress are analyzed.Additionally,the influence of structure element position on the anchoring effect of large deformation bolt is discussed.At last,the energy-absorbing support mechanism is discussed.Results show that during the drawing process of normal bolt,drawing force,bolt axial force and interfacial shear stress all gradually increase as increasing the drawing displacement,but when the large deformation bolt enters the structural deformation stage,these three values will keep stable;when the structure element of large deformation bolt approaches the drawing end,the fluctuation range of drawing force decreases,the distributions of bolt axial force and interfacial shear stress of anchorage section are steady and the increasing rate of interfacial shear stress decreases,which are advantageous for keeping the stress stability of the anchorage body.During the working process of large deformation bolt,the strain of bolt body is small,the working resistance is stable and the distributions of bolt axial force and interfacial shear stress are steady.When a rock burst event occurs,the bolt and bonding interface cannot easily break,which weakens the dynamic disaster degree.
基金Supported by the National Natural Science Foundation of China,No.81372681the Key Research Development Program of Shandong Province,No.2015GGH318014
文摘Colorectal cancer(CRC) is a type of cancer with high morbidity and mortality rates worldwide and has become a global health problem. The conventional radiotherapy and chemotherapy regimen for CRC not only has a low cure rate but also causes side effects. Many studies have shown that adequate intake of fruits and vegetables in the diet may have a protective effect on CRC occurrence, possibly due to the special biological protective effect of the phytochemicals in these foods. Numerous in vitro and in vivo studies have demonstrated that phytochemicals play strong antioxidant, anti-inflammatory and anti-cancer roles by regulating specific signaling pathways and molecular markers to inhibit the occurrence and development of CRC. This review summarizes the progress on CRC prevention using the phytochemicals sulforaphane, curcumin and resveratrol, and elaborates on the specific underlying mechanisms. Thus, we believe that phytochemicals might provide a novel therapeutic approach for CRC prevention, but future clinical studies are needed to confirm the specific preventive effect of phytochemicals on cancer.
基金financially supported by the National Natural Science Foundation of China(32201969)Natural Science Foundation of Henan Province(212300410297)+3 种基金Basic Research Plan of Higher Education School Key Scientific Research Project of Henan Province(21A550014)Doctoral Research Foundation of Zhengzhou University of Light Industry(2020BSJJ015)Program for Science and Technology Innovation Talents in Universities of Henan Province(20HASTIT037)Youth Talents Project of Henan Province(2020HYTP046).
文摘Diabetes mellitus(DM)is a common multifactorial disease,causing various complications,such as chronic metabolism.The current therapies for diabetes mellitus are commercial diabetic drugs that have different definite side effect.However,polysaccharides mainly extracted from natural resources,have advantages of safety,accessibility,and anti-diabetic potential.We have summarized recent research of natural polysaccharides with hypoglycemic activities,focusing on different pharmacological mechanisms in various cell and animal models.The relationships of structure-hypoglycemic effect are also discussed in detail.This review could provide a comprehensive perspective for better understanding on development and mechanism of natural polysaccharides against diabetes mellitus,which have been required by clinical studies yet.
基金supported by the China Postdoctoral Science Foundation (no. 2020M670599)
文摘Inflammation is a common disease involved in the pathogenesis,complications,and sequelae of a large number of related diseases,and therefore considerable research has been directed toward developing anti-inflammatory drugs for the prevention and treatment of these diseases.Traditional Chinese medicine(TCM)has been used to treat inflammatory and related diseases since ancient times.According to the re-view of abundant modern scientific researches,it is suggested that TCM exhibit anti-inflammatory effects at different levels,and via multiple pathways with various targets,and recently a series of in vitro and in vivo anti-inflammatory models have been developed for anti-inflammation research in TCM.Currently,the reported classic mechanisms of TCM and experimental models of its anti-inflammatory effects pro-vide reference points and guidance for further research and development of TCM.Importantly,the research clearly confirms that TCM is now and will continue to be an effective form of treatment for many types of inflammation and inflammation-related diseases.
基金supported by the National Natural Science Foundation major international(regional)joint research project(81220108006)to WJYoung Scientists Fund of National Natural Science Foundation(81200292),Young Scientists Fund of National Natural Science Foundation(81200655)to LSShanghai Rising-Star Program(13QA1402900)and Hong Kong Scholars Program(XJ2013035)to HL
文摘Overweight or obesity has become a serious public health problem in the world, scientists are concentrating their efforts on exploring novel ways to treat obesity. Nowadays, the availabilities of bariatric surgery and pharmacotherapy have enhanced obesity treatment, but it should has support from diet, physical exercise and lifestyle modification, especially the functional food. Resistant starch, an indigestible starch, has been studied for years for its beneficial effects on regulating blood glucose level and lipid metabolism. The aim of this review is to summarize the effect of resistant starch on weight loss and the possible mechanisms. According to numerous previous studies it could be concluded that resistant starch can reduce fat accumulation, enhance insulin sensitivity, regulate blood glucose level and lipid metabolism. Recent investigations have focused on the possible associations between resistant starch and incretins as well as gut microbiota. Resistant starch seems to be a promising dietary fiber for the prevention or treatment of obesity and its related diseases.
基金This research was funded by the National Natural Science Foundation of China(42077282).
文摘Since 2015,the newly discovered slit-type Danxia landform on the Chinese Loess Plateau has become a hot topic in the field of geomorphology worldwide.However,the relationships among its formation,evolutionary mechanism,and mechanical characteristics of its strata and rocks are not clear.In this paper,the Ganquan canyon group is used as the research object.Basic physical and mechanical indices of sandstone in the Ganquan canyon group were measured through field investigation and indoor experiments,and the deterioration trends for the mechanical parameters of sandstone in this area under the action of infiltration,acid dry-wet cycles,and freeze-thaw cycles were revealed.Lastly,the formation and evolutionary mechanism of the slit-type Danxia landform were discussed.The results showed that:(1)The sandstone in the canyon group had a low cementation degree and weak cohesive force,which was easily weakened under the action of water,resulting in a decrease in compressive strength and elastic modulus.(2)Acidic dry-wet cycles caused the mineral composition of the sandstone to be dissolved,and the micropores continued to grow and develop until new cracks were produced.Macroscopically,the compressive strength and elastic modulus of sandstone were greatly reduced,and this damage was cumulative and staged.The greater the acidity,the greater the damage.(3)As the number of freeze-thaw cycles increased,the uniaxial compressive strength and elastic modulus of the sandstone decreased continuously.During the freeze-thaw cycle process,the growth and development of cracks were primarily in fracture mode and usually developed along parallel bedding positions.(4)The interaction of tectonic activity and lithology with different weathering processes was a key factor in the formation and evolution of the slit-type Danxia landform.In conclusion,the intricate process of weathering influenced by historical climatic fluctuations has been pivotal in shaping the topography of Danxia landform.
基金supported by the Major Invite Tender Project of Health Department of Jiangxi Province(No.20104005)the Major Project of the Department of Education of Jiangxi Province(No.GJJ12003)the 13th’Challenge Cup’of Extracurricular academic and scientific works of Nanchang University
文摘This study aims to observe the protective effects of ginsenoside Rbl on liver and lung in rats with septic shock and reveal its mechanism. Rats were randomly divided into three groups: sham, cecal ligation and puncture (CLP), and CLP with ginsenoside Rb1. Then, the survival rate, arterial blood pressure, TLR4 mRNA, and TNF-α levels were determined. The liver and lung tissues were stained with hematoxylin-eosin (HE). The overall survival rate of the Rb1 group was significantly higher than that of the CLP group. Mean arterial blood pressure went down in both the CLP and Rb1 groups after CLP, and there was a significant difference both in the sham and Rb1 groups when compared with the CLP group. The Rb1 treatment group had markedly lower TLR4 mRNA expression and TNF-a levels than the CLP group. In the CLP group, pathology showed swelling, degeneration, necrosis, and neutrophii infiltration in the liver and alveolar epithelial cells. However, in the Rb1 group, there was mild degeneration and slight neutrophil infiltration, but no obvious necrosis. Rb1 may improve the survival rate, ameliorate arterial blood pressure, and protect the liver and lung in septic shock rats by downregulating the expression of TLR4 mRNA and inhibiting the production of TNF-α.
基金The National Natural Science Foundation of China(No.52008401)the Natural Science Foundation of Hunan Province(No.2021JJ40770)the Open Fund of Hunan Tieyuan Civil Engineering Testing Co.,Ltd.(No.HNTY2022K04).
文摘Through a self-developed model test system,the mechanical properties of silt and the deformation characteristics of airport runways were investigated during the period of subgrade wetting.Based on the test results,the reliability of the numerical simulation results was verified.Numerical models with different sizes were established.Under the same cushion parameter and loading width ranges,the effects of the cushion parameters and loading conditions on the mechanical responses of the cushion before and after subgrade wetting were analyzed.The results show that the internal friction angles of silt with different wetting degrees are approximately 34°.The cohesion is from 8 to 44 kPa,and the elastic modulus is from 15 to 34 MPa.Before and after subgrade wetting,the variation rates of the cushion horizontal tensile stresses with the same cushion parameters and loading width ranges are different under the influence of boundary effects.After subgrade wetting,the difference in the variation rates of the cushion horizontal tensile stresses under the same cushion parameter range decreases compared with that before subgrade wetting;however,this difference increases under the same loading width range.Before and after subgrade wetting,the influence of the boundary effect on the mechanical response evaluation of the cushion is not beneficial for optimizing the pavement design parameters.When the cushion thickness is more than 0.25 m,the influence of the boundary effect can be disregarded.
基金the National Natural Science Foundation of China(Grant No.22075146).
文摘Appropriate drying process with optimized controlling of drying parameters plays a vital role in the improvement of the quality and performance of propellant products.However,few research on solvent transport dynamics within NC-based propellants was reported,and its effect on the evolution of mechanical properties was not interpreted yet.This study is conducted to gain a comprehensive understanding of hot-air drying for NC-based propellants and clarify the effect of temperature on solvent transport behavior and further the change of mechanical properties during drying.The drying kinetic curves show the drying time required is decreased but the steady solvent content is increased and the drying rate is obviously increased with the increase of hot-air temperatures,indicating hot-air temperatures have a significant effect on drying kinetics.A modified drying model was established,and results show it is more appropriate to describe solvent transport behavior within NC-based propellants.Moreover,two linear equations were established to exhibit the relationship between solvent content and its effect on the change of tensile properties,and the decrease of residual solvent content causes an obvious increase of tensile strength and tensile modulus of propellant products,indicating its mechanical properties can be partly improved by adjustment of residual solvent content.The outcomes can be used to clarify solvent transport mechanisms and optimize drying process parameters of double-based gun propellants.
基金Supported by Three New Agriculture Project of Jiangsu Province(SXGC[2012]2012)
文摘Bacillus licheniformis has the biological characteristics of strong resistance to stress, high temperature, high pressure, pH and bile salt, which also has unique advantage in application safety, antibacterial activity and stability. The recent research results on mechanism of B. licheniformis and its application effect in poultry production are elaborated in the paper.
基金supported by the National Science Foundation of China(11772028,11872131,11702012,U1864208,11572058 and 11372020)the Academic Excellence Foundation of BUAA for PhD Students.
文摘The high demands for load-carrying capability and structural efficiency of composite-metal bolted joints trigger in-depth investigations on failure mechanisms of the joints in hygrothermal environments.However,few studies have been presented to exhaustively reveal hygrothermal effects on the failure of CFRP-metal bolted joints,which differ from CFRP-CFRP or metal-metal bolted joints because of the remarkably different material properties of CFRPs and metals.In this paper,hygrothermal effects on tensile failures of single-lap and double-lap CFRP-aluminum bolted joints were experimentally and numerically investigated.A novel numerical model,in which a hygrothermal-included progressive damage model of composites was established and elastic-plastic models of metals were built,was proposed to predict the failures of the CFRP-metal bolted joints in hygrothermal environments and validated by corresponding experiments.Different failure mechanisms of single-lap and double-lap CFRP-aluminum bolted joints,under 23°C/Dry and 70°C/Wet conditions,were revealed,respectively.It follows that both the collapse failures of the single-lap and double-lap bolted joints were dominated by the bearing failure of the CFRP hole laminate in the two conditions,indicating that the hygrothermal environment did not change the macro failure modes of the joints.However,the hygrothermal environment considerably shortened the damage propagation processes and reduced the strength of the joints.Besides,the hygrothermal environment weakened the load-transfer capability of the single-lap joint more severely than the double-lap joint because it aggravated the secondary bending effects of the single-lap joint obviously.
文摘The effects of RKM in comparison with pectin, algin and agar on lipid levels in serum and liver and on liver histopathology in rats were studied. In addition, the effects of all the tested materials on the composition and output of fecal bile acid were observed. All four kinds of dietary fiber were given at a level of 5% of diet to young male rats of Wistar strain fed on a lipid-rich diet contalning 5 % lard, 1% cholesteral and 0. 25 % cholate. All the dietary fibers tested have similar effects on serum lipid composition. In all groups, these substances prevent ed increases in total cholesterol in fasting serum, but the level of triglyceride was tmchangd.The concentrations of totaI cholesterol and triglyceride in the liver were lower in the RKM group than in the control group and the other three groups. Hepatic histopathological exami nation also showed the most significant lipotropic effect in the RKM group. The daily output of fecal bile acids (CDCA+GDCA) was significantly increased in the four experimental groups than in the normal group and the control group. The increase of CDCA was more significant than GDCA, suggesting that the increase of fecal bile acids, especially CDCA, may be one of the mechanisms by which RKM and the other three dietary fibers exerts a hypocholesterolemic effect
基金supported by Open Fund Project of Key Laboratory of Xin’an Medicine Ministry of Education(2020xayx09)Scientific Research Program of Chinese Society of Ethnomedicine(2020Z1066-410113).
文摘Background:To explore the potential mechanism of action of the active ingredients of Smilacis Glabrae Rhizoma(SGR)in the treatment of migraine using network pharmacology and in vivo experiments.Methods:Through the search of Traditional Chinese Medicines Systems Pharmacology Database and Analysis Platform,Genecards,Drugbank and other databases,we obtained active ingredients,targets of SGR and related disease targets of migraine,and took the intersection for protein-protein interactions analysis.After constructing the network diagram,network topology analysis was performed to derive the core targets and key active ingredients,and Gene Ontology enrichment and Kyoto Encyclopedia of Genes and Genomes enrichment analyses were performed.Finally,molecular docking was performed and validated by in vivo experiments.In vivo experiments,18 male BALB/c mice were selected,and the SGR group was fed with SGR drinking tablet concentrate,and nitroglycerin injection was used to construct a mouse model of migraine.Enzyme-linked immunosorbent assay test was used to detect the levels of TNF-α,IL-1β,IL-6,and AKT1 in plasma.Results:The results showed that the core targets of SGR for the treatment of migraine were TNF-α,IL-1β,IL-6,and AKT1.These core targets and key active ingredients had better binding ability.Compared with the blank group,the number of head scratching in the model group increased.Compared with the model group,there was a significant reduction of the number of head scratching in the SGR group.In comparison with the blank group,the protein level in the plasma in the model group was markedly higher.Compared with the model group,the protein level in the SGR group was significantly lower.Conclusion:SGR has the characteristics of improving migraine based on multi-targets,multi-components and multi-pathways,and the mechanism of action may be related to the inhibition of the release of inflammatory factors,neuron protection,and interference with apoptosis and other processes.
基金financially supported by the National Natural Science Foundation of China (81973604, 81803690 and 81703684)Special Funds from the Central Finance to Support the Development of Local Universities+12 种基金the National Natural Science Foundation Matching Project (2018PT02)the Innovative Talents Funding of Heilongjiang University of Chinese Medicine (2018RCD25)the Postdoctoral Initial Fund of Heilongjiang Province (UNPYSCT 2017219)the University Nursing Program for Young Scholars with Creative Talents in Heilongjiang Province (UNPYSCT-2017215)the National Natural Science Foundation Matching Project (2017PT01)the Natural Science Foundation of Heilongjiang Province (H2015037)the Heilongjiang University of Chinese Medicine Doctoral Innovation Foundation (2014bs05)the Application Technology Research and Development Projects of Harbin Technology Bureau (2014RFQXJ149)the Heilongjiang Postdoctoral Scientific Research Developmental Fund (LBH-Q16210 and LBH-Q17161)the Heilongjiang University of Chinese Medicine Doctoral Innovation Foundation (2013bs04)the scientific research project of Heilongjiang Provincial Health Commission (20211313050171)Heilongjiang Touyan Innovation Team ProgramNational Famous Old Traditional Chinese Medecine Experts Inheritance Studio Construction Program of National Administration of TCM ([2022]No.75)
文摘Lonicerae japonicae Flos(LF)is a kind of healthcare food with hepatoprotective function.This study was designed to explore the spectrum-effect relationships between UPLC fingerprints and the hepatoprotective effects of LF.Fingerprints of ten batches of LF were established by UPLC-PDA.The inhibitory levels of AST and ALT were used as pharmacological indexes,and secoxyloganin,isochlorogenic acid A and isochlorogenic acid C were screened as hepatoprotective active compounds by grey relational analysis(GRA)and partial least squares regression analysis(PLSR).Caspase-3 was obtained by network pharmacology as a key target of hepatoprotective active compounds.Molecular docking is used to explore the interaction between small molecules and proteins.This work provided a general model of the combination of UPLC-PDA and hepatoprotective effect to study the spectrum-effect relationship of LF,which can be used to considerable methods and insight for the fundamental research of the material basis of similar healthcare food.