期刊文献+
共找到98,223篇文章
< 1 2 250 >
每页显示 20 50 100
Tailoring Light–Matter Interactions in Overcoupled Resonator for Biomolecule Recognition and Detection
1
作者 Dongxiao Li Hong Zhou +2 位作者 Zhihao Ren Cheng Xu Chengkuo Lee 《Nano-Micro Letters》 SCIE EI CAS 2025年第1期262-280,共19页
Plasmonic nanoantennas provide unique opportunities for precise control of light–matter coupling in surface-enhanced infrared absorption(SEIRA)spectroscopy,but most of the resonant systems realized so far suffer from... Plasmonic nanoantennas provide unique opportunities for precise control of light–matter coupling in surface-enhanced infrared absorption(SEIRA)spectroscopy,but most of the resonant systems realized so far suffer from the obstacles of low sensitivity,narrow bandwidth,and asymmetric Fano resonance perturbations.Here,we demonstrated an overcoupled resonator with a high plasmon-molecule coupling coefficient(μ)(OC-Hμresonator)by precisely controlling the radiation loss channel,the resonator-oscillator coupling channel,and the frequency detuning channel.We observed a strong dependence of the sensing performance on the coupling state,and demonstrated that OC-Hμresonator has excellent sensing properties of ultra-sensitive(7.25%nm^(−1)),ultra-broadband(3–10μm),and immune asymmetric Fano lineshapes.These characteristics represent a breakthrough in SEIRA technology and lay the foundation for specific recognition of biomolecules,trace detection,and protein secondary structure analysis using a single array(array size is 100×100μm^(2)).In addition,with the assistance of machine learning,mixture classification,concentration prediction and spectral reconstruction were achieved with the highest accuracy of 100%.Finally,we demonstrated the potential of OC-Hμresonator for SARS-CoV-2 detection.These findings will promote the wider application of SEIRA technology,while providing new ideas for other enhanced spectroscopy technologies,quantum photonics and studying light–matter interactions. 展开更多
关键词 Plasmonic nanoantennas Light-matter interaction Surface-enhanced infrared absorption Overcoupled BIOSENSING
下载PDF
Catalyst–Support Interaction in Polyaniline‑Supported Ni_(3)Fe Oxide to Boost Oxygen Evolution Activities for Rechargeable Zn‑Air Batteries
2
作者 Xiaohong Zou Qian Lu +8 位作者 Mingcong Tang Jie Wu Kouer Zhang Wenzhi Li Yunxia Hu Xiaomin Xu Xiao Zhang Zongping Shao Liang An 《Nano-Micro Letters》 SCIE EI CAS 2025年第1期176-190,共15页
Catalyst–support interaction plays a crucial role in improving the catalytic activity of oxygen evolution reaction(OER).Here we modulate the catalyst–support interaction in polyaniline-supported Ni_(3)Fe oxide(Ni_(3... Catalyst–support interaction plays a crucial role in improving the catalytic activity of oxygen evolution reaction(OER).Here we modulate the catalyst–support interaction in polyaniline-supported Ni_(3)Fe oxide(Ni_(3)Fe oxide/PANI)with a robust hetero-interface,which significantly improves oxygen evolution activities with an overpotential of 270 mV at 10 mA cm^(-2)and specific activity of 2.08 mA cm_(ECSA)^(-2)at overpotential of 300 mV,3.84-fold that of Ni_(3)Fe oxide.It is revealed that the catalyst–support interaction between Ni_(3)Fe oxide and PANI support enhances the Ni–O covalency via the interfacial Ni–N bond,thus promoting the charge and mass transfer on Ni_(3)Fe oxide.Considering the excellent activity and stability,rechargeable Zn-air batteries with optimum Ni_(3)Fe oxide/PANI are assembled,delivering a low charge voltage of 1.95 V to cycle for 400 h at 10 mA cm^(-2).The regulation of the effect of catalyst–support interaction on catalytic activity provides new possibilities for the future design of highly efficient OER catalysts. 展开更多
关键词 Catalyst-support interaction Supported catalysts HETEROINTERFACE Oxygen evolution reaction Zn-air batteries
下载PDF
T cell interactions with microglia in immune-inflammatory processes of ischemic stroke
3
作者 Yuxiao Zheng Zilin Ren +8 位作者 Ying Liu Juntang Yan Congai Chen Yanhui He Yuyu Shi Fafeng Cheng Qingguo Wang Changxiang Li Xueqian Wang 《Neural Regeneration Research》 SCIE CAS 2025年第5期1277-1292,共16页
The primary mechanism of secondary injury after cerebral ischemia may be the brain inflammation that emerges after an ischemic stroke,which promotes neuronal death and inhibits nerve tissue regeneration.As the first i... The primary mechanism of secondary injury after cerebral ischemia may be the brain inflammation that emerges after an ischemic stroke,which promotes neuronal death and inhibits nerve tissue regeneration.As the first immune cells to be activated after an ischemic stroke,microglia play an important immunomodulatory role in the progression of the condition.After an ischemic stroke,peripheral blood immune cells(mainly T cells)are recruited to the central nervous system by chemokines secreted by immune cells in the brain,where they interact with central nervous system cells(mainly microglia)to trigger a secondary neuroimmune response.This review summarizes the interactions between T cells and microglia in the immune-inflammatory processes of ischemic stroke.We found that,during ischemic stroke,T cells and microglia demonstrate a more pronounced synergistic effect.Th1,Th17,and M1 microglia can co-secrete proinflammatory factors,such as interferon-γ,tumor necrosis factor-α,and interleukin-1β,to promote neuroinflammation and exacerbate brain injury.Th2,Treg,and M2 microglia jointly secrete anti-inflammatory factors,such as interleukin-4,interleukin-10,and transforming growth factor-β,to inhibit the progression of neuroinflammation,as well as growth factors such as brain-derived neurotrophic factor to promote nerve regeneration and repair brain injury.Immune interactions between microglia and T cells influence the direction of the subsequent neuroinflammation,which in turn determines the prognosis of ischemic stroke patients.Clinical trials have been conducted on the ways to modulate the interactions between T cells and microglia toward anti-inflammatory communication using the immunosuppressant fingolimod or overdosing with Treg cells to promote neural tissue repair and reduce the damage caused by ischemic stroke.However,such studies have been relatively infrequent,and clinical experience is still insufficient.In summary,in ischemic stroke,T cell subsets and activated microglia act synergistically to regulate inflammatory progression,mainly by secreting inflammatory factors.In the future,a key research direction for ischemic stroke treatment could be rooted in the enhancement of anti-inflammatory factor secretion by promoting the generation of Th2 and Treg cells,along with the activation of M2-type microglia.These approaches may alleviate neuroinflammation and facilitate the repair of neural tissues. 展开更多
关键词 BRAIN IMMUNE INFLAMMATION interaction ischemic stroke mechanism MICROGLIA NEURON secondary injury T cells
下载PDF
Dynamic Interaction Analysis of Coupled Axial-Torsional-Lateral Mechanical Vibrations in Rotary Drilling Systems
4
作者 Sabrina Meddah Sid Ahmed Tadjer +3 位作者 Abdelhakim Idir Kong Fah Tee Mohamed Zinelabidine Doghmane Madjid Kidouche 《Structural Durability & Health Monitoring》 EI 2025年第1期77-103,共27页
Maintaining the integrity and longevity of structures is essential in many industries,such as aerospace,nuclear,and petroleum.To achieve the cost-effectiveness of large-scale systems in petroleum drilling,a strong emp... Maintaining the integrity and longevity of structures is essential in many industries,such as aerospace,nuclear,and petroleum.To achieve the cost-effectiveness of large-scale systems in petroleum drilling,a strong emphasis on structural durability and monitoring is required.This study focuses on the mechanical vibrations that occur in rotary drilling systems,which have a substantial impact on the structural integrity of drilling equipment.The study specifically investigates axial,torsional,and lateral vibrations,which might lead to negative consequences such as bit-bounce,chaotic whirling,and high-frequency stick-slip.These events not only hinder the efficiency of drilling but also lead to exhaustion and harm to the system’s components since they are difficult to be detected and controlled in real time.The study investigates the dynamic interactions of these vibrations,specifically in their high-frequency modes,usingfield data obtained from measurement while drilling.Thefindings have demonstrated the effect of strong coupling between the high-frequency modes of these vibrations on drilling sys-tem performance.The obtained results highlight the importance of considering the interconnected impacts of these vibrations when designing and implementing robust control systems.Therefore,integrating these compo-nents can increase the durability of drill bits and drill strings,as well as improve the ability to monitor and detect damage.Moreover,by exploiting thesefindings,the assessment of structural resilience in rotary drilling systems can be enhanced.Furthermore,the study demonstrates the capacity of structural health monitoring to improve the quality,dependability,and efficiency of rotary drilling systems in the petroleum industry. 展开更多
关键词 Rotary drilling systems mechanical vibrations structural durability dynamic interaction analysis field data analysis
下载PDF
Dynamic magnetic behavior of the mixed spin (2, 5/2) Ising system with antiferromagnetic/antiferromagnetic interactions on a bilayer square lattice
5
作者 Mehmet Ertas Mustafa Keskin 《Chinese Physics B》 SCIE EI CAS CSCD 2013年第12期160-167,共8页
Using the mean-field theory and Glauber-type stochastic dynamics, we study the dynamic magnetic properties of the mixed spin (2, 5/2) Ising system for the antiferromagnetic/antiferromagnetic (AFM/AFM) interactions... Using the mean-field theory and Glauber-type stochastic dynamics, we study the dynamic magnetic properties of the mixed spin (2, 5/2) Ising system for the antiferromagnetic/antiferromagnetic (AFM/AFM) interactions on the bilayer square lattice under a time varying (sinusoidal) magnetic field. The time dependence of average magnetizations and the thermal variation of the dynamic magnetizations are examined to calculate the dynamic phase diagrams. The dynamic phase diagrams are presented in the reduced temperature and magnetic field amplitude plane and the effects of interlayer coupling interaction on the critical behavior of the system are investigated. We also investigate the influence of the frequency and find that the system displays richer dynamic critical behavior for higher values of frequency than that of the lower values of it. We perform a comparison with the ferromagnetic/ferromagnetic (FM/FM) and AFM/FM interactions in order to see the effects of AFM/AFM interaction and observe that the system displays richer and more interesting dynamic critical behaviors for the AFM/AFM interaction than those for the FM/FM and AFM/FM interactions. 展开更多
关键词 dynamic magnetic behavior of a bilayer Ising system mixed spins glauber-type stochastic dynamics antiferromagnetic/antiferromagnetic interactions
下载PDF
Double spin-glass-like behavior and antiferromagnetic superexchange interaction between Fe^(3+) ions in α-Ga_(2-x)Fe_xO_3(0≤x≤0.4)
6
作者 吕益飞 向建勇 +3 位作者 温福昇 吕伟明 胡文涛 柳忠元 《Chinese Physics B》 SCIE EI CAS CSCD 2015年第3期336-344,共9页
Single phase of Fe^3+-doped α-Ga2-xFexO3(α-GF x O, x = 0.1, 0.2, 0.3, 0.4) is synthesized by treating the β-Ga2-x Fe x O3(β-GF x O) precursors at high temperatures and high pressures. Rietveld refinements of ... Single phase of Fe^3+-doped α-Ga2-xFexO3(α-GF x O, x = 0.1, 0.2, 0.3, 0.4) is synthesized by treating the β-Ga2-x Fe x O3(β-GF x O) precursors at high temperatures and high pressures. Rietveld refinements of the X-ray diffraction data show that the lattice constants increase monotonically with the increase of Fe^3+content. Calorimetric measurements show that the temperature of the phase transition from α-GF x O to β-GF x O increases, while the associated enthalpy change decreases upon increasing Fe^3+content. The optical energy gap deduced from the reflectance measurement is found to decrease monotonically with the increase in Fe3+content. From the measurements of magnetic field-dependent magnetization and temperature-dependent inverse molar susceptibility, we find that the superexchange interaction between Fe^3+ions is antiferromagnetic. Remnant magnetization is observed in the Fe^3+-doped α-GF x O and is attributed to the spin glass in the magnetic sublattice. At high Fe^3+doping level(x = 0.4), two evident peaks are observed in the image part of the AC susceptibility χ ac. The frequency dependence in intensity of these two peaks as well as two spin freezing temperatures observed in the DC magnetization measurements of α-GF0.4O is suggested to be the behavior of two spin glasses. 展开更多
关键词 α-Ga2O3 susceptibility superexchange interaction spin glass
下载PDF
Theory for Charge Density Wave and Orbital-Flux State in Antiferromagnetic Kagome Metal FeGe 被引量:1
7
作者 马海洋 殷嘉鑫 +1 位作者 M.Zahid Hasan 刘健鹏 《Chinese Physics Letters》 SCIE EI CAS CSCD 2024年第4期90-104,共15页
We theoretically study the charge order and orbital magnetic properties of a new type of antiferromagnetic kagome metal FeGe.Based on first-principles density functional theory calculations,we study the electronic str... We theoretically study the charge order and orbital magnetic properties of a new type of antiferromagnetic kagome metal FeGe.Based on first-principles density functional theory calculations,we study the electronic structures,Fermi-surface quantum fluctuations,as well as phonon properties of the antiferromagnetic kagome metal FeGe.It is found that charge density wave emerges in such a system due to a subtle cooperation between electron-electron interactions and electron–phonon couplings,which gives rise to an unusual scenario of interaction-triggered phonon instabilities,and eventually yields a charge density wave(CDW)state.We further show that,in the CDW phase,the ground-state current density distribution exhibits an intriguing star-of-David pattern,leading to flux density modulation.The orbital fluxes(or current loops)in this system emerge as a result of the subtle interplay between magnetism,lattice geometries,charge order,and spin-orbit coupling(SOC),which can be described by a simple,yet universal,tight-binding theory including a Kane-Mele-type SOC term and a magnetic exchange interaction.We further study the origin of the peculiar step-edge states in FeGe,which sheds light on the topological properties and correlation effects in this new type of kagome antiferromagnetic material. 展开更多
关键词 interaction PHONON ORBITAL
下载PDF
Machine learning with active pharmaceutical ingredient/polymer interaction mechanism:Prediction for complex phase behaviors of pharmaceuticals and formulations 被引量:2
8
作者 Kai Ge Yiping Huang Yuanhui Ji 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第2期263-272,共10页
The high throughput prediction of the thermodynamic phase behavior of active pharmaceutical ingredients(APIs)with pharmaceutically relevant excipients remains a major scientific challenge in the screening of pharmaceu... The high throughput prediction of the thermodynamic phase behavior of active pharmaceutical ingredients(APIs)with pharmaceutically relevant excipients remains a major scientific challenge in the screening of pharmaceutical formulations.In this work,a developed machine-learning model efficiently predicts the solubility of APIs in polymers by learning the phase equilibrium principle and using a few molecular descriptors.Under the few-shot learning framework,thermodynamic theory(perturbed-chain statistical associating fluid theory)was used for data augmentation,and computational chemistry was applied for molecular descriptors'screening.The results showed that the developed machine-learning model can predict the API-polymer phase diagram accurately,broaden the solubility data of APIs in polymers,and reproduce the relationship between API solubility and the interaction mechanisms between API and polymer successfully,which provided efficient guidance for the development of pharmaceutical formulations. 展开更多
关键词 Multi-task machine learning Density functional theory Hydrogen bond interaction MISCIBILITY SOLUBILITY
下载PDF
Role of the spin anisotropy of the interchain interaction in weakly coupled antiferromagnetic Heisenberg chains
9
作者 Yuchen Fan Rong Yu 《Chinese Physics B》 SCIE EI CAS CSCD 2020年第5期489-493,共5页
In quasi-one-dimensional(q1D) quantum antiferromagnets, the complicated interplay of intrachain and interchain exchange couplings may give rise to rich phenomena. Motivated by recent progress on field-induced phase tr... In quasi-one-dimensional(q1D) quantum antiferromagnets, the complicated interplay of intrachain and interchain exchange couplings may give rise to rich phenomena. Motivated by recent progress on field-induced phase transitions in the q1D antiferromagnetic(AFM) compound YbAlO3, we study the phase diagram of spin-1/2 Heisenberg chains with Ising anisotropic interchain couplings under a longitudinal magnetic field via large-scale quantum Monte Carlo simulations,and investigate the role of the spin anisotropy of the interchain coupling on the ground state of the system. We find that the Ising anisotropy of the interchain coupling can significantly enhance the longitudinal spin correlations and drive the system to an incommensurate AFM phase at intermediate magnetic fields, which is understood as a longitudinal spin density wave(LSDW). With increasing field, the ground state changes to a canted AFM order with transverse spin correlations. We further provide a global phase diagram showing how the competition between the LSDW and the canted AFM states is tuned by the Ising anisotropy of the interchain coupling. 展开更多
关键词 quasi-one-dimensional quantum antiferromagnets Heisenberg spin chain longitudinal spin density wave
下载PDF
Dzyaloshinskii-Moriya Interaction in Spin 1/2 Antiferromagnetic Rings with Nearest Next Neighbor Coupling
10
作者 LI Peng-Fei CAO Hai-Jing ZHENG Li 《Chinese Physics Letters》 SCIE CAS CSCD 2013年第4期189-191,共3页
We numerically investigate the magnetoelastic(ME)instability in spin 1/2 antiferromagnetic rings with nearest-next neighbor(NNN)coupling J_(2)and Dzyaloshinskii–Moriya(DM)interaction D_(z).It is found that,for a give... We numerically investigate the magnetoelastic(ME)instability in spin 1/2 antiferromagnetic rings with nearest-next neighbor(NNN)coupling J_(2)and Dzyaloshinskii–Moriya(DM)interaction D_(z).It is found that,for a given Dz,there exists a critical J_(2)^(c).As J_(2)=J_(2)^(c),the ME instability is irrelative to the DM interaction and NNN coupling.These results may come from the competition between the DM interaction and NNN coupling.The DM interaction does not affect the critical behavior at the point of J_(2)=0.5,at which the systems always locate in the dimerized state. 展开更多
关键词 state. interaction CRITICAL
下载PDF
Strong metal–support interaction boosts the electrocatalytic hydrogen evolution capability of Ru nanoparticles supported on titanium nitride 被引量:1
11
作者 Xin Wang Xiaoli Yang +7 位作者 Guangxian Pei Jifa Yang Junzhe Liu Fengwang Zhao Fayi Jin Wei Jiang Haoxi Ben Lixue Zhang 《Carbon Energy》 SCIE EI CAS CSCD 2024年第1期245-254,共10页
Ruthenium(Ru)has been regarded as one of the most promising alternatives to substitute Pt for catalyzing alkaline hydrogen evolution reaction(HER),owing to its inherent high activity and being the cheapest platinum-gr... Ruthenium(Ru)has been regarded as one of the most promising alternatives to substitute Pt for catalyzing alkaline hydrogen evolution reaction(HER),owing to its inherent high activity and being the cheapest platinum-group metal.Herein,based on the idea of strong metal–support interaction(SMSI)regulation,Ru/TiN catalysts with different degrees of TiN overlayer over Ru nanoparticles were fabricated,which were applied to the alkaline electrolytic water.Characterizations reveal that the TiN overlayer would gradually encapsulate the Ru nanoparticles and induce more electron transfer from Ru nanoparticles to TiN support by the Ru–N–Ti bond as the SMSI degree increased.Further study shows that the exposed Ru–TiN interfaces greatly promote the H_(2) desorption capacity.Thus,the Ru/TiN-300 with a moderate SMSI degree exhibits excellent HER performance,with an overpotential of 38 mV at 10 mA cm^(−2).Also,due to the encapsulation role of TiN overlayer on Ru nanoparticles,it displays super long-term stability with a very slight potential change after 24 h.This study provides a deep insight into the influence of the SMSI effect between Ru and TiN on HER and offers a novel approach for preparing efficient and stable HER electrocatalysts through SMSI engineering. 展开更多
关键词 electronic structure hydrogen evolution reaction RUTHENIUM strong metal-support interaction titanium nitride
下载PDF
Electrostatic Interaction-directed Construction of Hierarchical Nanostructured Carbon Composite with Dual Electrical Conductive Networks for Zinc-ion Hybrid Capacitors with Ultrastability 被引量:1
12
作者 Changyu Leng Zongbin Zhao +5 位作者 Xuzhen Wang Yuliya V.Fedoseeva Lyubov G.Bulusheva Alexander V.Okotrub Jian Xiao Jieshan Qiu 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第1期184-192,共9页
Metal-organic framework(MOF)-derived carbon composites have been considered as the promising materials for energy storage.However,the construction of MOF-based composites with highly controllable mode via the liquid-l... Metal-organic framework(MOF)-derived carbon composites have been considered as the promising materials for energy storage.However,the construction of MOF-based composites with highly controllable mode via the liquid-liquid synthesis method has a great challenge because of the simultaneous heterogeneous nucleation on substrates and the self-nucleation of individual MOF nanocrystals in the liquid phase.Herein,we report a bidirectional electrostatic generated self-assembly strategy to achieve the precisely controlled coatings of single-layer nanoscale MOFs on a range of substrates,including carbon nanotubes(CNTs),graphene oxide(GO),MXene,layered double hydroxides(LDHs),MOFs,and SiO_(2).The obtained MOF-based nanostructured carbon composite exhibits the hierarchical porosity(V_(meso)/V_(micro)∶2.4),ultrahigh N content of 12.4 at.%and"dual electrical conductive networks."The assembled aqueous zinc-ion hybrid capacitor(ZIC)with the prepared nanocarbon composite as a cathode shows a high specific capacitance of 236 F g^(-1)at 0.5 A g^(-1),great rate performance of 98 F g^(-1)at 100 A g^(-1),and especially,an ultralong cycling stability up to 230000 cycles with the capacitance retention of 90.1%.This work develops a repeatable and general method for the controlled construction of MOF coatings on various functional substrates and further fabricates carbon composites for ZICs with ultrastability. 展开更多
关键词 carbon composite electrostatic interaction metal-organic framework coating SELF-ASSEMBLY zinc-ion hybrid capacitor
下载PDF
Stacking-dependent exchange bias in two-dimensional ferromagnetic/antiferromagnetic bilayers
13
作者 李慧平 潘帅唯 +2 位作者 王喆 向斌 朱文光 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第1期708-714,共7页
A clear microscopic understanding of exchange bias is crucial for its application in magnetic recording, and further progress in this area is desired. Based on the results of our first-principles calculations and Mont... A clear microscopic understanding of exchange bias is crucial for its application in magnetic recording, and further progress in this area is desired. Based on the results of our first-principles calculations and Monte Carlo simulations,we present a theoretical proposal for a stacking-dependent exchange bias in two-dimensional compensated van der Waals ferromagnetic/antiferromagnetic bilayer heterostructures. The exchange bias effect emerges in stacking registries that accommodate inhomogeneous interlayer magnetic interactions between the ferromagnetic layer and different spin sublattices of the antiferromagnetic layer. Moreover, the on/off switching and polarity reversal of the exchange bias can be achieved by interlayer sliding, and the strength can be modulated using an external electric field. Our findings push the limits of exchange bias systems to extreme bilayer thickness in two-dimensional van der Waals heterostructures, potentially stimulating new experimental investigations and applications. 展开更多
关键词 exchange bias two-dimensional ferromagnetic/antiferromagnetic bilayers asymmetric magnetic interaction
下载PDF
Negative magnetoresistance in the antiferromagnetic semimetal V_(1/3)TaS_(2)
14
作者 王子 彭馨 +13 位作者 张胜男 苏亚慧 赖少东 周旋 吴春翔 周霆宇 王杭栋 杨金虎 陈斌 翟会飞 吴泉生 杜建华 焦志伟 方明虎 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第3期567-571,共5页
Intercalated transition metal dichalcogenides(TMDCs)attract much attention due to their rich properties and potential applications.In this article,we grew successfully high-quality V_(1/3)TaS_(2) crystals by a vapor t... Intercalated transition metal dichalcogenides(TMDCs)attract much attention due to their rich properties and potential applications.In this article,we grew successfully high-quality V_(1/3)TaS_(2) crystals by a vapor transport method.We measured the magnetization,longitudinal resistivityρxx(T,H),Hall resistivityρxy(T,H),as well as performed calculations of the electronic band structure.It was found that V_(1/3)TaS_(2) is an A-type antiferromagnet with the Neel temperature T_(N)=6.20 K,and exhibits a negative magnetoresistance(MR)near T_(N).Both band structure calculations and Hall resistivity measurements demonstrated it is a magnetic semimetal. 展开更多
关键词 MAGNETORESISTANCE antiferromagnetic semimetal band structure
下载PDF
Biological Interaction and Imaging of Ultrasmall Gold Nanoparticles
15
作者 Dongmiao Sang Xiaoxi Luo Jinbin Liu 《Nano-Micro Letters》 SCIE EI CSCD 2024年第3期69-98,共30页
Ultrasmall gold nanoparticles(AuNPs)typically includes atomically precise gold nanoclusters(AuNCs)and AuNPs with a core size below 3 nm.Serving as a bridge between small molecules and traditional inorganic nanoparticl... Ultrasmall gold nanoparticles(AuNPs)typically includes atomically precise gold nanoclusters(AuNCs)and AuNPs with a core size below 3 nm.Serving as a bridge between small molecules and traditional inorganic nanoparticles,the ultrasmall AuNPs show the unique advantages of both small molecules(e.g.,rapid distribution,renal clearance,low non-specific organ accumulation)and nanoparticles(e.g.,long blood circulation and enhanced permeability and retention effect).The emergence of ultrasmall AuNPs creates significant opportunities to address many challenges in the health field including disease diagnosis,monitoring and treatment.Since the nano–bio interaction dictates the overall biological applications of the ultrasmall AuNPs,this review elucidates the recent advances in the biological interactions and imaging of ultrasmall AuNPs.We begin with the introduction of the factors that influence the cellular interactions of ultrasmall AuNPs.We then discuss the organ interactions,especially focus on the interactions of the liver and kidneys.We further present the recent advances in the tumor interactions of ultrasmall AuNPs.In addition,the imaging performance of the ultrasmall AuNPs is summarized and discussed.Finally,we summarize this review and provide some perspective on the future research direction of the ultrasmall AuNPs,aiming to accelerate their clinical translation. 展开更多
关键词 Ultrasmall gold nanoparticle Cellular interaction Organ interaction Tumor interaction BIOIMAGING
下载PDF
Angular and planar transport properties of antiferromagnetic V_(5)S_(8)
16
作者 吴晓凯 王彬 +4 位作者 吴德桐 陈博文 弭孟娟 王以林 沈冰 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第2期66-71,共6页
Systemically angular and planar transport investigations are performed in layered antiferromagnetic(AF)V_(5)S_(8).In this AF system,obvious anomalous Hall effect(AHE)is observed with a large Hall angle of 0.1 compared... Systemically angular and planar transport investigations are performed in layered antiferromagnetic(AF)V_(5)S_(8).In this AF system,obvious anomalous Hall effect(AHE)is observed with a large Hall angle of 0.1 compared to that in ferromagnetic(FM)system.It can persist to the temperatures above AF transition and exhibit strong angular field dependence.The phase diagram reveals various magnetic states by rotating the applied field.By analyzing the anisotropic transport behavior,magnon contributions are revealed and exhibit obvious angular dependence with a spin-flop vanishing line.The observed prominent planar Hall effect and anisotropic magnetoresisitivity exhibit two-fold systematical angular dependent oscillations.These behaviors are attributed to the scattering from spin–orbital coupling instead of nontrivial topological origin.Our results reveal anisotropic interactions of magnetism and electron in V5S8,suggesting potential opportunities for the AF spintronic sensor and devices. 展开更多
关键词 ANTIFERROMAGNETISM planar Hall effect magnetic and topological properties
下载PDF
In-phase and out-of-phase spin pumping effects in Py/Ru/Pysynthetic antiferromagnetic structures
17
作者 Zhaocong Huang Xuejian Tang +5 位作者 Qian Chen Wei Jiang Qingjie Guo Milad Jalali Jun Du Ya Zhai 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第9期541-545,共5页
The spin pumping effect in magnetic heterostructures and multilayers is a highly effective method for the generationand transmission of spin currents. In the increasingly prominent synthetic antiferromagnetic structur... The spin pumping effect in magnetic heterostructures and multilayers is a highly effective method for the generationand transmission of spin currents. In the increasingly prominent synthetic antiferromagnetic structures, the two ferromagneticlayers demonstrate in-phase and out-of-phase states, corresponding to acoustic and optical precession modes. Withinthis context, our study explores the spin pumping effect in Py/Ru/Py synthetic antiferromagnetic structures across differentmodes. The heightened magnetic damping resulting from the spin pumping effect in the in-phase state initially decreaseswith increasing Py thickness before stabilizing. Conversely, in the out-of-phase state, the amplified damping exceeds thatof the in-phase state, suggesting a greater spin relaxation within this configuration, which demonstrates sensitivity to alterationsin static exchange interactions. These findings contribute to advancing the application of synthetic antiferromagneticstructures in magnonic devices. 展开更多
关键词 spin pumping spin transmission synthetic antiferromagnetic structures spin dynamics
下载PDF
Ecological network analysis reveals complex responses of tree species life stage interactions to stand variables
18
作者 Hengchao Zou Huayong Zhang Tousheng Huang 《Journal of Forestry Research》 SCIE EI CAS CSCD 2024年第1期29-43,共15页
Tree interactions are essential for the structure,dynamics,and function of forest ecosystems,but variations in the architecture of life-stage interaction networks(LSINs)across forests is unclear.Here,we constructed 16... Tree interactions are essential for the structure,dynamics,and function of forest ecosystems,but variations in the architecture of life-stage interaction networks(LSINs)across forests is unclear.Here,we constructed 16 LSINs in the mountainous forests of northwest Hebei,China based on crown overlap from four mixed forests with two dominant tree species.Our results show that LSINs decrease the complexity of stand densities and basal areas due to the interaction cluster differentiation.In addition,we found that mature trees and saplings play different roles,the first acting as“hub”life stages with high connectivity and the second,as“bridges”controlling information flow with high centrality.Across the forests,life stages with higher importance showed better parameter stability within LSINs.These results reveal that the structure of tree interactions among life stages is highly related to stand variables.Our efforts contribute to the understanding of LSIN complexity and provide a basis for further research on tree interactions in complex forest communities. 展开更多
关键词 Tree interactions Life stages interaction networks Ecological complexity
下载PDF
Study of the Relationship Between New Ionic Interaction Parameters and Salt Solubility in Electrolyte Solutions Based on Molecular Dynamics Simulation
19
作者 SUN Wenting HU Yangdong +5 位作者 ZHENG Jiahuan SUN Qichao Chen Xia DING Jiakun ZHANG Weitao WU Lianying 《Journal of Ocean University of China》 CAS CSCD 2024年第2期467-476,共10页
Studying the relationship between ionic interactions and salt solubility in seawater has implications for seawater desalination and mineral extraction.In this paper,a new method of expressing ion-to-ion interaction is... Studying the relationship between ionic interactions and salt solubility in seawater has implications for seawater desalination and mineral extraction.In this paper,a new method of expressing ion-to-ion interaction is proposed by using molecular dynamics simulation,and the relationship between ion-to-ion interaction and salt solubility in a simulated seawater water-salt system is investigated.By analyzing the variation of distance and contact time between ions in an electrolyte solution,from both spatial and temporal perspectives,new parameters were proposed to describe the interaction between ions:interaction distance(ID),and interaction time ratio(ITR).The best correlation between characteristic time ratio and solubility was found for a molar ratio of salt-to-water of 10:100 with a correlation coefficient of 0.96.For the same salt,a positive correlation was found between CTR and the molar ratio of salt and water.For type 1-1,type 2-1,type 1-2,and type 2-2 salts,the correlation coefficients between CTR and solubility were 0.93,0.96,0.92,and 0.98 for a salt-to-water molar ratio of 10:100,respectively.The solubility of multiple salts was predicted by simulations and compared with experimental values,yielding an average relative deviation of 12.4%.The new ion-interaction parameters offer significant advantages in describing strongly correlated and strongly hydrated electrolyte solutions. 展开更多
关键词 molecular dynamics simulation interaction distance interaction time rate electrolyte aqueous solutions SOLUBILITY
下载PDF
Interatomic Interaction Models for Magnetic Materials:Recent Advances
20
作者 Tatiana S.Kostiuchenko Alexander V.Shapeev Ivan S.Novikov 《Chinese Physics Letters》 SCIE EI CAS CSCD 2024年第6期54-66,共13页
Atomistic modeling is a widely employed theoretical method of computational materials science.It has found particular utility in the study of magnetic materials.Initially,magnetic empirical interatomic potentials or s... Atomistic modeling is a widely employed theoretical method of computational materials science.It has found particular utility in the study of magnetic materials.Initially,magnetic empirical interatomic potentials or spinpolarized density functional theory(DFT)served as the primary models for describing interatomic interactions in atomistic simulations of magnetic systems.Furthermore,in recent years,a new class of interatomic potentials known as magnetic machine-learning interatomic potentials(magnetic MLIPs)has emerged.These MLIPs combine the computational efficiency,in terms of CPU time,of empirical potentials with the accuracy of DFT calculations.In this review,our focus lies on providing a comprehensive summary of the interatomic interaction models developed specifically for investigating magnetic materials.We also delve into the various problem classes to which these models can be applied.Finally,we offer insights into the future prospects of interatomic interaction model development for the exploration of magnetic materials. 展开更多
关键词 MATERIALS interaction empirical
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部