期刊文献+
共找到19篇文章
< 1 >
每页显示 20 50 100
Highly transparent, antifreezing and stretchable conductive organohydrogels for strain and pressure sensors
1
作者 ZHAO Rui YANG Han +1 位作者 NIE BaoQing HU Liang 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2021年第11期2532-2540,共9页
Conductive hydrogels are good candidates for flexible wearable sensors, which have received considerable attention for use in human-machine interfaces, human motion/health monitoring, and soft robots. However, these h... Conductive hydrogels are good candidates for flexible wearable sensors, which have received considerable attention for use in human-machine interfaces, human motion/health monitoring, and soft robots. However, these hydrogels often freeze at low temperatures and thus, exhibit low transparency, weak mechanical strength and stretchability, as well as poor adhesion strength.In this paper, conductive organohydrogels were prepared by thermal polymerization of acrylamide and N-(3-aminopropyl)methacrylamide in a glycerol-water binary solvent using Na Cl as a conductive salt. Compared to other organohydrogels, our organohydrogels featured higher fracture stress(170 kPa) and greater stretchability(900%). The organohydrogels showed excellent antifreezing properties and high transparency(97%, at 400–800 nm wavelength) and presented outstanding adhesion strength to a variety of substrates. The conductive organohydrogels that were stored at -20℃ for 24 h could still respond to both strain and pressure, showing a high sensitivity(gauge factor=2.73 under 100% strain), fast response time(0.4 s), and signal repeatability during multiple force cycles(~100 cycles). Furthermore, the conductivity of cleaved antifreezing gels could be restored by contacting the broken surfaces together. Finally, we used our organohydrogels to monitor human tremors and bradykinesia in real-time within wired and wireless models, thus presenting a potential application for Parkinson’s disease diagnosis. 展开更多
关键词 organohydrogels TRANSPARENCY antifreezing stretchability CONDUCTIVE sensors
原文传递
Ectopic expression of antifreeze protein gene from Ammopiptanthus nanus confers chilling tolerance in maize 被引量:2
2
作者 Yuanyuan Zhang Yang Cao +5 位作者 Hongying Zheng Wenqi Feng Jingtao Qu Fengling Fu Wanchen Li Haoqiang Yu 《The Crop Journal》 SCIE CSCD 2021年第4期924-933,共10页
Improved chilling tolerance is important for maize production. Previous efforts in transgenics and marker-assisted breeding have not achieved practical results. In this study, the antifreeze protein(AnAFP) from the su... Improved chilling tolerance is important for maize production. Previous efforts in transgenics and marker-assisted breeding have not achieved practical results. In this study, the antifreeze protein(AnAFP) from the super-xerophyte Ammopiptanthus nanus was aligned to KnS-type dehydrins.Phosphorylation in vitro and subcellular localization showed that AnAFP was phosphorylated by maize casein kinase II and translocated from nucleus to cytoplasm under chilling stress. AnAFP also increased lactate dehydrogenase activity. A parent line of commercial maize hybrids was transformed with the AnAFP gene. Based on thermal asymmetric interlaced PCR, one hemizygous and two homozygous integration sites were identified in one T_(1) line. Ectopic expression of AnAFP in transgenic lines was confirmed by quantitative real-time PCR, RNA-seq, and Western blotting. After chilling treatment, the transgenic lines showed significantly improved phenotype, higher kernel production, survival rate and biomass, and lower relative electrolyte leakage and superoxide dismutation than the untransformed line. Thus, ectopic expression of AnAFP gene improved chilling tolerance in the transgenic lines, which could be used to apply for further safety assessment for commercial breeding. 展开更多
关键词 Antifreeze protein Chilling tolerance DEHYDRIN Ectopic expression Homozygosity identification
下载PDF
The Antifreeze Critical Strength of Low-temperature Concrete Effected by Index 被引量:1
3
作者 刘军 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2011年第2期355-360,共6页
The antifreeze critical strength and the pre-curing time of low-temperature concrete were studied by means of guaranteed rate of compressive strength and antifreeze performance for the structural safety requirement of... The antifreeze critical strength and the pre-curing time of low-temperature concrete were studied by means of guaranteed rate of compressive strength and antifreeze performance for the structural safety requirement of concrete engineering,suffering once freeze damage under air environment.It is shown that the antifreeze critical strength is 3.7-4.4MPa,pre-curing time is 18-32 h by guaranteed rate of compressive strength,and the antifreeze critical strength is 3.7-4.4MPa,pre-curing time is 18-32 h by guaranteed rate of antifreeze performance.It can be found that the method of guaranteed rate of compressive strength is sensitive to the defect which generated by freeze damage in the concrete interior.The method is fit to evaluate the antifreeze critical strength of low-temperature concrete. 展开更多
关键词 guaranteed rate of compressive strength guaranteed rate of antifreeze performance antifreeze critical strength once freeze under air environment
下载PDF
Advances in Cryopreservation of Organs 被引量:1
4
作者 刘迪 潘峰 《Journal of Huazhong University of Science and Technology(Medical Sciences)》 SCIE CAS 2016年第2期153-161,共9页
Organ transplantation is an effective approach for the treatment of end-stage organ failures. Currently, the donor organs used for clinical transplantation are all preserved at above-zero temperatures. These preservat... Organ transplantation is an effective approach for the treatment of end-stage organ failures. Currently, the donor organs used for clinical transplantation are all preserved at above-zero temperatures. These preservation methods are well-established and simple but the storage time lasts for only 4–12 h. Some researchers tried to extend the organ storage time by improving protectant and HLA matching to raise the use of stored organs and prolong the long-term survival of organs. These efforts still fall short of the clinical demand for organ transplantation. Moreover, a great many organs were wasted due to limited storage time, HLA mismatch, patients' conditions or distance involved. Therefore, preserving organs for several weeks or even months and establishing Organ Bank are the tough challenges and have become a shared goal of global scholars. This article reviews some issues involved in the cryopreservation of organs, such as use of cryoprotecting agents, freezing and thawing methods in the cryopreservation of hearts, kidneys and other organs. 展开更多
关键词 CRYOPRESERVATION organ preservation organ transplantation CRYOPROTECTANT VITRIFICATION antifreeze proteins
下载PDF
Expression of a Carrot 36 kD Antifreeze Protein Gene Improves ColdStress Tolerance in Transgenic Tobacco 被引量:1
5
作者 Xu Wen-li Liu Mei-qin Shen Xin Lu Cun-fu 《Forestry Studies in China》 CAS 2005年第4期11-15,共5页
Antifreeze proteins (AFPs) enable organisms to survive under cold conditions, and have great potential in improving cold tolerance of cold-sensitive plants, In order to determine whether expression of the carrot 36 ... Antifreeze proteins (AFPs) enable organisms to survive under cold conditions, and have great potential in improving cold tolerance of cold-sensitive plants, In order to determine whether expression of the carrot 36 kD antifreeze protein gene confers improved cold-resistant properties to plant tissues, we tried to obtain transgenic tobacco plants which expressed the antifreeze protein. Cold, salt, and drought induced promoter Prd29A was cloned using PCR from Arabidopsis. Two plant expression vectors based on pBI121 were constructed with CaMV35S:AFP and Prd29A:AFP. Tobacco plantlets were transformed by Agrobacterium-medicated transformation. PCR and Southern blotting demonstrated that the carrot 36 kD afp gene was successfully integrated into the genomes of transformed plantlets. The expression of the afp gene in transgenic plants led to improved tolerance to cold stress. However, the use of the strong constitutive 35S cauliflower mosaic virus (CaMV) promoter to drive expression of afp also resulted in growth retardation under normal growing conditions. In contrast, the expression of afp driven by the stress-inducible Prd29A promoter from Arabidopsis gave rise to minimal effects on plant growth while providing an increased tolerance to cold stress condition (2℃). The results demonstrated the prospect of using Prd29A-AFP transgenic plants in cold-stressed conditions that will in turn benefit agriculture. 展开更多
关键词 antifreeze protein gene stress inducible-promoter tobacco genetic transformation cold tolerance
下载PDF
Observation on the modifying activity of the protein from Elytrzgia repens rhizome for ice crystal 被引量:1
6
作者 YANG Tao GONG Shufang LI Yan CHE Daidi 《Journal of Northeast Agricultural University(English Edition)》 CAS 2007年第3期198-201,共4页
In winter, spring and summer, the rhizome of wild Elytrzgia repens of Heilongjiang Province was selected to extract the soluble which whole protein and the apoplastic protein, and analyzed by SDS-PAGE. The result indi... In winter, spring and summer, the rhizome of wild Elytrzgia repens of Heilongjiang Province was selected to extract the soluble which whole protein and the apoplastic protein, and analyzed by SDS-PAGE. The result indicated that there were two specific polypeptides in two types protein from winter; their relative molecular weight were identified as 52 ku and 26 ku by analyzing software; the apoplastic protein from winter had the ability of modifing the growth of ice crystal which appeared hexagonal in shape observed with the phase-contrast photomicroscope. So the apoplastic protein from winter has the antifreeze characters and the 52 ku protein is more likely the antifreeze protein 展开更多
关键词 Elytrzgia repens apoplastic protein antifreeze proteins ice crystal modifying
下载PDF
Heterologous expression of Lolium perenne antifreeze protein confers chilling tolerance in tomato 被引量:1
7
作者 Srinivasan Balamurugan Jayan Susan Ann +4 位作者 Inchakalody P Varghese Shanmugaraj Bala Murugan Mani ChANDra Harish Sarma Rajeev Kumar Ramalingam Sathishkumar 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2018年第5期1128-1136,共9页
Antifreeze proteins(AFP) are produced by certain plants, animals, fungi and bacteria that enable them to survive upon extremely low temperature. Perennial rye grass, Lolium perenne, was reported to possess AFP which... Antifreeze proteins(AFP) are produced by certain plants, animals, fungi and bacteria that enable them to survive upon extremely low temperature. Perennial rye grass, Lolium perenne, was reported to possess AFP which protects them from cold environments. In the present investigation, we isolated AFP gene from L. perenne and expressed it in tomato plants to elucidate its role upon chilling stress. The T1 transgenic tomato lines were selected and subjected to molecular, biochemical and physiological analyses. Stable integration and transcription of Lp AFP in transgenic tomato plants was confirmed by Southern blot hybridization and RT-PCR, respectively. Physiological analyses under chilling conditions showed that the chilling stress induced physiological damage in wild type(WT) plants, while the transgenic plants remained healthy. Total sugar content increased gradually in both WT and transgenic plants throughout the chilling treatment. Interestingly, transgenic plants exhibited remarkable alterations in terms of relative water content(RWC) and electrolyte leakage index(ELI) than those of WT. RWC increased significantly by 3-fold and the electrolyte leakage was reduced by 2.6-fold in transgenic plants comparing with WT. Overall, this report proved that Lp AFP gene confers chilling tolerance in transgenic tomato plants and it could be a potential candidate to extrapolate the chilling tolerance on other chilling-sensitive food crops. 展开更多
关键词 Lolium perenne antifreeze protein chilling tolerance genetic transformation transgenic tomato
下载PDF
Thermodynamic Properties of Linear Protein Solutions:an Application to Type Ⅰ Antifreeze Protein Solutions
8
作者 LI Li-fen LIANG Xi-xia LI Qian-zhong 《Chemical Research in Chinese Universities》 SCIE CAS CSCD 2012年第6期1070-1073,共4页
A statistical thermodynamic theory of linear protein solutions was proposed with the aid of a lattice model and applied to type Ⅰ antifreeze protein(AFPI) solutions.The numerical results for several AFPI solutions ... A statistical thermodynamic theory of linear protein solutions was proposed with the aid of a lattice model and applied to type Ⅰ antifreeze protein(AFPI) solutions.The numerical results for several AFPI solutions show that the Gibbs function of the solution has a minimum at a certain protein concentration,but the protein chemical potential increases with increasing the concentration.The influences of temperature and protein chain length on the AFPI chemical potential were also discussed.The evaluation for the colligative depression of the freezing point confirms that the antifreeze action should be recognized as non-colligative.The theoretical deduction for the concentration dependence of the thermal hysteresis activity coincides qualitatively with the previous experimental and theoretical results. 展开更多
关键词 Antifreeze protein solution Gibbs function Chemical potential Thermal hysteresis
下载PDF
Expression of a Carrot Antifreeze Protein Gene in Escherichia coli
9
作者 Ma Xinyu Shen Xin Lu Cunfu 《Forestry Studies in China》 CAS 2003年第4期22-25,共4页
The recombinant expression vector pET43.1b-AFP, which contains full encoding region of a carrot 36 kD antifreeze protein (AFP) gene was constructed. The recombinant was transformed into expression host carrying T7 RNA... The recombinant expression vector pET43.1b-AFP, which contains full encoding region of a carrot 36 kD antifreeze protein (AFP) gene was constructed. The recombinant was transformed into expression host carrying T7 RNA polymerase gene (DE3 lysogen) and induced by 1 mmol稬-1 IPTG (isopropyl--D-thiogalactoside) to express 110 kD polypeptide of AFP fusion protein. The analysis of product solubility revealed that pET43.1b-AFP was predominately soluble, and the expressed amount reached the maximum after the IPTG treatment for 3 h. 展开更多
关键词 antifreeze protein(AFP) fusion protein induced expression polymerase chain reaction antifreeze protein gene
下载PDF
Construction of plant expression vector of Pseudopleuronectes americanus antifreeze protein gene
10
作者 LI Shufeng ZHAO Wei YUAN Lili WU Jiang YAN Yunqin 《Journal of Northeast Agricultural University(English Edition)》 CAS 2007年第3期206-211,共6页
The Pseudopleuronectes americanus antifreeze protein gene was synthesized and control sequences were added such as 35S promoter and nos terminator that can facilitate the transcription and Ω sequence and Kozak sequen... The Pseudopleuronectes americanus antifreeze protein gene was synthesized and control sequences were added such as 35S promoter and nos terminator that can facilitate the transcription and Ω sequence and Kozak sequence that can improve the expression in translation level, the high expression cassette of antifreeze protein was constructed. This cassette was connected to pBI121.1 and finally got the high expression vector pBRTSAFP introduced into the maize callus. The expression of gus gene that linked to the antifreeze protein gene was detected, and the results was that the gus gene can express strongly and instantaneously. 展开更多
关键词 vector construction antifreeze protein control sequence
下载PDF
Plant Antifreeze Proteins and Their Expression Regulatory Mechanism
11
作者 LinYuan-zhen LinShan-zhi ZhangZhi-yi ZhangWei LiuWen-feng 《Forestry Studies in China》 CAS 2005年第1期46-52,共7页
Low temperature is one of the major limiting environmental factors which constitutes the growth, development, productivity and distribution of plants. Over the past several years, the proteins and genes associated wi... Low temperature is one of the major limiting environmental factors which constitutes the growth, development, productivity and distribution of plants. Over the past several years, the proteins and genes associated with freezing resistance of plants have been widely studied. The recent progress of domestic and foreign research on plant antifreeze proteins and the identifica- tion and characterization of plant antifreeze protein genes, especially on expression regulatory mechanism of plant antifreeze proteins are reviewed in this paper. Finally, some unsolved problems and the trend of research in physiological functions and gene expression regulatory mechanism of plant antifreeze proteins are discussed. 展开更多
关键词 plant antifreeze proteins thermal hysteresis activity freezing-resistant mechanism expression regulatory mecha- nism
下载PDF
Transcriptomic and proteomic analyses on the supercooling ability and mining of antifreeze proteins of the Chinese white wax scale insect 被引量:6
12
作者 Shu-Hui Yu Pu Yang +5 位作者 Tao Sun Qian Qi Xue-Qing Wang Xiao-Ming Chen Ying Feng Bo-Wen Liu 《Insect Science》 SCIE CAS CSCD 2016年第3期430-437,共8页
The Chinese white wax scale insect, Ericerus pela, can survive at extremely low temperatures, and some overwintering individuals exhibit supercooling at tempera- tures below -30℃. To investigate the deep supercooling... The Chinese white wax scale insect, Ericerus pela, can survive at extremely low temperatures, and some overwintering individuals exhibit supercooling at tempera- tures below -30℃. To investigate the deep supercooling ability ofE. pela, transcriptomic and proteomic analyses were performed to delineate the major gene and protein families responsible for the deep supercooling ability of overwintering females. Gene Ontology (GO) classification and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis indicated that genes involved in the mitogen-activated protein kinase, calcium, and PI3K-Akt signaling pathways and pathways associated with the biosynthesis of soluble sugars, sugar alcohols and free amino acids were dominant. Proteins responsible for low-temperature stress, such as cold acclimation proteins, glycerol biosynthesis-related enzymes and heat shock proteins (HSPs) were identified. However, no antifreeze proteins (AFPs) were identified through sequence similarity search methods. A random forest approach identified 388 putative AFPs in the proteome. The AFP gene ep-afp was expressed in Escherichia coli, and the expressed protein exhibited a thermal hysteresis activity of 0.97℃, suggesting its potential role in the deep supercooling ability ofE. pela. 展开更多
关键词 antifreeze protein Chinese white wax scale insect proteome supercoiling thermal hysteresis activity transcriptome
原文传递
Ultra-antifreeze,ultra-stretchable,transparent,and conductive hydrogel for multi-functional flexible electronics as strain sensor and triboelectric nanogenerator 被引量:2
13
作者 Xinhuan Dai Yong Long +7 位作者 Bing Jiang Wenbin Guo Wei Sha Jiangwen Wang Zifeng Cong Jiwei Chen Bingjun Wang Weiguo Hu 《Nano Research》 SCIE EI CSCD 2022年第6期5461-5468,共8页
Conductive hydrogels have become one of the most promising candidates for flexible electronics due to their excellent mechanical flexibility,durability of deformation,and good electrical conductivity.However,in real a... Conductive hydrogels have become one of the most promising candidates for flexible electronics due to their excellent mechanical flexibility,durability of deformation,and good electrical conductivity.However,in real applications,severe environments occur frequently,such as extremely cold weather.General hydrogels always lack anti-freeze and anti-dehydration abilities.Consequently,the functions of electronic devices based on traditional hydrogels will quickly fail in extreme environments.Therefore,the development of environmentally robust hydrogels that can withstand extremely low temperatures,overcome dehydration,and ensure the stable operation of electronic devices has become increasingly important.Here,we report a kind of graphene oxide(GO)incorporated polyvinyl alcohol-polyacrylamide(PVA-PAAm)double network hydrogel(GPPDhydrogel)which shows excellent anti-freeze ability.The GPPD-hydrogel exhibits not only good flexibility and ultra-high stretchability up to 2,000%,but ensures a high sensitivity when used as the strain sensor at−50°C.More importantly,when serving as the electrode of a sandwich-structural triboelectric nanogenerator(TENG),the GPPD-hydrogel endows the TENG high and stable output performances even under−80°C.Besides,the GPPD-hydrogel is demonstrated long-lasting moisture retention over 100 days.The GPPD-hydrogel provides a reliable and promising candidate for the new generation of wearable electronics. 展开更多
关键词 triboelectric nanogenerators ANTIFREEZE ultra-stretchable hydrogels strain sensors multi-functional flexible electronics
原文传递
Molecular basis for antifreeze activity difference of two insect antifreeze protein isoforms 被引量:1
14
作者 ZHOU YanXia TAN HongWei +3 位作者 YANG ZuoYin JIA ZongChao LIU RuoZhuang CHEN GuangJu 《Science China Chemistry》 SCIE EI CAS 2007年第2期266-271,共6页
The insect spruce budworm(Choristoneura fumiferana) produces antifreeze protein(AFP) to assist in the protection of the over-wintering larval stage and contains multiple isoforms. Structures for two isoforms,known as ... The insect spruce budworm(Choristoneura fumiferana) produces antifreeze protein(AFP) to assist in the protection of the over-wintering larval stage and contains multiple isoforms. Structures for two isoforms,known as CfAFP-501 and CfAFP-337,show that both possess similar left-handed β-helical structure,although thermal hysteresis activity of the longer isoform CfAFP-501 is three times that of CfAFP-337. The markedly enhanced activity of CfAFP-501 is not proportional to,and cannot be simply accounted for,by the increased ice-binding site resulting from the two extra coils in CfAFP-501. In or-der to investigate the molecular basis for the activity difference and gain better understanding of AFPs in general,we have employed several different computational methods to systematically study the structural properties and ice interactions of the AFPs and their deletion models. In the context of intact AFPs,a majority of the coils in CfAFP-501 has better ice interaction and causes stronger ice lattice disruption than CfAFP-337,strongly suggesting a cooperative or synergistic effect among β-helical coils. The synergistic effect would play a critical role and make significant contributions to the anti-freeze activity β-helical antifreeze proteins. This is the first time that synergistic effect and its implica-tion for antifreeze activity are reported for β-helical antifreeze proteins. 展开更多
关键词 INSECT ANTIFREEZE protein SYNERGISTIC effect ANTIFREEZE activity β-helix quantum chemistry MOLECULAR MECHANICS MOLECULAR dynamics
原文传递
Expression of multi-domain type III antifreeze proteins from the Antarctic eelpout (Lycodichths dearborni) in transgenic tobacco plants improves cold resistance 被引量:2
15
作者 Qiao Huang Ruiqin Hu +2 位作者 Hui zhu Changlian Peng Liangbiao Chen 《Aquaculture and Fisheries》 2021年第2期186-191,共6页
Type III antifreeze proteins(AFPIIIs)are a group of small globular proteins found in some polar fishes to protect them against freezing damage.Transgenic expression of AFPs has been shown to confer cold tolerance to c... Type III antifreeze proteins(AFPIIIs)are a group of small globular proteins found in some polar fishes to protect them against freezing damage.Transgenic expression of AFPs has been shown to confer cold tolerance to commercially important plants and animals.We have previously isolated multiple AFPIII genes in the Antarctic eelpout(Lycodichthys dearborni)that encode larger AFPIII isoforms with up to 12 of the conventional domains.Here we have introduced the fish AFPIII genes that encode for the monomer(ld1),dimer(ld2),trimer(ld3)and tetramer(ld4)AFPIII isoforms in tobacco plants.Pot-grown 4-week-old transgenic tobacco plants were exposed to cold stress at 4◦C for 30 days and the results show that ld1,ld2,ld3 and ld4 transgenic plants present relatively lower electrolyte leakage and lower content of malondialdehyde(MDA),but accumulated higher content of proline when compared to control plants.This indicates considerable improved membrane integrity under low temperature stress and improvement of the plant cold resistance.The plants transformed with the AFPIII tetramer-and trimer-domains demonstrated a higher cold-tolerant levels when compared with plants transformed with the dimer-and monomer AFPIII domains.Our study further supports that fish AFPIIIs,especially the multidomain proteins,protect cells from non-freezing hypothermic stresses,apart from there well-known function as ice inhibitors molecules at freezing temperature. 展开更多
关键词 Type III antifreeze proteins Multidomain proteins Cold tolerance Electrolyte leakage MDA PROLINE
原文传递
Molecular and quantum mechanical studies on the monomer recognition of a highly-regular b-helical antifreeze protein
16
作者 YANG Zuoyin, JIA Zongchao, LIU Ruozhuang & CHEN GuangjuDepartment of Chemistry, Beijing Normal University, Beijing 100875, China Faculty of Science, Beijing University of Chemical Technology, Beijing 100029, China Department of Biochemistry, Queen’s University, Kingston, Ontario K7L 3N6, Canada 《Science China Chemistry》 SCIE EI CAS 2004年第1期34-40,共7页
The possible interaction models for an antifreeze protein from Tenebrio molitar (TmAFP) have been systematically studied using the methods of molecular mechanics, molecular dynamics and quantum chemistry. It is hoped ... The possible interaction models for an antifreeze protein from Tenebrio molitar (TmAFP) have been systematically studied using the methods of molecular mechanics, molecular dynamics and quantum chemistry. It is hoped that these approaches would provide insights into the nature of interaction between protein monomers through sampling a number of interaction possibilities and evaluating their interaction energies between two monomers in the course of recognition. The results derived from the molecular mechanics indicate that monomer's β-sheets would be involved in interaction area and the side chains on two β-faces can match each other at the two-dimensional level. The results from molecular mechanics and ONIOM methods show that the strongest interaction energy could be gained through the formation of H-bonds when the two β-sheets are involved in the interaction model. Furthermore, the calculation of DFT and analysis of van der Waals bond charge density confirm further that recognition between the two TCTs mainly depends on inter-molecular hydroxyls. Therefore, our results demonstrate that during the course of interaction the most favorable association of TmAFPs is via their β-sheets. 展开更多
关键词 ANTIFREEZE protein recognition dynamics simulation MOLECULAR mechanics quantum chemistry.
原文传递
Cloning,sequencing and prokaryotic expression of cDNAs for antifreeze protein family from Beetle Tenebrio molitor
17
作者 Zhongyuan LIU Yun WANG +3 位作者 Guodong LÜ Xianlei WANG Fuchun ZHANG Ji MA 《Frontiers in Biology》 CSCD 2008年第3期279-286,共8页
Partial cDNA sequences coding for antifreeze proteins in Tenebrio molitor were obtained by RT-PCR.Sequence analysis revealed nine putative cDNAs with a high degree of homology to Tenebrio molitor antifreeze protein ge... Partial cDNA sequences coding for antifreeze proteins in Tenebrio molitor were obtained by RT-PCR.Sequence analysis revealed nine putative cDNAs with a high degree of homology to Tenebrio molitor antifreeze protein genes published in GenBank.The recombinant pGEX-4T-1-tmafp-XJ430 was introduced into E.coli BL21 to induce a GST fusion protein by IPTG.SDS-PAGE analysis for the fusion protein shows a band of 38 kDa.pCDNA3-tmafp-XJ430 was injected into mice to generate antiserum which was later detected by indirect ELISA.The titer of the antibody was 1:2000.Western blotting analysis shows that the antiserum was specifically against the antifreeze protein.Our results laid the foundation for further studies on the properties and functions of insect antifreeze proteins. 展开更多
关键词 Tenebrio molitor antifreeze proteins cDNA fragment sequence analysis prokaryotic expression
原文传递
Computational simulations on the fish-type-Ⅱ antifreeze protein-ice-solvent system
18
作者 LIU Kai WANG Yan +2 位作者 TAN Hongwei CHEN Guangju TONG Zhenhe 《Frontiers in Biology》 CSCD 2007年第2期180-183,共4页
Based on the computational simulation with the vacuum environment for the fish-type-II antifreeze protein-ice-solvent(water)system,the multi-complex system of the antifreeze protein-ice-water has been constructed and ... Based on the computational simulation with the vacuum environment for the fish-type-II antifreeze protein-ice-solvent(water)system,the multi-complex system of the antifreeze protein-ice-water has been constructed and calculated.We have studied the interaction of such proteinice system with water solvent through the dynamics simula-tion with 350 ps.By employing the Molecular Dynamics simulation and semi-empirical method calculation,we have further investigated the interface properties of the antifreeze protein and ice crystal combined system.Consequently,a water solvent affects significantly the properties of this combined system. 展开更多
关键词 fish-type-Ⅱantifreeze protein-ice-water molecular dynamics simulation SOLVENT
原文传递
Molecular simulation-based research on antifreeze peptides:advances and perspectives
19
作者 Wenting Jiang Fujia Yang +5 位作者 Xu Chen Xixi Cai Jinhong Wu Ming Du Jianlian Huang Shaoyun Wang 《Journal of Future Foods》 2022年第3期203-212,共10页
Antifreeze protein(AFP)can inhibit the growth of ice crystals to protect organisms from freezing damage,and demonstrates broad application prospects in food industry.Antifreeze peptides(AFPP)are specifi c peptides wit... Antifreeze protein(AFP)can inhibit the growth of ice crystals to protect organisms from freezing damage,and demonstrates broad application prospects in food industry.Antifreeze peptides(AFPP)are specifi c peptides with functional domains showing antifreeze activity in AFP.Bioinformatics-based molecular simulation technology can more accurately explain the properties and mechanisms of biological macromolecules.Therefore,the binding stability of antifreeze peptides and antifreeze proteins(AFP(P))to ice and the molecular-scale growth kinetics of ice were analyzed by molecular simulation,which can make up for the limitations of experimental technology.This review concludes the molecular simulation-based research in the inhibition’s study of AFP(P)on ice growth,including sequence prediction,structure construction,molecular docking and molecular dynamics(MD)studies of AFP(P)on ice applications in growth inhibition.Finally,the review prospects the future direction of designing new antifreeze biomimetic materials through molecular simulation and machine learning.The information presented in this paper will help enrich our understanding of AFPP. 展开更多
关键词 Antifreeze peptides Structure construction Sequence prediction Molecular docking Molecular dynamic
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部