A kind of active composite antibacterial material was prepared with CaHPO4 as the container, Ag^+ and Zn^2+ were adsorbed through ion-exchange, then it was doped with small scale of rare earth and photocatalyst, and...A kind of active composite antibacterial material was prepared with CaHPO4 as the container, Ag^+ and Zn^2+ were adsorbed through ion-exchange, then it was doped with small scale of rare earth and photocatalyst, and was finally calcined at a certain temperature. The properties and application of the composite material antibacterial were investigated. Some tests show that the as-prepared antibacterial powders modified by opaque agents such os SnO2 and ZrO2, possess beautiful white and excellent climate resistance at normal temperatures and are promising candidate materials for antibacterial plastics and dope. The result of the application in glaze indicates that Ag^+ can still exist stably, with no color change for the glaze, even being sintered at 1200℃ . SEM , EDS , antibacterial activity analyses and contrast tests reveal that the as-prepared antibacterial powders and the antibacterial glaze both have excellent antibacterial activities, without color change, in the case of dark or brightness.展开更多
Dental composites are commonly used restorative materials; however, secondary caries due to biofilm acids remains a major problem. The objectives of this study were (1) to develop a composite containing quaternary a...Dental composites are commonly used restorative materials; however, secondary caries due to biofilm acids remains a major problem. The objectives of this study were (1) to develop a composite containing quaternary ammonium dimethacrylate (QADM), nanoparticles of silver (NAg), and nanoparticles of amorphous calcium phosphate (NACP), and (2) to conduct the first investigation of the mechanical properties, biofilm response and acid production vs water-ageing time from 1 day to 12 months. A 4 x 5 design was utilized, with four composites (NACP-QADM composite, NACP-NAg composite, NACP-QADM-NAg composite, and a commercial control composite), and five water-ageing time periods (1 day, and 3, 6, 9, and 12 months). After each water- ageing period, the mechanical properties of the resins were measured in a three-point flexure, and antibacterial properties were tested via a dental plaque biofilm model using human saliva as an inoculum. After 12 months of water-ageing, NACP-QADM- NAg had a flexural strength and elastic modulus matching those of the commercial control (P〉 0.1). Incorporation of QADM or NAg into the NACP composite greatly reduced biofilm viability, metabolic activity and acid production. A composite containing both QADM and NAg possessed a stronger antibacterial capability than one with QADM or NAg alone (P〈0.05). The anti-biofilm activity was maintained after 12 months of water-ageing and showed no significant decrease with increasing time (P〉0.1). In conclusion, the NACP-QADM-NAg composite decreased biofilm viability and lactic acid production, while matching the load- bearing capability of a commercial composite. There was no decrease in its antibacterial properties after 1 year of water-ageing. The durable antibacterial and mechanical properties indicate that NACP-QADM-NAg composites may be useful in dental restorations to combat caries.展开更多
Medical devices-related infections pose a great threat to patients and cause an increased morbidity and mortality. Herein, we prepare an antibacterial composite(TPU-x) through blending medical grade thermoplastic poly...Medical devices-related infections pose a great threat to patients and cause an increased morbidity and mortality. Herein, we prepare an antibacterial composite(TPU-x) through blending medical grade thermoplastic polyurethane(TPU) and the complex(PL-DOSS) of ε-polylysine(ε-PL) and docusate sodium(DOSS). >99% reduction of colony forming unit(CFU) can be obtained in TPU-x composite films even at relatively low content of PL-DOSS, e.g. 0.13% for Methicillin resistant S. aureus(MRSA) and 0.5% for E. coli. The excellent antibacterial activity is mainly attributed to the formation of PL-DOSS nanoparticles that are uniformly dispersed in the TPU matrix with a size of ~100 nm. TPU-x composite films exhibit long-term stability in saline and good biocompatibility, and retain mechanical properties of TPU.展开更多
文摘A kind of active composite antibacterial material was prepared with CaHPO4 as the container, Ag^+ and Zn^2+ were adsorbed through ion-exchange, then it was doped with small scale of rare earth and photocatalyst, and was finally calcined at a certain temperature. The properties and application of the composite material antibacterial were investigated. Some tests show that the as-prepared antibacterial powders modified by opaque agents such os SnO2 and ZrO2, possess beautiful white and excellent climate resistance at normal temperatures and are promising candidate materials for antibacterial plastics and dope. The result of the application in glaze indicates that Ag^+ can still exist stably, with no color change for the glaze, even being sintered at 1200℃ . SEM , EDS , antibacterial activity analyses and contrast tests reveal that the as-prepared antibacterial powders and the antibacterial glaze both have excellent antibacterial activities, without color change, in the case of dark or brightness.
基金supported by the International Science and Technology Cooperation Program of China (2014DFE30180) (Xue-Dong Zhou)National Natural Science Foundation of China grant 81430011 (Xue-Dong Zhou),81372889 (Lei Cheng),81400540 (Ke Zhang)+1 种基金?nancial support from the School of Stomatology at the Capital Medical University in China (Ke Zhang),NIH R01 DE17974 (Hockin HK Xu)a seed grant from the University of Maryland School of Dentistry (Hockin HK Xu)
文摘Dental composites are commonly used restorative materials; however, secondary caries due to biofilm acids remains a major problem. The objectives of this study were (1) to develop a composite containing quaternary ammonium dimethacrylate (QADM), nanoparticles of silver (NAg), and nanoparticles of amorphous calcium phosphate (NACP), and (2) to conduct the first investigation of the mechanical properties, biofilm response and acid production vs water-ageing time from 1 day to 12 months. A 4 x 5 design was utilized, with four composites (NACP-QADM composite, NACP-NAg composite, NACP-QADM-NAg composite, and a commercial control composite), and five water-ageing time periods (1 day, and 3, 6, 9, and 12 months). After each water- ageing period, the mechanical properties of the resins were measured in a three-point flexure, and antibacterial properties were tested via a dental plaque biofilm model using human saliva as an inoculum. After 12 months of water-ageing, NACP-QADM- NAg had a flexural strength and elastic modulus matching those of the commercial control (P〉 0.1). Incorporation of QADM or NAg into the NACP composite greatly reduced biofilm viability, metabolic activity and acid production. A composite containing both QADM and NAg possessed a stronger antibacterial capability than one with QADM or NAg alone (P〈0.05). The anti-biofilm activity was maintained after 12 months of water-ageing and showed no significant decrease with increasing time (P〉0.1). In conclusion, the NACP-QADM-NAg composite decreased biofilm viability and lactic acid production, while matching the load- bearing capability of a commercial composite. There was no decrease in its antibacterial properties after 1 year of water-ageing. The durable antibacterial and mechanical properties indicate that NACP-QADM-NAg composites may be useful in dental restorations to combat caries.
基金the National Natural Science Foundation of China(Nos.51773201 and 51973212)the Bureau of Science and Technology of Changchun(No.19SS005)+1 种基金the Department of Science and Technology of Jilin Province(No.20200301017RQ)the Joint Program of CAS-Jilin Province(No.2019SYHZ0002).
文摘Medical devices-related infections pose a great threat to patients and cause an increased morbidity and mortality. Herein, we prepare an antibacterial composite(TPU-x) through blending medical grade thermoplastic polyurethane(TPU) and the complex(PL-DOSS) of ε-polylysine(ε-PL) and docusate sodium(DOSS). >99% reduction of colony forming unit(CFU) can be obtained in TPU-x composite films even at relatively low content of PL-DOSS, e.g. 0.13% for Methicillin resistant S. aureus(MRSA) and 0.5% for E. coli. The excellent antibacterial activity is mainly attributed to the formation of PL-DOSS nanoparticles that are uniformly dispersed in the TPU matrix with a size of ~100 nm. TPU-x composite films exhibit long-term stability in saline and good biocompatibility, and retain mechanical properties of TPU.