This paper analyzed the consistency of some parameters of soils in the literature and experimental results from fall cone test and its application to soil plasticity classification.Over 500 data from both literatures ...This paper analyzed the consistency of some parameters of soils in the literature and experimental results from fall cone test and its application to soil plasticity classification.Over 500 data from both literatures and experiments using fall cone and Casagrande methods were compiled to assess the relationships among specified water content,cone penetration index ebT,and plasticity angle eaT of finegrained soils.The results indicate that no unique correlation exists among b,liquid limit of the fall cone test(LLc)and a.The water content at 1 mm cone penetration eC0T correlates well with b,plasticity ratio eRpT(i.e.the ratio of plastic limit to liquid limit),and a.Finally,the potential of using the btan a diagram to classify soil plasticity was also discussed.展开更多
The problem of water coning into the Tarim fractured sandstone gas reservoirs becomes one of the major concerns in terms of productivity, increased operating costs and environmental effects. Water coning is a phenomen...The problem of water coning into the Tarim fractured sandstone gas reservoirs becomes one of the major concerns in terms of productivity, increased operating costs and environmental effects. Water coning is a phenomenon caused by the imbalance between gravity and viscous forces around the completion interval. There are several controllable and uncontrollable parameters influencing this problem. In order to simulate the key parameters affecting the water coning phenomenon, a model was developed to represent a single well with an underlying aquifer using the fractured sandstone gas reservoir data of the A-Well in Dina gas fields.The parametric study was performed by varying six properties individually over a representative range. The results show that matrix permeability, well penetration(especially fracture permeability), vertical-to-horizontal permeability ratio, aquifer size and gas production rate have considerable effect on water coning in the fractured gas reservoirs. Thus, investigation of the effective parameters is necessary to understand the mechanism of water coning phenomenon. Simulation of the problem helps to optimize the conditions in which the breakthrough of water coning is delayed.展开更多
The Triassic massive sandstone reservoir in the Tahe oilfield has a strong bottom-water drive and is characterized by great burial depth,high temperature and salinity,a thin pay zone,and strong heterogeneity.At presen...The Triassic massive sandstone reservoir in the Tahe oilfield has a strong bottom-water drive and is characterized by great burial depth,high temperature and salinity,a thin pay zone,and strong heterogeneity.At present,the water-cut is high in each block within the reservoir;some wells are at an ultrahigh water-cut stage.A lack of effective measures to control water-cut rise and stabilize oil production have necessitated the application of enhanced oil recovery(EOR)technology.This paper investigates the development and technological advances for oil reservoirs with strong edge/bottom-water drive globally,and compares their application to reservoirs with characteristics similar to the Tahe oilfield.Among the technological advances,gas injection from the top and along the direction of structural dip has been used to optimize the flow field in a typical bottom-water drive reservoir.Bottom-water coning is restrained by gas injection-assisted water control.In addition,increasing the lateral driving pressure differential improves the plane sweep efficiency which enhances oil recovery in turn.Gas injection technology in combination with technological measures like channeling prevention and blocking,and water plugging and profile control,can achieve better results in reservoir development.Gas flooding tests in the Tahe oilfield are of great significance to identifying which EOR technology is the most effective and has the potential of large-scale application for improving development of deep reservoirs with a strong bottomwater drive.展开更多
X oilfield is an offshore strong bottom water reservoir with water cut up to 96% at present, and liquid extraction has become one of the main ways to increase oil production. However, the current liquid production of ...X oilfield is an offshore strong bottom water reservoir with water cut up to 96% at present, and liquid extraction has become one of the main ways to increase oil production. However, the current liquid production of the oilfield reaches 60,000 m</span><sup><span style="font-family:Verdana;">3</span></sup><span style="font-family:Verdana;">/d due to the limitation of offshore platform, well trough and equipment, the oilfield is unable to continue liquid extraction. In order to maximize the oil production of the oilfield, it is necessary to study the strategy of shut in and cone pressure. Through numerical simulation, this paper analyzes the influence of different factors, such as crude oil density, viscosity, reservoir thickness, interlayer, permeability and so on, on the drop height of water cone and the effect of precipitation and oil increase after well shut in. At the same time, the weight of each factor is analyzed by combining the actual dynamic data with the fuzzy mathematics method, and the strategy of well shut in and cone pressure is formulated for the offshore strong bottom water reservoir. It provides the basis and guidance for the reasonable use of shut in pressure cone when the reservoir with strong bottom water meets the bottleneck of liquid volume.展开更多
Numerical method by solving Reynolds-averaged Navier-Stokes equations is presented to solve the vertical high-speed water entry problem of a cone-cylinder. The results of the trajectory and cavity shape agree well wit...Numerical method by solving Reynolds-averaged Navier-Stokes equations is presented to solve the vertical high-speed water entry problem of a cone-cylinder. The results of the trajectory and cavity shape agree well with the results obtained by the analytical model from literatures. The velocity of the projectile decays rapidly during the penetration,which is about 90% losing in 80D penetration depth. Pressure distributions are also discussed and the results show that the largest pressure appears on the tip of the cone and the lowest pressure occurs inside the cavity and causes vapor generation. For inside the cavity,there is always a supplement of air from outside before the splash closed,after that,the cavity is mainly filled with vapor.展开更多
The dissolution and diffusion of CO_(2)in oil and water and its displacement mechanism were investigated by laboratory experiment and numerical simulation for Block 9 in the Tahe oilfield,a sandstone oil reservoir wit...The dissolution and diffusion of CO_(2)in oil and water and its displacement mechanism were investigated by laboratory experiment and numerical simulation for Block 9 in the Tahe oilfield,a sandstone oil reservoir with strong bottom-water drive in Tarim Basin,Northwest China.Such parameters were analyzed as solubility ratio of CO_(2)in oil,gas and water,interfacial tension,in-situ oil viscosity distribution,remaining oil saturation distribution,and oil compositions.The results show that CO_(2)flooding could control water coning and increase oil production.In the early stage of the injection process,CO_(2)expanded vertically due to gravity differentiation,and extended laterally under the action of strong bottom water in the intermediate and late stages.The CO_(2)got enriched and extended at the oil-water interface,forming a high interfacial tension zone,which inhibited the coning of bottom water to some extent.A miscible region with low interfacial tension formed at the gas injection front,which reduced the in-situ oil viscosity by about 50%.The numerical simulation results show that enhanced oil recovery(EOR)is estimated at 5.72%and the oil exchange ratio of CO_(2)is 0.17 t/t.展开更多
The aim of this paper is to solve the problems that the existing method of critical production of gas cap reservoir is only suitable for single-phase flow, and the method of critical production of gas cap reservoir un...The aim of this paper is to solve the problems that the existing method of critical production of gas cap reservoir is only suitable for single-phase flow, and the method of critical production of gas cap reservoir under water-flooding is still blank. In this paper, the relationships between dynamic and static equilibrium, plane radial flow theory, oil-water infiltration method and three-dimensional seepage field decomposition theory, were applied to study a calculation method for critical production of directional wells and horizontal wells. Furthermore, the effects of different factors on critical output were studied, such as horizontal permeability, ratio of horizontal permeability to vertical permeability, length of horizontal section, effective thickness, viscosity of crude oil and water content etc. Results show that the critical production increases with the increment of the horizontal permeability, the ratio of the vertical permeability to the horizontal permeability, the reservoir thickness and the horizontal well length;when the viscosity of crude oil is small, the critical production decreases first and then increases with the increase of water content;when the viscosity of crude oil is high, the critical production increases continuously with the increase of water content. This study could provide theoretical and technical guidance for changing of the working system of oil wells. It can avoid gas channeling and improve the development effect.展开更多
This article details how forest soil moisture content (MC) and subsequent resistances to cone penetration (referred below as Cone Index, CI) vary by daily weather, season, topography, site and soil properties across e...This article details how forest soil moisture content (MC) and subsequent resistances to cone penetration (referred below as Cone Index, CI) vary by daily weather, season, topography, site and soil properties across eleven harvest blocks in northwestern New Brunswick. The MC- and CI-affecting soil variables refer to density, texture, organic matter content, coarse fragment content, and topographic position (i.e., elevation, and the seasonally affected cartographic depth-to-water (DTW) pattern). The harvest blocks were transect-sampled inside and outside their wood-forwarding tracks at varying times throughout the year. In detail, 61% of the pore-filled moisture content (MCPS) determinations inside and outside the tracks could be related to topographic position, coarse fragments, bulk density, and forest cover type specifications. In addition, 40% of the CI variations could be related to soil depth, MCPS, and block-specific cover type. Actual versus model-projected uncertainties amounted to ΔMCPS ≤ ± 15% and ΔCI ≤ ± 0.5 MPa, 8 times out of 10. Block-centered MC and CI projections were obtained through: 1) daily hydrological modelling using daily precipitation and air temperature weather-station records nearest each block, and 2) digitally mapped variations in soil properties, elevation, DTW and forest cover type, done at 10 m resolution.展开更多
裂缝性礁灰岩强底水油藏孔、缝、洞发育,底水能量供应充足,由于裂缝发育的非均质性及裂缝产状类型的多样化,油井水锥规律非常复杂,亟需发展有效的控水措施。以流花11-1油田为例,基于岩心描述、铸体薄片分析和扫描电镜实验结果对储层进...裂缝性礁灰岩强底水油藏孔、缝、洞发育,底水能量供应充足,由于裂缝发育的非均质性及裂缝产状类型的多样化,油井水锥规律非常复杂,亟需发展有效的控水措施。以流花11-1油田为例,基于岩心描述、铸体薄片分析和扫描电镜实验结果对储层进行分类,并建立不同储层机理模型,研究不同储层水平井水锥规律。在此基础上通过分析油井历史控堵水措施效果,针对性提出不同储层后期控堵水对策。研究结果表明,4类储层中致密裂缝型和孔洞裂缝型储层最易发生水锥,表现为油井见水快、含水率上升快、产量递减快;在现场已实施的3类控水措施中,“连续封隔体+流入控制装置(Inflow Control Device, ICD)”控水措施既能充填裂缝,又能降低高产能段流量,起到均衡控水的作用,现场应用效果最好。该项研究对于裂缝型底水油藏的高效开发具有重要意义,为该类油田的见水规律和控水对策提供借鉴。展开更多
文摘This paper analyzed the consistency of some parameters of soils in the literature and experimental results from fall cone test and its application to soil plasticity classification.Over 500 data from both literatures and experiments using fall cone and Casagrande methods were compiled to assess the relationships among specified water content,cone penetration index ebT,and plasticity angle eaT of finegrained soils.The results indicate that no unique correlation exists among b,liquid limit of the fall cone test(LLc)and a.The water content at 1 mm cone penetration eC0T correlates well with b,plasticity ratio eRpT(i.e.the ratio of plastic limit to liquid limit),and a.Finally,the potential of using the btan a diagram to classify soil plasticity was also discussed.
基金Project(50150503-12)supported by National Science and Technology Major Program of the Ministry of Science and Technology of ChinaProject(2010E-2103)supported by Research on Key Technology in Tarim Oilfield Exploration and Development,China
文摘The problem of water coning into the Tarim fractured sandstone gas reservoirs becomes one of the major concerns in terms of productivity, increased operating costs and environmental effects. Water coning is a phenomenon caused by the imbalance between gravity and viscous forces around the completion interval. There are several controllable and uncontrollable parameters influencing this problem. In order to simulate the key parameters affecting the water coning phenomenon, a model was developed to represent a single well with an underlying aquifer using the fractured sandstone gas reservoir data of the A-Well in Dina gas fields.The parametric study was performed by varying six properties individually over a representative range. The results show that matrix permeability, well penetration(especially fracture permeability), vertical-to-horizontal permeability ratio, aquifer size and gas production rate have considerable effect on water coning in the fractured gas reservoirs. Thus, investigation of the effective parameters is necessary to understand the mechanism of water coning phenomenon. Simulation of the problem helps to optimize the conditions in which the breakthrough of water coning is delayed.
文摘The Triassic massive sandstone reservoir in the Tahe oilfield has a strong bottom-water drive and is characterized by great burial depth,high temperature and salinity,a thin pay zone,and strong heterogeneity.At present,the water-cut is high in each block within the reservoir;some wells are at an ultrahigh water-cut stage.A lack of effective measures to control water-cut rise and stabilize oil production have necessitated the application of enhanced oil recovery(EOR)technology.This paper investigates the development and technological advances for oil reservoirs with strong edge/bottom-water drive globally,and compares their application to reservoirs with characteristics similar to the Tahe oilfield.Among the technological advances,gas injection from the top and along the direction of structural dip has been used to optimize the flow field in a typical bottom-water drive reservoir.Bottom-water coning is restrained by gas injection-assisted water control.In addition,increasing the lateral driving pressure differential improves the plane sweep efficiency which enhances oil recovery in turn.Gas injection technology in combination with technological measures like channeling prevention and blocking,and water plugging and profile control,can achieve better results in reservoir development.Gas flooding tests in the Tahe oilfield are of great significance to identifying which EOR technology is the most effective and has the potential of large-scale application for improving development of deep reservoirs with a strong bottomwater drive.
文摘X oilfield is an offshore strong bottom water reservoir with water cut up to 96% at present, and liquid extraction has become one of the main ways to increase oil production. However, the current liquid production of the oilfield reaches 60,000 m</span><sup><span style="font-family:Verdana;">3</span></sup><span style="font-family:Verdana;">/d due to the limitation of offshore platform, well trough and equipment, the oilfield is unable to continue liquid extraction. In order to maximize the oil production of the oilfield, it is necessary to study the strategy of shut in and cone pressure. Through numerical simulation, this paper analyzes the influence of different factors, such as crude oil density, viscosity, reservoir thickness, interlayer, permeability and so on, on the drop height of water cone and the effect of precipitation and oil increase after well shut in. At the same time, the weight of each factor is analyzed by combining the actual dynamic data with the fuzzy mathematics method, and the strategy of well shut in and cone pressure is formulated for the offshore strong bottom water reservoir. It provides the basis and guidance for the reasonable use of shut in pressure cone when the reservoir with strong bottom water meets the bottleneck of liquid volume.
基金Sponsored by the Special Fund Project for Technology Innovation Talent of Harbin(Grant No.2013RFLXJ007)the Fundamental Research Funds for the Central Universities(Grant No.HIT.NSRIF.201159)
文摘Numerical method by solving Reynolds-averaged Navier-Stokes equations is presented to solve the vertical high-speed water entry problem of a cone-cylinder. The results of the trajectory and cavity shape agree well with the results obtained by the analytical model from literatures. The velocity of the projectile decays rapidly during the penetration,which is about 90% losing in 80D penetration depth. Pressure distributions are also discussed and the results show that the largest pressure appears on the tip of the cone and the lowest pressure occurs inside the cavity and causes vapor generation. For inside the cavity,there is always a supplement of air from outside before the splash closed,after that,the cavity is mainly filled with vapor.
文摘The dissolution and diffusion of CO_(2)in oil and water and its displacement mechanism were investigated by laboratory experiment and numerical simulation for Block 9 in the Tahe oilfield,a sandstone oil reservoir with strong bottom-water drive in Tarim Basin,Northwest China.Such parameters were analyzed as solubility ratio of CO_(2)in oil,gas and water,interfacial tension,in-situ oil viscosity distribution,remaining oil saturation distribution,and oil compositions.The results show that CO_(2)flooding could control water coning and increase oil production.In the early stage of the injection process,CO_(2)expanded vertically due to gravity differentiation,and extended laterally under the action of strong bottom water in the intermediate and late stages.The CO_(2)got enriched and extended at the oil-water interface,forming a high interfacial tension zone,which inhibited the coning of bottom water to some extent.A miscible region with low interfacial tension formed at the gas injection front,which reduced the in-situ oil viscosity by about 50%.The numerical simulation results show that enhanced oil recovery(EOR)is estimated at 5.72%and the oil exchange ratio of CO_(2)is 0.17 t/t.
文摘The aim of this paper is to solve the problems that the existing method of critical production of gas cap reservoir is only suitable for single-phase flow, and the method of critical production of gas cap reservoir under water-flooding is still blank. In this paper, the relationships between dynamic and static equilibrium, plane radial flow theory, oil-water infiltration method and three-dimensional seepage field decomposition theory, were applied to study a calculation method for critical production of directional wells and horizontal wells. Furthermore, the effects of different factors on critical output were studied, such as horizontal permeability, ratio of horizontal permeability to vertical permeability, length of horizontal section, effective thickness, viscosity of crude oil and water content etc. Results show that the critical production increases with the increment of the horizontal permeability, the ratio of the vertical permeability to the horizontal permeability, the reservoir thickness and the horizontal well length;when the viscosity of crude oil is small, the critical production decreases first and then increases with the increase of water content;when the viscosity of crude oil is high, the critical production increases continuously with the increase of water content. This study could provide theoretical and technical guidance for changing of the working system of oil wells. It can avoid gas channeling and improve the development effect.
文摘This article details how forest soil moisture content (MC) and subsequent resistances to cone penetration (referred below as Cone Index, CI) vary by daily weather, season, topography, site and soil properties across eleven harvest blocks in northwestern New Brunswick. The MC- and CI-affecting soil variables refer to density, texture, organic matter content, coarse fragment content, and topographic position (i.e., elevation, and the seasonally affected cartographic depth-to-water (DTW) pattern). The harvest blocks were transect-sampled inside and outside their wood-forwarding tracks at varying times throughout the year. In detail, 61% of the pore-filled moisture content (MCPS) determinations inside and outside the tracks could be related to topographic position, coarse fragments, bulk density, and forest cover type specifications. In addition, 40% of the CI variations could be related to soil depth, MCPS, and block-specific cover type. Actual versus model-projected uncertainties amounted to ΔMCPS ≤ ± 15% and ΔCI ≤ ± 0.5 MPa, 8 times out of 10. Block-centered MC and CI projections were obtained through: 1) daily hydrological modelling using daily precipitation and air temperature weather-station records nearest each block, and 2) digitally mapped variations in soil properties, elevation, DTW and forest cover type, done at 10 m resolution.
文摘裂缝性礁灰岩强底水油藏孔、缝、洞发育,底水能量供应充足,由于裂缝发育的非均质性及裂缝产状类型的多样化,油井水锥规律非常复杂,亟需发展有效的控水措施。以流花11-1油田为例,基于岩心描述、铸体薄片分析和扫描电镜实验结果对储层进行分类,并建立不同储层机理模型,研究不同储层水平井水锥规律。在此基础上通过分析油井历史控堵水措施效果,针对性提出不同储层后期控堵水对策。研究结果表明,4类储层中致密裂缝型和孔洞裂缝型储层最易发生水锥,表现为油井见水快、含水率上升快、产量递减快;在现场已实施的3类控水措施中,“连续封隔体+流入控制装置(Inflow Control Device, ICD)”控水措施既能充填裂缝,又能降低高产能段流量,起到均衡控水的作用,现场应用效果最好。该项研究对于裂缝型底水油藏的高效开发具有重要意义,为该类油田的见水规律和控水对策提供借鉴。