We perform both dc and ac magnetic measurements on the single crystal of Mn30(Et-sao)3(C104)(MeOH)3 single- molecule magnet (SMM) when the sample is preserved in air for different durations. We find that, duri...We perform both dc and ac magnetic measurements on the single crystal of Mn30(Et-sao)3(C104)(MeOH)3 single- molecule magnet (SMM) when the sample is preserved in air for different durations. We find that, during the oxidation process, the sample develops into another SMM with a smaller anisotropy energy barrier and a stronger antiferromagnetic intermolecular exchange interaction. The antiferromagnetic transition temperature observed at 6.65 K in the new SMM is record-high for the antiferromagnetic phase transition in all the known SMMs. Compared to the original SMM, the only apparent change for the new SMM is that each molecule has lost three methyl groups as revealed by four-circle x-ray diffraction (XRD), which is thought to be the origin of the stronger antiferromagnetic intermolecular exchange interaction.展开更多
By using density matrix renormalization group (DMRG) method a model for organic molecule-based ferromagnetic chain is proposed. It is found that the ground states of Undoped and doped systems both exhibit ferrimagne...By using density matrix renormalization group (DMRG) method a model for organic molecule-based ferromagnetic chain is proposed. It is found that the ground states of Undoped and doped systems both exhibit ferrimagnetic ordering. The e-e repulsion plays an important role in the stability of the ferromagnetic state either in doped system or undoped system. For the undoped system, each unit cell coatains half of the total spins, which is consistent with Lieb's theorem. It is convinced that when the system is doped with one electron, a charge density wave is excited, which decreases the amplitude of spin density wave,therefore acting against the stability of ferromagnetic state.展开更多
The study on temperature dependence of exchange bias field and coercivity is crucial to solving the writing/reading dilemma in magnetic recording.Motivated by recent experimental findings,a complete switch between exc...The study on temperature dependence of exchange bias field and coercivity is crucial to solving the writing/reading dilemma in magnetic recording.Motivated by recent experimental findings,a complete switch between exchange bias field and coercivity with temperature is proposed,and the performance,characterized by average switching temperature(T_(S))and switching temperature width(T_(W)),controlled by antiferromagnetic anisotropy(KAF)and exchange coupling(J_(AF))constants is studied based on a MonteCarlo simulation.The results show that a linear relationship between T_(S)and KAFis established when KAFis above a critical value,while T_(S)is weakly influenced by J_(AF).On the contrary,T_(W)is insensitive to KAF,while strongly depends on J_(AF).Besides overcoming thermal energy,the increase of KAFfor a small J_(AF)guarantees the completely frozen states in the antiferromagnetic layers during magnetizing at higher temperature,below which the exchange bias field exists with a negligible coercivity.Otherwise,for a large J_(AF),the uncompensated antiferromagnetic magnetization behavior during the ferromagnetic magnetization reversal becomes complicated,and the switching process in the low temperature range depends on the irreversibility of uncompensated antiferromagnetic magnetization reversal during magnetizing,while in the high temperature range mainly influenced by the field-cooling process,resulting in a large T_(W).This work provides an opportunity to control/optimize the performance of the temperatureinduced switch between unidirectional and uniaxial symmetries through precisely tuning KAFand/or J_(AF)to meet different application demands in the next generation information technology.展开更多
Manipulation of antiferromagnetic(AFM) spins by electrical means is on great demand to develop the AFM spintronics with low power consumption. Here we report a reversible electrical control of antiferromagnetic moment...Manipulation of antiferromagnetic(AFM) spins by electrical means is on great demand to develop the AFM spintronics with low power consumption. Here we report a reversible electrical control of antiferromagnetic moments of FeMn up to 15 nm, using an ionic liquid to exert a substantial electric-field effect. The manipulation is demonstrated by the modulation of exchange spring in[Co/Pt]/FeMn system, where AFM moments in FeMn pin the magnetization rotation of Co/Pt. By carrier injection or extraction,the magnetic anisotropy of the top layer in FeMn is modulated to influence the whole exchange spring and then passes its influence to the [Co/Pt]/FeMn interface, through a distance up to the length of exchange spring that fully screens electric field. Comparing FeMn to IrMn, despite the opposite dependence of exchange bias on gate voltages, the same correlation between carrier density and exchange spring stiffness is demonstrated. Besides the fundamental significance of modulating the spin structures in metallic AFM via all-electrical fashion, the present finding would advance the development of low-power-consumption AFM spintronics.展开更多
The magnetic property of u3-oxotriiron(III) complex [Fe3O(OBz)6(CH3OH)3](NO3)-(CH3OH)2 (HOBz=benzoic acid) has been studied. We use isosceles triangle model and molecular field correction to fit the experimental magne...The magnetic property of u3-oxotriiron(III) complex [Fe3O(OBz)6(CH3OH)3](NO3)-(CH3OH)2 (HOBz=benzoic acid) has been studied. We use isosceles triangle model and molecular field correction to fit the experimental magnetic susceptibility data. It shows that an intramolecular antiferromagnetic exchange interaction occurs with J=-31.27 cm-1, J'=-27.26 cm-1, and a weaker intermolecular antiferromagnetic exchange interaction occurs with zJ'=-3.76 cm-1. We give the d5-d5-d5 energy level diagram of triiron(III) complex as a function of J'/J. From the diagram we can get the total spin ST of the complex as 1/2 in the ground state.展开更多
基金supported by the National Key Basic Research Program of China(Grant No.2011CB921702)the National Natural Science Foundation of China(Grant No.11104331)
文摘We perform both dc and ac magnetic measurements on the single crystal of Mn30(Et-sao)3(C104)(MeOH)3 single- molecule magnet (SMM) when the sample is preserved in air for different durations. We find that, during the oxidation process, the sample develops into another SMM with a smaller anisotropy energy barrier and a stronger antiferromagnetic intermolecular exchange interaction. The antiferromagnetic transition temperature observed at 6.65 K in the new SMM is record-high for the antiferromagnetic phase transition in all the known SMMs. Compared to the original SMM, the only apparent change for the new SMM is that each molecule has lost three methyl groups as revealed by four-circle x-ray diffraction (XRD), which is thought to be the origin of the stronger antiferromagnetic intermolecular exchange interaction.
基金the National Natural Science Foundation of China under
文摘By using density matrix renormalization group (DMRG) method a model for organic molecule-based ferromagnetic chain is proposed. It is found that the ground states of Undoped and doped systems both exhibit ferrimagnetic ordering. The e-e repulsion plays an important role in the stability of the ferromagnetic state either in doped system or undoped system. For the undoped system, each unit cell coatains half of the total spins, which is consistent with Lieb's theorem. It is convinced that when the system is doped with one electron, a charge density wave is excited, which decreases the amplitude of spin density wave,therefore acting against the stability of ferromagnetic state.
基金financially supported by the National Natural Science Foundation of China(No.11774045)the Joint Research Fund Liaoning-Shenyang National Laboratory for Materials Science(No.20180510008)。
文摘The study on temperature dependence of exchange bias field and coercivity is crucial to solving the writing/reading dilemma in magnetic recording.Motivated by recent experimental findings,a complete switch between exchange bias field and coercivity with temperature is proposed,and the performance,characterized by average switching temperature(T_(S))and switching temperature width(T_(W)),controlled by antiferromagnetic anisotropy(KAF)and exchange coupling(J_(AF))constants is studied based on a MonteCarlo simulation.The results show that a linear relationship between T_(S)and KAFis established when KAFis above a critical value,while T_(S)is weakly influenced by J_(AF).On the contrary,T_(W)is insensitive to KAF,while strongly depends on J_(AF).Besides overcoming thermal energy,the increase of KAFfor a small J_(AF)guarantees the completely frozen states in the antiferromagnetic layers during magnetizing at higher temperature,below which the exchange bias field exists with a negligible coercivity.Otherwise,for a large J_(AF),the uncompensated antiferromagnetic magnetization behavior during the ferromagnetic magnetization reversal becomes complicated,and the switching process in the low temperature range depends on the irreversibility of uncompensated antiferromagnetic magnetization reversal during magnetizing,while in the high temperature range mainly influenced by the field-cooling process,resulting in a large T_(W).This work provides an opportunity to control/optimize the performance of the temperatureinduced switch between unidirectional and uniaxial symmetries through precisely tuning KAFand/or J_(AF)to meet different application demands in the next generation information technology.
基金supported by the National Natural Science Foundation of China(Grant Nos.51322101,51231004 and 51571128)the Ministry of Science and Technology of China(Grant No.2014AA032904)
文摘Manipulation of antiferromagnetic(AFM) spins by electrical means is on great demand to develop the AFM spintronics with low power consumption. Here we report a reversible electrical control of antiferromagnetic moments of FeMn up to 15 nm, using an ionic liquid to exert a substantial electric-field effect. The manipulation is demonstrated by the modulation of exchange spring in[Co/Pt]/FeMn system, where AFM moments in FeMn pin the magnetization rotation of Co/Pt. By carrier injection or extraction,the magnetic anisotropy of the top layer in FeMn is modulated to influence the whole exchange spring and then passes its influence to the [Co/Pt]/FeMn interface, through a distance up to the length of exchange spring that fully screens electric field. Comparing FeMn to IrMn, despite the opposite dependence of exchange bias on gate voltages, the same correlation between carrier density and exchange spring stiffness is demonstrated. Besides the fundamental significance of modulating the spin structures in metallic AFM via all-electrical fashion, the present finding would advance the development of low-power-consumption AFM spintronics.
文摘The magnetic property of u3-oxotriiron(III) complex [Fe3O(OBz)6(CH3OH)3](NO3)-(CH3OH)2 (HOBz=benzoic acid) has been studied. We use isosceles triangle model and molecular field correction to fit the experimental magnetic susceptibility data. It shows that an intramolecular antiferromagnetic exchange interaction occurs with J=-31.27 cm-1, J'=-27.26 cm-1, and a weaker intermolecular antiferromagnetic exchange interaction occurs with zJ'=-3.76 cm-1. We give the d5-d5-d5 energy level diagram of triiron(III) complex as a function of J'/J. From the diagram we can get the total spin ST of the complex as 1/2 in the ground state.