Chronic inflammation is known to increase the risk of gastrointestinal cancers(GICs),the common solid tumors worldwide.Precancerous lesions,such as chronic atrophic inflammation and ulcers,are related to inflammatory ...Chronic inflammation is known to increase the risk of gastrointestinal cancers(GICs),the common solid tumors worldwide.Precancerous lesions,such as chronic atrophic inflammation and ulcers,are related to inflammatory responses in vivo and likely to occur in hyperplasia and tumorigenesis.Unfortunately,due to the lack of effective therapeutic targets,the prognosis of patients with GICs is still unsatisfactory.Interestingly,it is found that six transmembrane epithelial antigens of the prostate(STEAPs),a group of metal reductases,are significantly associated with the progression of malignancies,playing a crucial role in systemic metabolic homeostasis and inflammatory responses.The structure and functions of STEAPs suggest that they are closely related to intracellular oxidative stress,responding to inflammatory reactions.Under the imbalance status of abnormal oxidative stress,STEAP members are involved in cell transformation and the development of GICs by inhibiting or activating inflammatory process.This review focuses on STEAPs in GICs along with exploring their potential molecular regulatory mechanisms,with an aim to provide a theoretical basis for diagnosis and treatment strategies for patients suffering from these types of cancers.展开更多
One-dimensional semiconductor materials possess excellent photoelectric properties and potential for the construction of integrated nanodevices. Among them, Sn-doped CdS has different micro-nano structures, including ...One-dimensional semiconductor materials possess excellent photoelectric properties and potential for the construction of integrated nanodevices. Among them, Sn-doped CdS has different micro-nano structures, including nanoribbons,nanowires, comb-like structures, and superlattices, with rich optical microcavity modes, excellent optical properties, and a wide range of application fields. This article reviews the research progress of various micrometer structures of Sn-doped CdS, systematically elaborates the effects of different growth conditions on the preparation of Sn-doped CdS micro-nano structures, as well as the spectral characteristics of these structures and their potential applications in certain fields. With the continuous progress of nanotechnology, it is expected that Sn-doped CdS micro-nano structures will achieve more breakthroughs in the field of optoelectronics and form cross-integration with other fields, jointly promoting scientific, technological, and social development.展开更多
Gastrointestinal cancer(GIC)is a common and widespread form of tumor,with colonoscopy and upper gastrointestinal endoscopy available to detect relevant precancerous polyps and lesions.However,many patients are already...Gastrointestinal cancer(GIC)is a common and widespread form of tumor,with colonoscopy and upper gastrointestinal endoscopy available to detect relevant precancerous polyps and lesions.However,many patients are already in the late stages when first diagnosed with such cancer,resulting in a poor prognosis.Thus,it is necessary to explore new methods and research directions in order to improve the treatment of GIC.Given the specific nature of the gastrointestinal tract,research should focus on the mechanisms of various inflammations and the interactions between food entering and exiting from the gastrointestinal tract and cancer cells.Interestingly,six transmembrane epithelial antigens of the prostates(STEAPs)have been found to be significantly linked to the progression of malignant tumors,associated with intracellular oxidative stress and playing a major role in inflammation with their structure and function.This paper explores the mechanism of STEAPs in the inflammatory response of GIC,providing a theoretical basis for the prevention and early intervention of GIC.The basic properties of the STEAP family as metal reductase are also explained.When it comes to intervention for GIC prevention,STEAPs can affect the activity of Fe^(3+),Cu^(2+) reductase and regulate metal ion uptake in vivo,participating in inflammation-related iron and copper homeostasis.Thus,the mechanism of STEAPs on inflammation is of important value in the prevention of GIC.展开更多
Exploring high efficiency S-scheme heterojunction photocatalysts with strong redox ability for removing volatile organic compounds from the air is of great interest and importance.However,how to predict and regulate t...Exploring high efficiency S-scheme heterojunction photocatalysts with strong redox ability for removing volatile organic compounds from the air is of great interest and importance.However,how to predict and regulate the transport of photogenerated carriers in heterojunctions is a great challenge.Here,density functional theory calculations were first used to successfully predict the formation of a CdS quantum dots/InVO_(4)atomic-layer(110)/(110)facet S-scheme heterojunction.Subsequently,a CdS quantum dots/InVO_(4)atomic-layer was synthesized by in-situ loading of CdS quantum dots with(110)facets onto the(110)facets of InVO_(4)atomic-layer.As a result of the deliberately constructed built-in electric field between the adjoining facets,we obtain a remarkably enhanced photocatalytic degradation rate for ethylene.This rate is 13.8 times that of pure CdS and 13.2 times that of pure InVO_(4).In-situ irradiated X-ray photoelectron spectroscopy,photoluminescence and time-resolved photoluminescence measurements were carried out.These experiments validate that the built-in electric field enhanced the dissociation of photoexcited excitons and the separation of free charge carriers,and results in the formation of S-scheme charge transfer pathways.The reaction mechanism of the photocatalytic C_(2)H_(4)oxidation is investigated by in-situ electron paramagnetic resonance.This work provides a mechanistic insight into the construction and optimization of semiconductor heterojunction photocatalysts for application to environmental remediation.展开更多
In this study,Ni_(2)P/CdS composites were constructed by depositing non-precious metal co-catalyst Ni_(2)P on a one-dimensional network of CdS using a simple in-situ photodeposition method.The prepared photocatalysts ...In this study,Ni_(2)P/CdS composites were constructed by depositing non-precious metal co-catalyst Ni_(2)P on a one-dimensional network of CdS using a simple in-situ photodeposition method.The prepared photocatalysts promoted the decomposition of ethanol into high-value-added products while generating hydrogen.The composite photoanodes loaded with the Ni_(2)P co-catalysts showed significantly higher ethanol conversion and hydrogen production in the visible light region,which was almost three times higher than that of pure CdS.The main products of photocatalytic ethanol production are acetaldehyde(AA)and 2,3-butanediol(2,3-BDA).Compared with CdS,the selectivity of the composite photocatalysts for converting ethanol to acetaldehyde was significantly improved(62% to 78%).Characterization of the prepared photocatalysts confirmed that the loading of Ni_(2)P co-catalysts on CdS not only broadened the optical region of the catalysts for trapping light but also effectively promoted the separation and transfer of charge carriers,which significantly improved the photocatalytic efficiency of ethanol conversion and hydrogen production in the catalysts.It has been proven through Electron Paramagnetic Resonance testing that loading a Ni_(2)P co-catalyst on CdS is beneficial for the adsorption of hydroxyethyl radicals(*CH(OH)CH_(3)),thereby further improving the selectivity of acetaldehyde.This study plays an important role in the rational design of composite catalyst structures and the introduction of co-catalysts to improve catalyst performance,promote green chemistry,advocate a low-carbon society,and promote sustainable development.展开更多
Objective:To evaluate the immunodiagnostic potential of crude Fasciola gigantica-worm(FWA)and egg antigen(FEA)in detecting anti-Schistosoma(S.)haematobium antibodies in sera and urine samples.Methods:This is a cross-s...Objective:To evaluate the immunodiagnostic potential of crude Fasciola gigantica-worm(FWA)and egg antigen(FEA)in detecting anti-Schistosoma(S.)haematobium antibodies in sera and urine samples.Methods:This is a cross-sectional diagnostic study.Employing an indirect ELISA,antibodies against these antigens were assessed in samples from infected and non-infected individuals in both schistosomiasis endemic(NE)and non-endemic(NNE)areas,using microscopy as the diagnostic standard.Results:FWA-sera exhibited excellent diagnostic accuracy with an area under the curve(AUC)of 0.957,a sensitivity of 93.75%,and a specificity of 85.42%for discriminating between infected and non-infected individuals in non-endemic areas.FWA-urine also demonstrated robust performance,achieving AUC>0.95,sensitivity>97.0%,and specificity>85.0%in both NE and NNE categories.Notably,S.haematobium-specific antibody levels against FWA were significantly elevated in infected individuals in both endemic and non-endemic areas.FEA-sera exhibited outstanding diagnostic performance with sensitivity exceeding 90%and an AUC of 0.968 in non-endemic samples but not in FEA-urine.Conclusions:FWA-based ELISAs,applicable to both sera and urine,emerge as promising tools for S.haematobium diagnosis in resource-limited settings,offering advantages of high sensitivity and specificity with shared antigens with Fasciola.The superior diagnostic metrics of urine samples suggest their potential as a non-invasive biological sample for diagnostic purposes.展开更多
A simple two-step hydrothermal method synthesized four different CdS/Fe_(3)O_(4)photocatalysts with varying ratios of mass of CdS to Fe_(3)O_(4).The composition and morphology of the prepared samples were investigated...A simple two-step hydrothermal method synthesized four different CdS/Fe_(3)O_(4)photocatalysts with varying ratios of mass of CdS to Fe_(3)O_(4).The composition and morphology of the prepared samples were investigated using X-ray diffraction(XRD),Raman spectrum,X-ray photoelectron spectroscopy(XPS),scanning electron microscopy(SEM),and transmission electron microscopy(TEM).Solid UV reflectance spectra testing found that CdS/Fe_(3)O_(4)nanocomposites had good light absorption throughout the spectral range,promoting their photocatalytic properties.Under visible light irradiation,CdS/Fe_(3)O_(4)(2∶5)with a mass ratio of 2∶5 exhibited excellent photocatalytic perfor-mance,with a degradation rate of 98.8%for rhodamine B.Furthermore,after five cycles of photocatalytic degrada-tion reaction,the rhodamine B degradation rate remained at 96.2%,indicating that the photocatalysts have good pho-tocatalytic stability.展开更多
Background: Diagnosis of autoimmune diseases (AID) is challenging, due to overlapping features with other non-immune disorders. Anti-nuclear antibodies (ANA) are sensitive screening tests but anti-deoxyribonucleic aci...Background: Diagnosis of autoimmune diseases (AID) is challenging, due to overlapping features with other non-immune disorders. Anti-nuclear antibodies (ANA) are sensitive screening tests but anti-deoxyribonucleic acid-antibody (anti-DNA), and anti-extractable nuclear antigens (anti-ENA) are specific for AIDs. We aimed to look at ANA patterns in our patients and correlated them with anti-ENA for proper interpretation and better patient management cost-effectively. Methods: A retrospective study was conducted over 1 year from January to December 2022 who were tested for ANA at biology medical laboratory of Pasteur Institute of Dakar. Anti-ENA and anti-DNA results were also analyzed for ANA-positive patients. Statistical analysis was performed using STATA 14.0, p Results: 216 patients were analyzed. Women predominated at 79.2% and mean age was 48 years [CI 95%, 46 - 50], with extremes of 10 and 89. Most represented age group was [41 - 60] with 38%. ANA was positive in 27 (12.5%) of patients, 59.2% of whom were strongly positive (titer of 1/1000, 1/3200 or 1/6400). The most common pattern was nuclear speckled, which was found in 77.8% of samples. Anti-ENA and anti-DNA positivity in ANA-positive patients was found respectively in 63% (17/27) and 1.4% (3/27) of the samples analyzed. Most commonly identified anti-ENA was anti-Sm 29.6%, anti-SSA 29.6%, anti-Ro-52 25.9%, anti-RNP 18.5% and anti-SSB 14.8% which was associated with speckled pattern. Association results indicated a significant relationship between both tests and between ANA titer in the anti-ENA- and ANA-positive patients (p 0.001). Conclusions: ANA, Anti-ENA and anti-DNA antibodies are essential for AIDS diagnosis. However, the testing repertoire should follow an algorithm comprising of clinical features, followed by ANA results with nuclear, mitotic, and cytoplasmic patterns, anti-ENA, and anti-DNA for a more meaningful, and cost-effective diagnostic approach.展开更多
Cadmium sulfide(CdS)is an n-type semiconductor with excellent electrical conductivity that is widely used as an electron transport material(ETM)in solar cells.At present,numerous methods for preparing CdS thin films h...Cadmium sulfide(CdS)is an n-type semiconductor with excellent electrical conductivity that is widely used as an electron transport material(ETM)in solar cells.At present,numerous methods for preparing CdS thin films have emerged,among which magnetron sputtering(MS)is one of the most commonly used vacuum techniques.For this type of technique,the substrate temperature is one of the key deposition parameters that affects the interfacial properties between the target film and substrate,determining the specific growth habits of the films.Herein,the effect of substrate temperature on the microstructure and electrical properties of magnetron-sputtered CdS(MS-CdS)films was studied and applied for the first time in hydrothermally deposited antimony selenosulfide(Sb_(2)(S,Se)_(3))solar cells.Adjusting the substrate temperature not only results in the design of the flat and dense film with enhanced crystallinity but also leads to the formation of an energy level arrangement with a Sb_(2)(S,Se)_(3)layer that is more favorable for electron transfer.In addition,we developed an oxygen plasma treatment for CdS,reducing the parasitic absorption of the device and resulting in an increase in the short-circuit current density of the solar cell.This study demonstrates the feasibility of MS-CdS in the fabrication of hydrothermal Sb_(2)(S,Se)_(3)solar cells and provides interface optimization strategies to improve device performance.展开更多
CdS nanospheres were grown on indium tin oxide(ITO)substrate using a hydrothermal method.The crystal structure,morphology and electronic structure of the samples synthesized were characterized in detail.The results co...CdS nanospheres were grown on indium tin oxide(ITO)substrate using a hydrothermal method.The crystal structure,morphology and electronic structure of the samples synthesized were characterized in detail.The results confirm that the crystallinity,size,crystal defects of the CdS nanospheres and the film thickness of CdS photoelectrodes can be tuned by varying the precursor Cd2+concentration.Combined with charge transfer dynamics analysis,it can be found that proper particle size and film thickness,as well as fewer defects,will result in better charge separation efficiency of the prepared CdS/ITO photoelectrodes,thereby exhibiting better photoelectrochemical performance for water splitting.The optimized CdS/ITO photoelectrode synthesized with a Cd2+concentration of 0.14 mol⋅L1 gave a photocurrent density of 5.10 mA⋅cm^(-2)at potential of 1.23 V versus the reversible hydrogen electrode(RHE),under a simulated solar illumination of 100 mW⋅cm^(-2).展开更多
Piezo-photocatalysis could coalesce the advantages of mechanical vibration and solar energy perfectly to achieve high-efficiency catalytic activity.Herein,the quintessential piezoelectric material CdS nanowires with d...Piezo-photocatalysis could coalesce the advantages of mechanical vibration and solar energy perfectly to achieve high-efficiency catalytic activity.Herein,the quintessential piezoelectric material CdS nanowires with different aspect ratios are precisely constructed and applied for piezo-photocatalytic reduction of U(Ⅵ)for the first time.The ultrasonic(60 kHz,100 W)induces piezoelectric potential to generate a 0.57 eV A^(-1)electric field,which is added to the direction of CdS(010)as a driving force to efficiently separate photogenerated charges.The alliance between piezoelectric effect and photocatalytic activity endows CdS NW-3 with the fastest piezo-photocatalytic rate under ultrasonic vibration and 5 W LED irradiation,and the relevant rate constant(0.042 min^(-1))is about 12 and 53.8 times than that of LED and ultrasonication.More importantly,93.74%of U(Ⅵ)could be removed from natural uranium mine wastewater.Therefore,this piezo-photocatalysis system that reduces U(Ⅵ)to easily separable(UO_(2))O_(2)·2H_(2)O(s)provides valuable input for disposal applications of radioactive wastewater and broadens the horizons of nuclear energy utilization toward the advancement of carbon neutrality.展开更多
以前,我从未想过听CD会过时,但在无载体媒体时代,情况已经如此。幸运的是,一群执着的音响发烧友还在坚持。ORERA Consonance Re horee a OPERA Consonance Reference CDS8这款CD、数码流播放器,不仅可以播放CD,而且它是以非常高的水准...以前,我从未想过听CD会过时,但在无载体媒体时代,情况已经如此。幸运的是,一群执着的音响发烧友还在坚持。ORERA Consonance Re horee a OPERA Consonance Reference CDS8这款CD、数码流播放器,不仅可以播放CD,而且它是以非常高的水准来播放CD,名副其实的好产品,可以与Advance Acoustics、Creek、AVM等这些品牌的产品齐名。展开更多
To achieve efficient photocatalytic H_(2) generation from water using earth-abundant and cost-effective materials,a simple synthesis method for carbon-doped CdS particles wrapped with graphene(C-doped CdS@G)is reporte...To achieve efficient photocatalytic H_(2) generation from water using earth-abundant and cost-effective materials,a simple synthesis method for carbon-doped CdS particles wrapped with graphene(C-doped CdS@G)is reported.The doping effect and the application of graphene as cocatalyst for CdS is studied for photocatalytic H_(2) generation.The most active sample consists of CdS and graphene(CdS-0.15G)exhibits promising photocatalytic activity,producing 3.12 mmol g^-(1) h^-(1) of H_(2) under simulated solar light which is^4.6 times superior than pure CdS nanoparticles giving an apparent quantum efficiency(AQY)of 11.7%.The enhanced photocatalytic activity for H_(2) generation is associated to the narrowing of the bandgap,enhanced light absorption,fast interfacial charge transfer,and higher carrier density(N_(D))in C-doped CdS@G samples.This is achieved by C doping in CdS nanoparticles and the formation of a graphene shell over the C-doped CdS nanoparticles.After stability test,the spent catalysts sample was also characterized to investigate the nanostructure.展开更多
Cancer testis antigens(CTAs)are attractive targets for tumor imm unotherapy because of their tumor specific expression,Since more than half of confirmed CTAs are located on the X-chromosome,we asked whether there is a...Cancer testis antigens(CTAs)are attractive targets for tumor imm unotherapy because of their tumor specific expression,Since more than half of confirmed CTAs are located on the X-chromosome,we asked whether there is a link between CTA expression and X-chromosomes.Recent reports have shown that reactivation of the inactive X-chromosome,known as X-chromosome reactivation(XCR),a unique phenomenon that exists in many high-risk tumors in women,can transform the expression of many X-linked genes from monoallelic to biallelic.展开更多
Manganese(Mn)doped cadmium sulphide(Cd S)nanoparticles were synthesized using a chemical method.It was possible to decrease Cd S:Mn particle size by increasing Mn concentration.Investigation techniques such as ultravi...Manganese(Mn)doped cadmium sulphide(Cd S)nanoparticles were synthesized using a chemical method.It was possible to decrease Cd S:Mn particle size by increasing Mn concentration.Investigation techniques such as ultraviolet-visible(UV-Vis)absorption spectroscopy and photoluminescence(PL)spectroscopy were used to determine optical properties of Cd S:Mn nanoparticles.Size quantization effect was observed in UV-Vis absorption spectra.Quantum efficiency for luminescence or the internal magnetic field strength was increased by doping Cd S nanoparticles with Mn element.Orange emission was observed at wavelength~630 nm due to ^(4)T_1→^(6)A_1 transition.Isolated Mn~(2+)ions arranged in tetrahedral coordination are mainly responsible for luminescence.Luminescence quenching and the effect of Mn doping on hyperfine interactions in the case of Cd S nanoparticles were also discussed.The corresponding weight percentage of Mn element actually incorporated in doping process was determined by atomic absorption spectroscopy(AAS).Crystallinity was checked and the average size of nanoparticles was estimated using the X-ray diffraction(XRD)technique.Cd S:Mn nanoparticles show ferromagnetism at room temperature.Transmission electron microscopy(TEM)images show spherical clusters of various sizes and selected area electron diffraction(SAED)patterns show the polycrystalline nature of the clusters.The electronic states of diluted magnetic semiconductors(DMS)ofⅡ-Ⅵgroup Cd S nanoparticles give them great potential for applications due to quantum confinement.In this study,experimental results and discussions on these aspects have been given.展开更多
Therapeutic options for the treatment of colorectal cancer(CRC) are diverse but still not always satisfying. Recent success of immune checkpoint inhibition treatment for the subgroup of CRC patients suffering from hyp...Therapeutic options for the treatment of colorectal cancer(CRC) are diverse but still not always satisfying. Recent success of immune checkpoint inhibition treatment for the subgroup of CRC patients suffering from hypermutated tumors suggests a permanent role of immune therapy in the clinical management of CRC. Substantial improvement in treatment outcome could be achieved by development of efficient patient-individual CRC vaccination strategies. This mini-review summarizes the current knowledge on the two general classes of targets: tumor-associated antigens(TAAs) and tumorspecific antigens. TAAs like carcinoembryonic antigen and melanoma associated antigen are present in and shared by a subgroup of patients and a variety of clinical studies examined the efficacy of different TAA-derived peptide vaccines. Combinations of several TAAs as the next step and the development of personalized TAA-based peptide vaccines are discussed. Improvements of peptidebased vaccines achievable by adjuvants and immunestimulatory chemotherapeutics are highlighted. Finally, we sum up clinical studies using tumor-specific antigens-in CRC almost exclusively neoantigens-which revealed promising results; particularly no severe adverse events were reported so far. Critical progress for clinical outcomes can be expected by individualizing neoantigen-based peptide vaccines and combining them with immunestimulatory chemotherapeutics and immune checkpoint inhibitors. In light of these data and latest developments, truly personalized neoantigen-based peptide vaccines can be expected to fulfill modern precision medicine's requirements and will manifest as treatment pillar for routine clinical management of CRC.展开更多
Deposition and structural characteristics of cadmium sulfide (CdS) thin films by chemical bath deposition (CBD) technique from a bath containing thiourea,cadmium acetate,ammonium acetate and ammonia in an aqueous solu...Deposition and structural characteristics of cadmium sulfide (CdS) thin films by chemical bath deposition (CBD) technique from a bath containing thiourea,cadmium acetate,ammonium acetate and ammonia in an aqueous solution are reported.Researches are made on the influence of the fundamental parameters including pH,temperature,and concentrations of the solution involved in the chemical bath deposition of CdS and titration or dumping of the thiourea solution on the structure characteristic of CdS thin films.The pH of the solution plays a vital role on the characteristic of the CdS thin films.The XRD patterns show that the change in the pH of the solution results in the change in crystal phase from predominant hexagonal phase to predominant cubic phase.The CdS thin films with the two different crystal phases have different influences on CIGS thin film solar cells.The crystal mismatch and the interface state density of the c-CdS(cubic phase CdS) and CIGS are about 1 419% and 8 507×10 12cm -2 respectively,and those of the h-CdS(hexagonal phase CdS) and CIGS are about 32 297% and 2 792×10 12cm -2 respectively.It is necessary for high efficiency CIGS thin film solar cells to deposit the cubic phase CdS thin films.展开更多
AIM To explore the etiology and pathogenesis of human primary intrahepatic cholangiocarcinoma, the expression of HBV genes and HBV-antigens was detected in the cancerous tissue and its surrounding hepatic tissues.METH...AIM To explore the etiology and pathogenesis of human primary intrahepatic cholangiocarcinoma, the expression of HBV genes and HBV-antigens was detected in the cancerous tissue and its surrounding hepatic tissues.METHODS HBV-antigens were detected by immunohistochemical technique and HBV genes were examined with in situ hybridization.RESULTS In 20 cases of cholangiocarcinoma, the positive detection rate of HBxAg, pre-S1, pre-S2, HBsAg and HBcAg was 75%, 40%, 40%, 10% and 0%, respectively, and in the surrounding hepatic tissues of 19 cases the positive rates were 84.2%, 47.9%, 47.9%, 31.6% and 31.6%. Among 40 cases of cholangiocarcinoma, the positive rate of HBV-DNA, x gene, pre-s gene, s gene and s gene fell on 77.5%, 70.0%, 47.5%, 40% and 42.5%, respectively, and of the surrounding hepatic tissues in 33 cases, 87.9%, 84.8%, 63.6%, 69.7% and 66.7%.CONCLUSION The development of human primary intrahepatic cholangiocarcinoma bears a close relationship with chronic persistent HBV infection. Particularly, the x gene of HBV and its protein (HBxAg) might play an important role in pathogenesis of hepatic carcinoma.A large number of studies indicate a close relationship between human primary hepatocellular carcinoma and hepatitis B virus (HBV) infection, which is considered generally as an important factor in the development of hepatic carcinoma[1,2]. In human primary hepatic carcinoma, hepatocellular carcinoma is more frequently encountered, while intrahepatic cholangiocarcinoma (ChC), including hepatocholangiocarcinoma (HChC), is relatively less, being 8%-10%[3]. For a long time, the etiology and pathogenesis of intrahepatic cholangiocarcinoma have been unclear. A few reports considered it to be related to infestation with clonorchiasis sinensis[4,5], but never involved with HBV infection. We used immunohistochemical technique and in situ hybridization methods to detect HBV genes and their -related antigens in the tissues of intrahepatic cholangiocarcinoma and its surrounding hepatic tissues for the purpose of exploring the etiology and pathogenesis of intrahepatic cholangiocarcinoma.展开更多
基金the National Natural Science Foundation of China,No.82273457the Natural Science Foundation of Guangdong Province,No.2021A1515012180,2023A1515012762 and No.2019A1515010962+1 种基金Special Grant for Key Area Programs of Guangdong Department of Education,No.2021ZDZX2040Science and Technology Special Project of Guangdong Province,No.210715216902829.
文摘Chronic inflammation is known to increase the risk of gastrointestinal cancers(GICs),the common solid tumors worldwide.Precancerous lesions,such as chronic atrophic inflammation and ulcers,are related to inflammatory responses in vivo and likely to occur in hyperplasia and tumorigenesis.Unfortunately,due to the lack of effective therapeutic targets,the prognosis of patients with GICs is still unsatisfactory.Interestingly,it is found that six transmembrane epithelial antigens of the prostate(STEAPs),a group of metal reductases,are significantly associated with the progression of malignancies,playing a crucial role in systemic metabolic homeostasis and inflammatory responses.The structure and functions of STEAPs suggest that they are closely related to intracellular oxidative stress,responding to inflammatory reactions.Under the imbalance status of abnormal oxidative stress,STEAP members are involved in cell transformation and the development of GICs by inhibiting or activating inflammatory process.This review focuses on STEAPs in GICs along with exploring their potential molecular regulatory mechanisms,with an aim to provide a theoretical basis for diagnosis and treatment strategies for patients suffering from these types of cancers.
基金supported by National Natural Science Foundation of China (52275551)Shanxi Scholarship Council of China (2021-117)。
文摘One-dimensional semiconductor materials possess excellent photoelectric properties and potential for the construction of integrated nanodevices. Among them, Sn-doped CdS has different micro-nano structures, including nanoribbons,nanowires, comb-like structures, and superlattices, with rich optical microcavity modes, excellent optical properties, and a wide range of application fields. This article reviews the research progress of various micrometer structures of Sn-doped CdS, systematically elaborates the effects of different growth conditions on the preparation of Sn-doped CdS micro-nano structures, as well as the spectral characteristics of these structures and their potential applications in certain fields. With the continuous progress of nanotechnology, it is expected that Sn-doped CdS micro-nano structures will achieve more breakthroughs in the field of optoelectronics and form cross-integration with other fields, jointly promoting scientific, technological, and social development.
文摘Gastrointestinal cancer(GIC)is a common and widespread form of tumor,with colonoscopy and upper gastrointestinal endoscopy available to detect relevant precancerous polyps and lesions.However,many patients are already in the late stages when first diagnosed with such cancer,resulting in a poor prognosis.Thus,it is necessary to explore new methods and research directions in order to improve the treatment of GIC.Given the specific nature of the gastrointestinal tract,research should focus on the mechanisms of various inflammations and the interactions between food entering and exiting from the gastrointestinal tract and cancer cells.Interestingly,six transmembrane epithelial antigens of the prostates(STEAPs)have been found to be significantly linked to the progression of malignant tumors,associated with intracellular oxidative stress and playing a major role in inflammation with their structure and function.This paper explores the mechanism of STEAPs in the inflammatory response of GIC,providing a theoretical basis for the prevention and early intervention of GIC.The basic properties of the STEAP family as metal reductase are also explained.When it comes to intervention for GIC prevention,STEAPs can affect the activity of Fe^(3+),Cu^(2+) reductase and regulate metal ion uptake in vivo,participating in inflammation-related iron and copper homeostasis.Thus,the mechanism of STEAPs on inflammation is of important value in the prevention of GIC.
基金financially supported by the National Natural Science Foundation of China(Grant No.21902046,21801071,12174092,U21A20500)Overseas Expertise Introduction Center for Discipline Innovation(D18025)+3 种基金the Natural Science Foundation of Hubei Provincial(Grant No.2018CFB171)Wuhan Science and Technology Bureau(2020010601012163)Science and Technology Research Project of Hubei Provincial Department of Education(No.D20221001)the open foundation of the State Key Laboratory of Structural Chemistry,Fujian Institute of Research on the Structure of Matter,Chinese Academy of Sciences
文摘Exploring high efficiency S-scheme heterojunction photocatalysts with strong redox ability for removing volatile organic compounds from the air is of great interest and importance.However,how to predict and regulate the transport of photogenerated carriers in heterojunctions is a great challenge.Here,density functional theory calculations were first used to successfully predict the formation of a CdS quantum dots/InVO_(4)atomic-layer(110)/(110)facet S-scheme heterojunction.Subsequently,a CdS quantum dots/InVO_(4)atomic-layer was synthesized by in-situ loading of CdS quantum dots with(110)facets onto the(110)facets of InVO_(4)atomic-layer.As a result of the deliberately constructed built-in electric field between the adjoining facets,we obtain a remarkably enhanced photocatalytic degradation rate for ethylene.This rate is 13.8 times that of pure CdS and 13.2 times that of pure InVO_(4).In-situ irradiated X-ray photoelectron spectroscopy,photoluminescence and time-resolved photoluminescence measurements were carried out.These experiments validate that the built-in electric field enhanced the dissociation of photoexcited excitons and the separation of free charge carriers,and results in the formation of S-scheme charge transfer pathways.The reaction mechanism of the photocatalytic C_(2)H_(4)oxidation is investigated by in-situ electron paramagnetic resonance.This work provides a mechanistic insight into the construction and optimization of semiconductor heterojunction photocatalysts for application to environmental remediation.
基金supported by the National Natural Science Foundation of China(22075197,22278290)the Shanxi Provincial Natural Science Foundation of China(202103021224079,201903D421081)the Research and Development Project of Key Core and Common Technology of Shanxi Province(20201102018)。
文摘In this study,Ni_(2)P/CdS composites were constructed by depositing non-precious metal co-catalyst Ni_(2)P on a one-dimensional network of CdS using a simple in-situ photodeposition method.The prepared photocatalysts promoted the decomposition of ethanol into high-value-added products while generating hydrogen.The composite photoanodes loaded with the Ni_(2)P co-catalysts showed significantly higher ethanol conversion and hydrogen production in the visible light region,which was almost three times higher than that of pure CdS.The main products of photocatalytic ethanol production are acetaldehyde(AA)and 2,3-butanediol(2,3-BDA).Compared with CdS,the selectivity of the composite photocatalysts for converting ethanol to acetaldehyde was significantly improved(62% to 78%).Characterization of the prepared photocatalysts confirmed that the loading of Ni_(2)P co-catalysts on CdS not only broadened the optical region of the catalysts for trapping light but also effectively promoted the separation and transfer of charge carriers,which significantly improved the photocatalytic efficiency of ethanol conversion and hydrogen production in the catalysts.It has been proven through Electron Paramagnetic Resonance testing that loading a Ni_(2)P co-catalyst on CdS is beneficial for the adsorption of hydroxyethyl radicals(*CH(OH)CH_(3)),thereby further improving the selectivity of acetaldehyde.This study plays an important role in the rational design of composite catalyst structures and the introduction of co-catalysts to improve catalyst performance,promote green chemistry,advocate a low-carbon society,and promote sustainable development.
基金supported by the National Research Foundation-Tertiary Education Trust Fund(TETF/DR&D/CE/NRF2020/SETI/105).
文摘Objective:To evaluate the immunodiagnostic potential of crude Fasciola gigantica-worm(FWA)and egg antigen(FEA)in detecting anti-Schistosoma(S.)haematobium antibodies in sera and urine samples.Methods:This is a cross-sectional diagnostic study.Employing an indirect ELISA,antibodies against these antigens were assessed in samples from infected and non-infected individuals in both schistosomiasis endemic(NE)and non-endemic(NNE)areas,using microscopy as the diagnostic standard.Results:FWA-sera exhibited excellent diagnostic accuracy with an area under the curve(AUC)of 0.957,a sensitivity of 93.75%,and a specificity of 85.42%for discriminating between infected and non-infected individuals in non-endemic areas.FWA-urine also demonstrated robust performance,achieving AUC>0.95,sensitivity>97.0%,and specificity>85.0%in both NE and NNE categories.Notably,S.haematobium-specific antibody levels against FWA were significantly elevated in infected individuals in both endemic and non-endemic areas.FEA-sera exhibited outstanding diagnostic performance with sensitivity exceeding 90%and an AUC of 0.968 in non-endemic samples but not in FEA-urine.Conclusions:FWA-based ELISAs,applicable to both sera and urine,emerge as promising tools for S.haematobium diagnosis in resource-limited settings,offering advantages of high sensitivity and specificity with shared antigens with Fasciola.The superior diagnostic metrics of urine samples suggest their potential as a non-invasive biological sample for diagnostic purposes.
文摘A simple two-step hydrothermal method synthesized four different CdS/Fe_(3)O_(4)photocatalysts with varying ratios of mass of CdS to Fe_(3)O_(4).The composition and morphology of the prepared samples were investigated using X-ray diffraction(XRD),Raman spectrum,X-ray photoelectron spectroscopy(XPS),scanning electron microscopy(SEM),and transmission electron microscopy(TEM).Solid UV reflectance spectra testing found that CdS/Fe_(3)O_(4)nanocomposites had good light absorption throughout the spectral range,promoting their photocatalytic properties.Under visible light irradiation,CdS/Fe_(3)O_(4)(2∶5)with a mass ratio of 2∶5 exhibited excellent photocatalytic perfor-mance,with a degradation rate of 98.8%for rhodamine B.Furthermore,after five cycles of photocatalytic degrada-tion reaction,the rhodamine B degradation rate remained at 96.2%,indicating that the photocatalysts have good pho-tocatalytic stability.
文摘Background: Diagnosis of autoimmune diseases (AID) is challenging, due to overlapping features with other non-immune disorders. Anti-nuclear antibodies (ANA) are sensitive screening tests but anti-deoxyribonucleic acid-antibody (anti-DNA), and anti-extractable nuclear antigens (anti-ENA) are specific for AIDs. We aimed to look at ANA patterns in our patients and correlated them with anti-ENA for proper interpretation and better patient management cost-effectively. Methods: A retrospective study was conducted over 1 year from January to December 2022 who were tested for ANA at biology medical laboratory of Pasteur Institute of Dakar. Anti-ENA and anti-DNA results were also analyzed for ANA-positive patients. Statistical analysis was performed using STATA 14.0, p Results: 216 patients were analyzed. Women predominated at 79.2% and mean age was 48 years [CI 95%, 46 - 50], with extremes of 10 and 89. Most represented age group was [41 - 60] with 38%. ANA was positive in 27 (12.5%) of patients, 59.2% of whom were strongly positive (titer of 1/1000, 1/3200 or 1/6400). The most common pattern was nuclear speckled, which was found in 77.8% of samples. Anti-ENA and anti-DNA positivity in ANA-positive patients was found respectively in 63% (17/27) and 1.4% (3/27) of the samples analyzed. Most commonly identified anti-ENA was anti-Sm 29.6%, anti-SSA 29.6%, anti-Ro-52 25.9%, anti-RNP 18.5% and anti-SSB 14.8% which was associated with speckled pattern. Association results indicated a significant relationship between both tests and between ANA titer in the anti-ENA- and ANA-positive patients (p 0.001). Conclusions: ANA, Anti-ENA and anti-DNA antibodies are essential for AIDS diagnosis. However, the testing repertoire should follow an algorithm comprising of clinical features, followed by ANA results with nuclear, mitotic, and cytoplasmic patterns, anti-ENA, and anti-DNA for a more meaningful, and cost-effective diagnostic approach.
基金supported by the National Natural Science Foundation of China(22275180)the National Key Research and Development Program of China(2019YFA0405600)the Collaborative Innovation Program of Hefei Science Center,CAS,and the University Synergy Innovation Program of Anhui Province(GXXT-2023-031).
文摘Cadmium sulfide(CdS)is an n-type semiconductor with excellent electrical conductivity that is widely used as an electron transport material(ETM)in solar cells.At present,numerous methods for preparing CdS thin films have emerged,among which magnetron sputtering(MS)is one of the most commonly used vacuum techniques.For this type of technique,the substrate temperature is one of the key deposition parameters that affects the interfacial properties between the target film and substrate,determining the specific growth habits of the films.Herein,the effect of substrate temperature on the microstructure and electrical properties of magnetron-sputtered CdS(MS-CdS)films was studied and applied for the first time in hydrothermally deposited antimony selenosulfide(Sb_(2)(S,Se)_(3))solar cells.Adjusting the substrate temperature not only results in the design of the flat and dense film with enhanced crystallinity but also leads to the formation of an energy level arrangement with a Sb_(2)(S,Se)_(3)layer that is more favorable for electron transfer.In addition,we developed an oxygen plasma treatment for CdS,reducing the parasitic absorption of the device and resulting in an increase in the short-circuit current density of the solar cell.This study demonstrates the feasibility of MS-CdS in the fabrication of hydrothermal Sb_(2)(S,Se)_(3)solar cells and provides interface optimization strategies to improve device performance.
基金supported by National Key R&D Program of China(2022YFF0705104)National Natural Science Foundation of China(51402199,U21A20316)+1 种基金Liaoning Revitalization Talents Prograrn(XLYC2007193)Natural Science Foundation of Liaoning Province(2021NLTS1210).
文摘CdS nanospheres were grown on indium tin oxide(ITO)substrate using a hydrothermal method.The crystal structure,morphology and electronic structure of the samples synthesized were characterized in detail.The results confirm that the crystallinity,size,crystal defects of the CdS nanospheres and the film thickness of CdS photoelectrodes can be tuned by varying the precursor Cd2+concentration.Combined with charge transfer dynamics analysis,it can be found that proper particle size and film thickness,as well as fewer defects,will result in better charge separation efficiency of the prepared CdS/ITO photoelectrodes,thereby exhibiting better photoelectrochemical performance for water splitting.The optimized CdS/ITO photoelectrode synthesized with a Cd2+concentration of 0.14 mol⋅L1 gave a photocurrent density of 5.10 mA⋅cm^(-2)at potential of 1.23 V versus the reversible hydrogen electrode(RHE),under a simulated solar illumination of 100 mW⋅cm^(-2).
基金financially supported by the National Natural Science Foundation of China(22276030,22206024,U2167223,22076022)Jiangxi Provincial Natural Science Foundation(20232BAB213034,20232ACB203011)
文摘Piezo-photocatalysis could coalesce the advantages of mechanical vibration and solar energy perfectly to achieve high-efficiency catalytic activity.Herein,the quintessential piezoelectric material CdS nanowires with different aspect ratios are precisely constructed and applied for piezo-photocatalytic reduction of U(Ⅵ)for the first time.The ultrasonic(60 kHz,100 W)induces piezoelectric potential to generate a 0.57 eV A^(-1)electric field,which is added to the direction of CdS(010)as a driving force to efficiently separate photogenerated charges.The alliance between piezoelectric effect and photocatalytic activity endows CdS NW-3 with the fastest piezo-photocatalytic rate under ultrasonic vibration and 5 W LED irradiation,and the relevant rate constant(0.042 min^(-1))is about 12 and 53.8 times than that of LED and ultrasonication.More importantly,93.74%of U(Ⅵ)could be removed from natural uranium mine wastewater.Therefore,this piezo-photocatalysis system that reduces U(Ⅵ)to easily separable(UO_(2))O_(2)·2H_(2)O(s)provides valuable input for disposal applications of radioactive wastewater and broadens the horizons of nuclear energy utilization toward the advancement of carbon neutrality.
文摘以前,我从未想过听CD会过时,但在无载体媒体时代,情况已经如此。幸运的是,一群执着的音响发烧友还在坚持。ORERA Consonance Re horee a OPERA Consonance Reference CDS8这款CD、数码流播放器,不仅可以播放CD,而且它是以非常高的水准来播放CD,名副其实的好产品,可以与Advance Acoustics、Creek、AVM等这些品牌的产品齐名。
基金support from the Research Council of Norway provided by the Norwegian Center for Transmission Electron Microscopy,NORTEM(197405/F50)NTNU NanoLab(grant number 245963)which have provided the characterization toolsthe strategic funding support provided by Department of Chemical Engineering,NTNU,Trondheim,Norway.
文摘To achieve efficient photocatalytic H_(2) generation from water using earth-abundant and cost-effective materials,a simple synthesis method for carbon-doped CdS particles wrapped with graphene(C-doped CdS@G)is reported.The doping effect and the application of graphene as cocatalyst for CdS is studied for photocatalytic H_(2) generation.The most active sample consists of CdS and graphene(CdS-0.15G)exhibits promising photocatalytic activity,producing 3.12 mmol g^-(1) h^-(1) of H_(2) under simulated solar light which is^4.6 times superior than pure CdS nanoparticles giving an apparent quantum efficiency(AQY)of 11.7%.The enhanced photocatalytic activity for H_(2) generation is associated to the narrowing of the bandgap,enhanced light absorption,fast interfacial charge transfer,and higher carrier density(N_(D))in C-doped CdS@G samples.This is achieved by C doping in CdS nanoparticles and the formation of a graphene shell over the C-doped CdS nanoparticles.After stability test,the spent catalysts sample was also characterized to investigate the nanostructure.
文摘Cancer testis antigens(CTAs)are attractive targets for tumor imm unotherapy because of their tumor specific expression,Since more than half of confirmed CTAs are located on the X-chromosome,we asked whether there is a link between CTA expression and X-chromosomes.Recent reports have shown that reactivation of the inactive X-chromosome,known as X-chromosome reactivation(XCR),a unique phenomenon that exists in many high-risk tumors in women,can transform the expression of many X-linked genes from monoallelic to biallelic.
文摘Manganese(Mn)doped cadmium sulphide(Cd S)nanoparticles were synthesized using a chemical method.It was possible to decrease Cd S:Mn particle size by increasing Mn concentration.Investigation techniques such as ultraviolet-visible(UV-Vis)absorption spectroscopy and photoluminescence(PL)spectroscopy were used to determine optical properties of Cd S:Mn nanoparticles.Size quantization effect was observed in UV-Vis absorption spectra.Quantum efficiency for luminescence or the internal magnetic field strength was increased by doping Cd S nanoparticles with Mn element.Orange emission was observed at wavelength~630 nm due to ^(4)T_1→^(6)A_1 transition.Isolated Mn~(2+)ions arranged in tetrahedral coordination are mainly responsible for luminescence.Luminescence quenching and the effect of Mn doping on hyperfine interactions in the case of Cd S nanoparticles were also discussed.The corresponding weight percentage of Mn element actually incorporated in doping process was determined by atomic absorption spectroscopy(AAS).Crystallinity was checked and the average size of nanoparticles was estimated using the X-ray diffraction(XRD)technique.Cd S:Mn nanoparticles show ferromagnetism at room temperature.Transmission electron microscopy(TEM)images show spherical clusters of various sizes and selected area electron diffraction(SAED)patterns show the polycrystalline nature of the clusters.The electronic states of diluted magnetic semiconductors(DMS)ofⅡ-Ⅵgroup Cd S nanoparticles give them great potential for applications due to quantum confinement.In this study,experimental results and discussions on these aspects have been given.
基金Supported by Ministerium für Wirtschaft,Arbeit und Gesundheit Mecklenburg-Vorpommern,No.TBI-V-1-241-VBW-084
文摘Therapeutic options for the treatment of colorectal cancer(CRC) are diverse but still not always satisfying. Recent success of immune checkpoint inhibition treatment for the subgroup of CRC patients suffering from hypermutated tumors suggests a permanent role of immune therapy in the clinical management of CRC. Substantial improvement in treatment outcome could be achieved by development of efficient patient-individual CRC vaccination strategies. This mini-review summarizes the current knowledge on the two general classes of targets: tumor-associated antigens(TAAs) and tumorspecific antigens. TAAs like carcinoembryonic antigen and melanoma associated antigen are present in and shared by a subgroup of patients and a variety of clinical studies examined the efficacy of different TAA-derived peptide vaccines. Combinations of several TAAs as the next step and the development of personalized TAA-based peptide vaccines are discussed. Improvements of peptidebased vaccines achievable by adjuvants and immunestimulatory chemotherapeutics are highlighted. Finally, we sum up clinical studies using tumor-specific antigens-in CRC almost exclusively neoantigens-which revealed promising results; particularly no severe adverse events were reported so far. Critical progress for clinical outcomes can be expected by individualizing neoantigen-based peptide vaccines and combining them with immunestimulatory chemotherapeutics and immune checkpoint inhibitors. In light of these data and latest developments, truly personalized neoantigen-based peptide vaccines can be expected to fulfill modern precision medicine's requirements and will manifest as treatment pillar for routine clinical management of CRC.
文摘Deposition and structural characteristics of cadmium sulfide (CdS) thin films by chemical bath deposition (CBD) technique from a bath containing thiourea,cadmium acetate,ammonium acetate and ammonia in an aqueous solution are reported.Researches are made on the influence of the fundamental parameters including pH,temperature,and concentrations of the solution involved in the chemical bath deposition of CdS and titration or dumping of the thiourea solution on the structure characteristic of CdS thin films.The pH of the solution plays a vital role on the characteristic of the CdS thin films.The XRD patterns show that the change in the pH of the solution results in the change in crystal phase from predominant hexagonal phase to predominant cubic phase.The CdS thin films with the two different crystal phases have different influences on CIGS thin film solar cells.The crystal mismatch and the interface state density of the c-CdS(cubic phase CdS) and CIGS are about 1 419% and 8 507×10 12cm -2 respectively,and those of the h-CdS(hexagonal phase CdS) and CIGS are about 32 297% and 2 792×10 12cm -2 respectively.It is necessary for high efficiency CIGS thin film solar cells to deposit the cubic phase CdS thin films.
文摘AIM To explore the etiology and pathogenesis of human primary intrahepatic cholangiocarcinoma, the expression of HBV genes and HBV-antigens was detected in the cancerous tissue and its surrounding hepatic tissues.METHODS HBV-antigens were detected by immunohistochemical technique and HBV genes were examined with in situ hybridization.RESULTS In 20 cases of cholangiocarcinoma, the positive detection rate of HBxAg, pre-S1, pre-S2, HBsAg and HBcAg was 75%, 40%, 40%, 10% and 0%, respectively, and in the surrounding hepatic tissues of 19 cases the positive rates were 84.2%, 47.9%, 47.9%, 31.6% and 31.6%. Among 40 cases of cholangiocarcinoma, the positive rate of HBV-DNA, x gene, pre-s gene, s gene and s gene fell on 77.5%, 70.0%, 47.5%, 40% and 42.5%, respectively, and of the surrounding hepatic tissues in 33 cases, 87.9%, 84.8%, 63.6%, 69.7% and 66.7%.CONCLUSION The development of human primary intrahepatic cholangiocarcinoma bears a close relationship with chronic persistent HBV infection. Particularly, the x gene of HBV and its protein (HBxAg) might play an important role in pathogenesis of hepatic carcinoma.A large number of studies indicate a close relationship between human primary hepatocellular carcinoma and hepatitis B virus (HBV) infection, which is considered generally as an important factor in the development of hepatic carcinoma[1,2]. In human primary hepatic carcinoma, hepatocellular carcinoma is more frequently encountered, while intrahepatic cholangiocarcinoma (ChC), including hepatocholangiocarcinoma (HChC), is relatively less, being 8%-10%[3]. For a long time, the etiology and pathogenesis of intrahepatic cholangiocarcinoma have been unclear. A few reports considered it to be related to infestation with clonorchiasis sinensis[4,5], but never involved with HBV infection. We used immunohistochemical technique and in situ hybridization methods to detect HBV genes and their -related antigens in the tissues of intrahepatic cholangiocarcinoma and its surrounding hepatic tissues for the purpose of exploring the etiology and pathogenesis of intrahepatic cholangiocarcinoma.