A kind of novel compound containing S and Mo elements was synthesized. Its chemical structure was characterized by elemental analysis, IR and 3MR. hs anti-wear property and the load-carrying capacity, as an extreme pr...A kind of novel compound containing S and Mo elements was synthesized. Its chemical structure was characterized by elemental analysis, IR and 3MR. hs anti-wear property and the load-carrying capacity, as an extreme pressure (EP) additive of lubricating oil, were investigated using a four-bull tester. The experimentul results show that the additive exhibits a superior anti-wear property and a high load-carrying capacity . The presence of other additives does not interfere with the anti-wear prnperty of the extreme pressure additive. The influences of load and temperature on the propert) of the additive were examined. The possible mechanism uas investigated by means of sufface analysis of the tested steel ball specimen , using XPS. The lubricatian films formed on the rubbing surface are mainly composed of MoS2, MoO3 and MoO2.展开更多
The influence of synthetic caprylic methyl diethanolamine phosphate ester (abbreviated as MDEACP) on biodegradability and tribological properties of 400SN mineral base oil was studied. The biodegradability of the neat...The influence of synthetic caprylic methyl diethanolamine phosphate ester (abbreviated as MDEACP) on biodegradability and tribological properties of 400SN mineral base oil was studied. The biodegradability of the neat base oil and the oil doped with MDEACP was determined on a biodegradation tester. The tribological properties of the neat base oil and the oil doped with MDEACP were evaluated on a four-ball tester. Moreover, the worn surfaces were investigated by scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). The results revealed that MDEACP significantly promoted the biodegradation of the mineral base oil. The improvement in biodegradability was attributed to the enhanced growth and quantity of microbes by MDEACP. Furthermore, MDEACP enhanced the anti-wear properties, the friction-reducing properties, and the extreme pressure properties of the base oil. It was mainly attributed to the formation of the complex boundary lubrication film resulted from the adsorption and tribochemical reactions of MDEACP on the friction surface.展开更多
To enhance the lubricating and extreme pressure(EP) performance of base oils, two types of oil-soluble ionic liquids(ILs) with similar anion albeit dissimilar cations were synthesized. The physical properties of the p...To enhance the lubricating and extreme pressure(EP) performance of base oils, two types of oil-soluble ionic liquids(ILs) with similar anion albeit dissimilar cations were synthesized. The physical properties of the prepared ILs were measured. The anticorrosion properties of ILs were assessed by conducting corrosion tests on steel discs and copper strips, which revealed the remarkable anticorrosion properties of the ILs in comparison with those of the commercial additive zinc dialkyldithiophosphate(ZDDP). The tribological properties of the two ILs as additives for poly-α-olefin-10(PAO10) with various mass concentrations were investigated. The tribological test results indicate that these ILs as additives are capable of reducing friction and wear of sliding contacts remarkably as well as enhance the EP performance of blank PAO10. Under similar test conditions, these IL additives exhibit higher lubricating and anti-wear(AW) performances than those of ZDDP based additive package in PAO10. Subsequently, X-ray photoelectron spectroscopy(XPS) and energy dispersive spectrometer(EDS) were conducted to study the lubricating mechanism of the two ILs. The results indicate that the formation of tribochemical film plays the most crucial role in enhancing the lubricating and AW behavior of the mixture lubricants.展开更多
文摘A kind of novel compound containing S and Mo elements was synthesized. Its chemical structure was characterized by elemental analysis, IR and 3MR. hs anti-wear property and the load-carrying capacity, as an extreme pressure (EP) additive of lubricating oil, were investigated using a four-bull tester. The experimentul results show that the additive exhibits a superior anti-wear property and a high load-carrying capacity . The presence of other additives does not interfere with the anti-wear prnperty of the extreme pressure additive. The influences of load and temperature on the propert) of the additive were examined. The possible mechanism uas investigated by means of sufface analysis of the tested steel ball specimen , using XPS. The lubricatian films formed on the rubbing surface are mainly composed of MoS2, MoO3 and MoO2.
基金financial support from the National Defense Science Technology Foundation (Project No.3604003)the National Natural Science Foundation of China (Project No.51375491)+2 种基金the Natural Science Foundation of Chongqing (Project No. CSTC, 2014JCYJAA50021)the Postgraduate Research and the Innovation Project of Chongqing (No. CYB 18128)the Natural Science Foundation of Chongqing (Project No. CSTC, 2017JCYJAX0058)
文摘The influence of synthetic caprylic methyl diethanolamine phosphate ester (abbreviated as MDEACP) on biodegradability and tribological properties of 400SN mineral base oil was studied. The biodegradability of the neat base oil and the oil doped with MDEACP was determined on a biodegradation tester. The tribological properties of the neat base oil and the oil doped with MDEACP were evaluated on a four-ball tester. Moreover, the worn surfaces were investigated by scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). The results revealed that MDEACP significantly promoted the biodegradation of the mineral base oil. The improvement in biodegradability was attributed to the enhanced growth and quantity of microbes by MDEACP. Furthermore, MDEACP enhanced the anti-wear properties, the friction-reducing properties, and the extreme pressure properties of the base oil. It was mainly attributed to the formation of the complex boundary lubrication film resulted from the adsorption and tribochemical reactions of MDEACP on the friction surface.
基金the financial support from the National Natural Science Foundation of China (NSFC,Nos.51675512,51227804,and 51305428)Natural Science Foundation of Gansu Province (No.1606RJZA051)the National Key Basic Research and Development (973) Program of China (No.2013CB632301)
文摘To enhance the lubricating and extreme pressure(EP) performance of base oils, two types of oil-soluble ionic liquids(ILs) with similar anion albeit dissimilar cations were synthesized. The physical properties of the prepared ILs were measured. The anticorrosion properties of ILs were assessed by conducting corrosion tests on steel discs and copper strips, which revealed the remarkable anticorrosion properties of the ILs in comparison with those of the commercial additive zinc dialkyldithiophosphate(ZDDP). The tribological properties of the two ILs as additives for poly-α-olefin-10(PAO10) with various mass concentrations were investigated. The tribological test results indicate that these ILs as additives are capable of reducing friction and wear of sliding contacts remarkably as well as enhance the EP performance of blank PAO10. Under similar test conditions, these IL additives exhibit higher lubricating and anti-wear(AW) performances than those of ZDDP based additive package in PAO10. Subsequently, X-ray photoelectron spectroscopy(XPS) and energy dispersive spectrometer(EDS) were conducted to study the lubricating mechanism of the two ILs. The results indicate that the formation of tribochemical film plays the most crucial role in enhancing the lubricating and AW behavior of the mixture lubricants.