Activities and activity coefficients of Al in solid Cu-AI alloys have been determined by means of solid electorlyte galvanic cells Al(a_1 , in alloy), Al_2O_3 | ZrO_2· Y_2O_3 | Ni, NiO and Al(a_1 , in alloy), A...Activities and activity coefficients of Al in solid Cu-AI alloys have been determined by means of solid electorlyte galvanic cells Al(a_1 , in alloy), Al_2O_3 | ZrO_2· Y_2O_3 | Ni, NiO and Al(a_1 , in alloy), Al_2O_3 | Na, βAl_2O_3 | Al(a_2 , in alloy), Al_2O_3展开更多
The sampling of the training data is a bottleneck in the development of artificial intelligence(AI)models due to the processing of huge amounts of data or to the difficulty of access to the data in industrial practice...The sampling of the training data is a bottleneck in the development of artificial intelligence(AI)models due to the processing of huge amounts of data or to the difficulty of access to the data in industrial practices.Active learning(AL)approaches are useful in such a context since they maximize the performance of the trained model while minimizing the number of training samples.Such smart sampling methodologies iteratively sample the points that should be labeled and added to the training set based on their informativeness and pertinence.To judge the relevance of a data instance,query rules are defined.In this paper,we propose an AL methodology based on a physics-based query rule.Given some industrial objectives from the physical process where the AI model is implied in,the physics-based AL approach iteratively converges to the data instances fulfilling those objectives while sampling training points.Therefore,the trained surrogate model is accurate where the potentially interesting data instances from the industrial point of view are,while coarse everywhere else where the data instances are of no interest in the industrial context studied.展开更多
The nitrogen-doped porous TiO2 layer on Ti6Al4V substrate was fabricated by plasma-based ion implantation of He, O and N. In order to increase the photodegradation efficiency of TiO2 layer, two methods were used in th...The nitrogen-doped porous TiO2 layer on Ti6Al4V substrate was fabricated by plasma-based ion implantation of He, O and N. In order to increase the photodegradation efficiency of TiO2 layer, two methods were used in the process by forming mesopores to increase the specific surface area and by nitrogen doping to increase visible light absorption. Importantly, TiO2 formation, porosity architectures and nitrogen doping can be performed by implantation of He, O and N in one step. After implantation, annealing at 650 ℃ leads to a mixing phase of anatase with a little rutile in the implanted layer. By removing the near surface compact layer using argon ion sputtering, the meso-porous structure was exposed on surfaces. Nitrogen doping enlarges the photo-response region of visible light. Moreover, the nitrogen dose of 8×1015 ion/cm2 induces a stronger visible light absorption. The photodegradation of rhodamine B solution with visible light sources indicates that the mesopores on surfaces and nitrogen doping contribute to an apparent increase of photocatalysis efficiency.展开更多
To investigate the flow behavior of 2219 Al alloy during warm deformation, the thermal compression test was conducted in the temperature range of 483-573 K and the strain rate range of 0.001-5 s^-1 on a Gleeble-3500 t...To investigate the flow behavior of 2219 Al alloy during warm deformation, the thermal compression test was conducted in the temperature range of 483-573 K and the strain rate range of 0.001-5 s^-1 on a Gleeble-3500 thermomechanical simulation unit. The true stress-true strain curves obtained showed that the flow stress increased with the decrease in temperature and/or the increase in strain rate and the softening mechanism primarily proceeded via dynamic recovery. The modification on the conventional Arrhenius-type constitutive model approach was made, the material variables and activation energy were determined to be dependent on the deformation parameters. The modified flow stresses were found to be in close agreement with the experimental values. Furthermore, the activation energy obtained under different deformation conditions showed that it decreased with the rise in temperature and/or strain rate, and was also affected by the coupled effect of strain and strain rate.展开更多
Deactivation mechanism of Cr-Al2O3catalyst and the interaction of Cr-A1 in the dehydrogenation of isobutane, as well as the nature of the catalytic active center, were studied using XRD, SEM, XPS, H2-TPR, isobutane-TP...Deactivation mechanism of Cr-Al2O3catalyst and the interaction of Cr-A1 in the dehydrogenation of isobutane, as well as the nature of the catalytic active center, were studied using XRD, SEM, XPS, H2-TPR, isobutane-TPR and TPO techniques. The results revealed that the deactivation of Cr-Al2O3 catalyst was mainly caused by carbon deposition on its surface. The Cr3+ ion could not be reduced by hydrogen but could be reduced to Cr2+ by hydrocarbons and monoxide carbon. The active center for isobutane dehydrogenation could be Cr2+/Cr3+ produced from Cr6+ by the on line reduction of hydrocarbon and carbon monoxide. The binding energy of Al3+ was strongly affected by the state of chromium cations in the catalysts.展开更多
After milling in a high energy ball miller for various times, the synthesis reaction process of the Al Ti C powder mixture were investigated by difference thermal analysis (DTA) and X ray diffractometry (XRD). Accordi...After milling in a high energy ball miller for various times, the synthesis reaction process of the Al Ti C powder mixture were investigated by difference thermal analysis (DTA) and X ray diffractometry (XRD). According to the patterns of reaction peaks on the DTA curves, the activation energy of each reaction was calculated. The experimental results of DTA show that the synthesis reaction of Al Ti C powder mixture can be enhanced after high energy milling. The longer the milling time, the lower the reaction temperature. The synthesis reaction of TiC is transformed from Ti+C→TiC to Al 3Ti+C→TiC+3Al with long period milling. Meanwhile, the activation energy of the reaction reduces with increasing milling time. The effect of milling time on reduced activation energy for low temperature region is more significant than that for high temperature region.展开更多
Al0.3CrFe1.5MnNi0.5 high entropy alloys(HEA)have special properties.The microstructures and shear strengths of HEA/HEA and HEA/6061-Al joints were determined after direct active soldering(DAS)in air with Sn3.5Ag4Ti ac...Al0.3CrFe1.5MnNi0.5 high entropy alloys(HEA)have special properties.The microstructures and shear strengths of HEA/HEA and HEA/6061-Al joints were determined after direct active soldering(DAS)in air with Sn3.5Ag4Ti active filler at 250°C for 60 s.The results showed that the diffusion of all alloying elements of the HEA alloy was sluggish in the joint area.The joint strengths of HEA/HEA and HEA/6061-Al samples,as analyzed by shear testing,were(14.20±1.63)and(15.70±1.35)MPa,respectively.Observation of the fracture section showed that the HEA/6061-Al soldered joints presented obvious semi-brittle fracture characteristics.展开更多
To obtain a new kind of Mg?Al?Pb alloy anode material with low content of Pb, the corrosion and discharge behavior of Mg?9%Al?2.5%Pb (hereafter in mass fraction) alloy were investigated by immersion tests and electroc...To obtain a new kind of Mg?Al?Pb alloy anode material with low content of Pb, the corrosion and discharge behavior of Mg?9%Al?2.5%Pb (hereafter in mass fraction) alloy were investigated by immersion tests and electrochemical techniques, and compared with those of Mg?6%Al?5%Pb alloy. The results indicate that Mg?9%Al?2.5%Pb alloy exhibits a lower self-corrosion rate and higher utilization efficiency in contrast with Mg?6%Al?5%Pb alloy because of the higher content of Al. As the result of the decrease of Pb content, the discharge activity of Mg?9%Al?2.5%Pb alloy is relatively weaker but still meets the requirement of anode. These results reveal that Mg?9%Al?2.5%Pb alloy with a low content of Pb can serve as a good candidate for the anode material used in seawater activated battery.展开更多
Objective: To study the expression level of TRF1 (telomeric repeat binding factor 1) protein in human acute leukemia and relationship between expression level of TRF1 protein and telomerase, Methods: A quantitativ...Objective: To study the expression level of TRF1 (telomeric repeat binding factor 1) protein in human acute leukemia and relationship between expression level of TRF1 protein and telomerase, Methods: A quantitative Western±Blot technique was developed using anti±TRF1^33±277 monoclonal antibody and GST±TRFI purity protein as a standard to further determine the expression level of TRF1 protein in total proteins extracted from clinical specimens. Results: Bone marrow tissues of 20 acute leukemia patients were studied, 11 healthy donors' bone marrows were taken as a control. The expression level of TRF1 protein was significantly higher (P〈0.01) in normal bone marrow ((2.2174±0.462) μg/μl) than that of acute leukemia patients ((0.7544±0.343) μg/μl), But there was no remarkable difference between ALL and ANLL patients ((0.6184±0.285) μg/μl vs (0.8454±0.359) μg/μl, P〉0.05). After chemotherapy, TRFI expression level of patients with complete remission elevated ((0.7724±0.307)/μg/μl vs (1.6834±0,344)μg/μl, P〈0.01 ), but lower than that of normal ((2.2174±0.462)/μg/μl, P〈0.01). There was no significantly difference after chemotherapy ((0.7264±0.411) μg/μl vs (0.895±0.339) μg/μl,p〉0.05). TRF1 expression level of patients with complete remission is higher than that of patients without complete remission ((1,683±0.344)μg/μl vs (0.895±0.339)μg/μl P〈0.01). All samples were determined for telomerase activity. It was confirmed that the activity of telomerase in normal bone marrow was lower than that of acute leukemia patients ((0.125±0.078) μg/μl vs (0.765±0.284)μg/μl, P〈0.01). There was no significant difference of expression level ofTRF I protein between ALL and ANLL patients ((0.897±0.290) μg/μl vs (0.677±0.268) μg/μl, P〉0.05). After chemotherapy, telomerase activity of patients with complete remission decreased ((0.393±0.125) μg/μl), but was still higher than that of normal ((0.125±0.078) μg/μl, P〈0.01). Conclusion: The expression level of TRF1 protein has correlativity to the activity of telomerase (P〈0.001).展开更多
A multi-component diffusion coating has been developed to protect Mo-based alloys from high temperature environmental attack. Aluminum addition was made during the coating process to improve the oxidation resistance b...A multi-component diffusion coating has been developed to protect Mo-based alloys from high temperature environmental attack. Aluminum addition was made during the coating process to improve the oxidation resistance by developing hexagonal Mo(Si, Al)2 through the development of the halide activated pack cementation coating process on pure Mo substrate. The results show that Mo(Si, Al)2 formed as a main phase on the surface and a little amount of Mo5Si3 also formed. The total thickness of coating is tens ofμm at 1373K. During the cyclic oxidation test at high temperature(at about 1323K in air), mullite (3Al2O3.2SiO2) and some SiO2 formed. The addition of Al is beneficial for MoSi2 coating and the Al-doped coating exhibited only a small weight gain and protected the Mo substrate, while the MoSi2 coating without Al suffered a significant weight loss, indicating a loss of volatile MoO3 after cycles.展开更多
Preparation of Zr2Al3C4-Al2O3 in situ composites was investigated by self-propagating high-temperature synthesis(SHS)involving both aluminothermic reduction of ZrO2 and chemical activation of PTFE(Teflon).The starting...Preparation of Zr2Al3C4-Al2O3 in situ composites was investigated by self-propagating high-temperature synthesis(SHS)involving both aluminothermic reduction of ZrO2 and chemical activation of PTFE(Teflon).The starting materials included ZrO2,Al,carbon black and PTFE.In addition to the conventional SHS method,the experiments were conducted by a chemical-oven SHS(COSHS)route to thermally assist the synthesis reaction.The threshold amount of 2%(mass fraction)PTFE was required to induce self-sustaining combustion.When the conventional SHS scheme was utilized,due to low combustion temperatures between 1152 and 1272°C and insufficient reaction time,the dominant carbide forming in the composite was ZrC instead of Zr2Al3C4.On the other hand,the COSHS technique increased the combustion temperature of the reactant compact to about 1576°C,lengthened the high-temperature duration for the reaction,and prevented Al vapor from escaping away.As a consequence,Zr2Al3C4-Al2O3 composites with a small amount of Zr3Al3C5 were obtained.The microstructure of the COSHS-derived product showed that plate-like Zr2Al3C4 grains were about 2μm in thickness and 10-30μm in length,and most of them were closely stacked into a laminated configuration.展开更多
Tensile properties of a two phase γ Ti 47Al 1.5Cr 0.5Mn 2.8Nb alloy with a duplex microstructure were tested under strain rates ranging from 5×10 -5 to 5×10 -3 s -1 at temperatures from 1 123 K to 1 273 K. ...Tensile properties of a two phase γ Ti 47Al 1.5Cr 0.5Mn 2.8Nb alloy with a duplex microstructure were tested under strain rates ranging from 5×10 -5 to 5×10 -3 s -1 at temperatures from 1 123 K to 1 273 K. It was found that there exists approximately linear relationship between the flow stresses and the logarithm of the strain rate at different temperatures. The strain rate dependence was analyzed by thermal activation theory, and dislocation climbing has been identified as the rate controlling mechanism.展开更多
Hot compression tests were performed to investigate the hot deformation behavior of Fe–27.34Mn–8.63Al–1.03C lightweight steel and optimize the hot workability parameters. The temperature range was 900–1150℃ and t...Hot compression tests were performed to investigate the hot deformation behavior of Fe–27.34Mn–8.63Al–1.03C lightweight steel and optimize the hot workability parameters. The temperature range was 900–1150℃ and the strain rate range was 0.01–5 s^(-1)on a Gleeble-3800 thermal simulator machine. The results showed that the flow stress increased with decreasing deformation temperature and increasing strain rate. According to the constitutive equation, the activation energy of hot deformation was 422.88 kJ·mol^(-1). The relationship between the critical stress and peak stress of the tested steel was established, and a dynamic recrystallization kinetic model was thus obtained. Based on this model, the effects of strain rate and deformation temperature on the volume fraction of dynamically recrystallized grains were explored. The microstructural examination and processing map results revealed that the tested steel exhibited a good hot workability at deformation temperatures of 1010–1100℃ and strain rate of 0.01 s^(-1).展开更多
文摘Activities and activity coefficients of Al in solid Cu-AI alloys have been determined by means of solid electorlyte galvanic cells Al(a_1 , in alloy), Al_2O_3 | ZrO_2· Y_2O_3 | Ni, NiO and Al(a_1 , in alloy), Al_2O_3 | Na, βAl_2O_3 | Al(a_2 , in alloy), Al_2O_3
文摘The sampling of the training data is a bottleneck in the development of artificial intelligence(AI)models due to the processing of huge amounts of data or to the difficulty of access to the data in industrial practices.Active learning(AL)approaches are useful in such a context since they maximize the performance of the trained model while minimizing the number of training samples.Such smart sampling methodologies iteratively sample the points that should be labeled and added to the training set based on their informativeness and pertinence.To judge the relevance of a data instance,query rules are defined.In this paper,we propose an AL methodology based on a physics-based query rule.Given some industrial objectives from the physical process where the AI model is implied in,the physics-based AL approach iteratively converges to the data instances fulfilling those objectives while sampling training points.Therefore,the trained surrogate model is accurate where the potentially interesting data instances from the industrial point of view are,while coarse everywhere else where the data instances are of no interest in the industrial context studied.
基金Project(20040213048) supported by the Specialized Research Fund for the Doctoral Program of Higher Education of ChinaProject(20090450737) supported by the China Postdoctoral Science Foundation
文摘The nitrogen-doped porous TiO2 layer on Ti6Al4V substrate was fabricated by plasma-based ion implantation of He, O and N. In order to increase the photodegradation efficiency of TiO2 layer, two methods were used in the process by forming mesopores to increase the specific surface area and by nitrogen doping to increase visible light absorption. Importantly, TiO2 formation, porosity architectures and nitrogen doping can be performed by implantation of He, O and N in one step. After implantation, annealing at 650 ℃ leads to a mixing phase of anatase with a little rutile in the implanted layer. By removing the near surface compact layer using argon ion sputtering, the meso-porous structure was exposed on surfaces. Nitrogen doping enlarges the photo-response region of visible light. Moreover, the nitrogen dose of 8×1015 ion/cm2 induces a stronger visible light absorption. The photodegradation of rhodamine B solution with visible light sources indicates that the mesopores on surfaces and nitrogen doping contribute to an apparent increase of photocatalysis efficiency.
基金Projects(U1637601,51405520,51327902) supported by the National Natural Science Foundation of ChinaProject(ZZYJKT2017-06) supported by State Key Laboratory of High Performance Complex Manufacturing of Central South University,China
文摘To investigate the flow behavior of 2219 Al alloy during warm deformation, the thermal compression test was conducted in the temperature range of 483-573 K and the strain rate range of 0.001-5 s^-1 on a Gleeble-3500 thermomechanical simulation unit. The true stress-true strain curves obtained showed that the flow stress increased with the decrease in temperature and/or the increase in strain rate and the softening mechanism primarily proceeded via dynamic recovery. The modification on the conventional Arrhenius-type constitutive model approach was made, the material variables and activation energy were determined to be dependent on the deformation parameters. The modified flow stresses were found to be in close agreement with the experimental values. Furthermore, the activation energy obtained under different deformation conditions showed that it decreased with the rise in temperature and/or strain rate, and was also affected by the coupled effect of strain and strain rate.
基金supported by the Natural Science Foundation of Shandong Provence of China(ZR2013BM008)
文摘Deactivation mechanism of Cr-Al2O3catalyst and the interaction of Cr-A1 in the dehydrogenation of isobutane, as well as the nature of the catalytic active center, were studied using XRD, SEM, XPS, H2-TPR, isobutane-TPR and TPO techniques. The results revealed that the deactivation of Cr-Al2O3 catalyst was mainly caused by carbon deposition on its surface. The Cr3+ ion could not be reduced by hydrogen but could be reduced to Cr2+ by hydrocarbons and monoxide carbon. The active center for isobutane dehydrogenation could be Cr2+/Cr3+ produced from Cr6+ by the on line reduction of hydrocarbon and carbon monoxide. The binding energy of Al3+ was strongly affected by the state of chromium cations in the catalysts.
文摘After milling in a high energy ball miller for various times, the synthesis reaction process of the Al Ti C powder mixture were investigated by difference thermal analysis (DTA) and X ray diffractometry (XRD). According to the patterns of reaction peaks on the DTA curves, the activation energy of each reaction was calculated. The experimental results of DTA show that the synthesis reaction of Al Ti C powder mixture can be enhanced after high energy milling. The longer the milling time, the lower the reaction temperature. The synthesis reaction of TiC is transformed from Ti+C→TiC to Al 3Ti+C→TiC+3Al with long period milling. Meanwhile, the activation energy of the reaction reduces with increasing milling time. The effect of milling time on reduced activation energy for low temperature region is more significant than that for high temperature region.
基金financial support of this work from the Ministry of Science and Technology, Taibei, China, under Projects No. MOST 105-ET-E-020002-ET, 105-2622-E-020-003-CC3
文摘Al0.3CrFe1.5MnNi0.5 high entropy alloys(HEA)have special properties.The microstructures and shear strengths of HEA/HEA and HEA/6061-Al joints were determined after direct active soldering(DAS)in air with Sn3.5Ag4Ti active filler at 250°C for 60 s.The results showed that the diffusion of all alloying elements of the HEA alloy was sluggish in the joint area.The joint strengths of HEA/HEA and HEA/6061-Al samples,as analyzed by shear testing,were(14.20±1.63)and(15.70±1.35)MPa,respectively.Observation of the fracture section showed that the HEA/6061-Al soldered joints presented obvious semi-brittle fracture characteristics.
基金Projects(5140124351101171)supported by the National Natural Science Foundation of China+1 种基金Projects(2015T808832014M552151)supported by China Postdoctoral Science Foundation
文摘To obtain a new kind of Mg?Al?Pb alloy anode material with low content of Pb, the corrosion and discharge behavior of Mg?9%Al?2.5%Pb (hereafter in mass fraction) alloy were investigated by immersion tests and electrochemical techniques, and compared with those of Mg?6%Al?5%Pb alloy. The results indicate that Mg?9%Al?2.5%Pb alloy exhibits a lower self-corrosion rate and higher utilization efficiency in contrast with Mg?6%Al?5%Pb alloy because of the higher content of Al. As the result of the decrease of Pb content, the discharge activity of Mg?9%Al?2.5%Pb alloy is relatively weaker but still meets the requirement of anode. These results reveal that Mg?9%Al?2.5%Pb alloy with a low content of Pb can serve as a good candidate for the anode material used in seawater activated battery.
文摘Objective: To study the expression level of TRF1 (telomeric repeat binding factor 1) protein in human acute leukemia and relationship between expression level of TRF1 protein and telomerase, Methods: A quantitative Western±Blot technique was developed using anti±TRF1^33±277 monoclonal antibody and GST±TRFI purity protein as a standard to further determine the expression level of TRF1 protein in total proteins extracted from clinical specimens. Results: Bone marrow tissues of 20 acute leukemia patients were studied, 11 healthy donors' bone marrows were taken as a control. The expression level of TRF1 protein was significantly higher (P〈0.01) in normal bone marrow ((2.2174±0.462) μg/μl) than that of acute leukemia patients ((0.7544±0.343) μg/μl), But there was no remarkable difference between ALL and ANLL patients ((0.6184±0.285) μg/μl vs (0.8454±0.359) μg/μl, P〉0.05). After chemotherapy, TRFI expression level of patients with complete remission elevated ((0.7724±0.307)/μg/μl vs (1.6834±0,344)μg/μl, P〈0.01 ), but lower than that of normal ((2.2174±0.462)/μg/μl, P〈0.01). There was no significantly difference after chemotherapy ((0.7264±0.411) μg/μl vs (0.895±0.339) μg/μl,p〉0.05). TRF1 expression level of patients with complete remission is higher than that of patients without complete remission ((1,683±0.344)μg/μl vs (0.895±0.339)μg/μl P〈0.01). All samples were determined for telomerase activity. It was confirmed that the activity of telomerase in normal bone marrow was lower than that of acute leukemia patients ((0.125±0.078) μg/μl vs (0.765±0.284)μg/μl, P〈0.01). There was no significant difference of expression level ofTRF I protein between ALL and ANLL patients ((0.897±0.290) μg/μl vs (0.677±0.268) μg/μl, P〉0.05). After chemotherapy, telomerase activity of patients with complete remission decreased ((0.393±0.125) μg/μl), but was still higher than that of normal ((0.125±0.078) μg/μl, P〈0.01). Conclusion: The expression level of TRF1 protein has correlativity to the activity of telomerase (P〈0.001).
文摘A multi-component diffusion coating has been developed to protect Mo-based alloys from high temperature environmental attack. Aluminum addition was made during the coating process to improve the oxidation resistance by developing hexagonal Mo(Si, Al)2 through the development of the halide activated pack cementation coating process on pure Mo substrate. The results show that Mo(Si, Al)2 formed as a main phase on the surface and a little amount of Mo5Si3 also formed. The total thickness of coating is tens ofμm at 1373K. During the cyclic oxidation test at high temperature(at about 1323K in air), mullite (3Al2O3.2SiO2) and some SiO2 formed. The addition of Al is beneficial for MoSi2 coating and the Al-doped coating exhibited only a small weight gain and protected the Mo substrate, while the MoSi2 coating without Al suffered a significant weight loss, indicating a loss of volatile MoO3 after cycles.
基金sponsored by the Ministry of Science and Technology of Taiwan,China,under the grant of MOST 105-2221-E-035-039-MY2
文摘Preparation of Zr2Al3C4-Al2O3 in situ composites was investigated by self-propagating high-temperature synthesis(SHS)involving both aluminothermic reduction of ZrO2 and chemical activation of PTFE(Teflon).The starting materials included ZrO2,Al,carbon black and PTFE.In addition to the conventional SHS method,the experiments were conducted by a chemical-oven SHS(COSHS)route to thermally assist the synthesis reaction.The threshold amount of 2%(mass fraction)PTFE was required to induce self-sustaining combustion.When the conventional SHS scheme was utilized,due to low combustion temperatures between 1152 and 1272°C and insufficient reaction time,the dominant carbide forming in the composite was ZrC instead of Zr2Al3C4.On the other hand,the COSHS technique increased the combustion temperature of the reactant compact to about 1576°C,lengthened the high-temperature duration for the reaction,and prevented Al vapor from escaping away.As a consequence,Zr2Al3C4-Al2O3 composites with a small amount of Zr3Al3C5 were obtained.The microstructure of the COSHS-derived product showed that plate-like Zr2Al3C4 grains were about 2μm in thickness and 10-30μm in length,and most of them were closely stacked into a laminated configuration.
文摘Tensile properties of a two phase γ Ti 47Al 1.5Cr 0.5Mn 2.8Nb alloy with a duplex microstructure were tested under strain rates ranging from 5×10 -5 to 5×10 -3 s -1 at temperatures from 1 123 K to 1 273 K. It was found that there exists approximately linear relationship between the flow stresses and the logarithm of the strain rate at different temperatures. The strain rate dependence was analyzed by thermal activation theory, and dislocation climbing has been identified as the rate controlling mechanism.
基金financially supported by the National Natural Science Foundation of China (Nos. 52071300 and 51904278)the Special Funding Projects for Local Science and Technology Development guided by the Central Committee (No. YDZX20191400004587)+1 种基金the Key Research and Development Project of Zhejiang Province, China (No.2020C01131)the Innovation projects of colleges and universities in Shanxi Province, China (No. 2019L0577)。
文摘Hot compression tests were performed to investigate the hot deformation behavior of Fe–27.34Mn–8.63Al–1.03C lightweight steel and optimize the hot workability parameters. The temperature range was 900–1150℃ and the strain rate range was 0.01–5 s^(-1)on a Gleeble-3800 thermal simulator machine. The results showed that the flow stress increased with decreasing deformation temperature and increasing strain rate. According to the constitutive equation, the activation energy of hot deformation was 422.88 kJ·mol^(-1). The relationship between the critical stress and peak stress of the tested steel was established, and a dynamic recrystallization kinetic model was thus obtained. Based on this model, the effects of strain rate and deformation temperature on the volume fraction of dynamically recrystallized grains were explored. The microstructural examination and processing map results revealed that the tested steel exhibited a good hot workability at deformation temperatures of 1010–1100℃ and strain rate of 0.01 s^(-1).