For reducing the core loss of grain oriented silicon steel and improving its aging property, a new method, the LLSA by using Sb as the laser surface alloying element, was investigated, and at proper technique conditio...For reducing the core loss of grain oriented silicon steel and improving its aging property, a new method, the LLSA by using Sb as the laser surface alloying element, was investigated, and at proper technique conditions rather good result was obtained.展开更多
A Sb-Fe-carbon-fiber (CF) composite was prepared by a chemical vapor deposition (CVD) method with in situ growth of CFs us- ing Sb203/Fe2O3 as the precursor and acetylene (C2H2) as the carbon source. The Sb-Fe-C...A Sb-Fe-carbon-fiber (CF) composite was prepared by a chemical vapor deposition (CVD) method with in situ growth of CFs us- ing Sb203/Fe2O3 as the precursor and acetylene (C2H2) as the carbon source. The Sb-Fe-CF composite was characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM), and its electrochemical per- formance was investigated by galvanostatic charge-discharge cycling and electrochemical impedance spectroscopy. The Sb-Fe-CF composite shows a better cycling stability than the Sb-amorphous-carbon composite prepared by the same CVD method but using Sb2O3 as the precur- sor. Improvements in cycling stability of the Sb-Fe-CF composite can be attributed to the formation of three-dimensional network structure by CFs, which can connect Sb particles firmly. In addition, the CF layer can buffer the volume change effectively.展开更多
The LPE growth of quaternary InAs11-x-yPxSby with x = 0.2 and y = 0.09 on InAs substrate has been studied. This composition is very suitable for the laser and detector applications at about 2.5 μm. We show that in In...The LPE growth of quaternary InAs11-x-yPxSby with x = 0.2 and y = 0.09 on InAs substrate has been studied. This composition is very suitable for the laser and detector applications at about 2.5 μm. We show that in InAsPSb/InAs system there is a determinate relation between the surface morphology and the lattice mismatch of the epi-wafers, by which we can easily control the melt composition to grow high quality hetero-structures. The reason has been discussed. The p-n junctions with fairly good carrier profile have been prepared in this system.展开更多
Based on the phase diagrams, measured activities and the annexation principle, the calculating models of mass action concentrations for Cd-Pb, Pb-Sb and Cd-Sb binary as well as Cd-Pb-Sb ternary metallic melts have bee...Based on the phase diagrams, measured activities and the annexation principle, the calculating models of mass action concentrations for Cd-Pb, Pb-Sb and Cd-Sb binary as well as Cd-Pb-Sb ternary metallic melts have been formulated. The results of calculation both agree with practice and obey the mass action law. This in turn testifies that the models formulated can reflect the structural reality of corresponding melts and the annexation principle is applicable to these melts.展开更多
The development of alternative electrode materials with high energy densities and power densities for batteries has been actively pursued to satisfy the power demands for electronic devices and hybrid electric vehicle...The development of alternative electrode materials with high energy densities and power densities for batteries has been actively pursued to satisfy the power demands for electronic devices and hybrid electric vehicles. Recently, antimony(Sb)-based intermetallic compounds have attracted considerable research interests as new candidate anode materials for high-performance lithium-ion batteries(LIBs) and sodium-ion batteries(SIBs) due to their high theoretical capacity and suitable operating voltage. However, these intermetallic systems undergo large volume change during charge and discharge processes, which prohibits them from practical application. The rational construction of advanced anode with unique structures has been proved to be an effective approach to enhance its electrochemical performance. This review highlights the recent progress in improving and understanding the electrochemical performances of various Sb-based intermetallic compound anodes. The developments of synthesis and construction of Sb-based intermetallic compounds are systematically summarized. The electrochemical performances of various Sb-based intermetallic compound anodes are compared in its typical applications(LIBs or SIBs).展开更多
基金National Natural Science FOundation of China! (No. 59974010).
文摘For reducing the core loss of grain oriented silicon steel and improving its aging property, a new method, the LLSA by using Sb as the laser surface alloying element, was investigated, and at proper technique conditions rather good result was obtained.
基金supported by the Zijin Program of Zhejiang Universitythe Fundamental Research Funds for the Central Universities (No.2010QNA4003)+1 种基金the Ph.D. Program Foundation of the Ministry of Education of China (No.20100101120024)the Foundation of Education Office of Zhejiang Province, China (No.Y201016484)
文摘A Sb-Fe-carbon-fiber (CF) composite was prepared by a chemical vapor deposition (CVD) method with in situ growth of CFs us- ing Sb203/Fe2O3 as the precursor and acetylene (C2H2) as the carbon source. The Sb-Fe-CF composite was characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM), and its electrochemical per- formance was investigated by galvanostatic charge-discharge cycling and electrochemical impedance spectroscopy. The Sb-Fe-CF composite shows a better cycling stability than the Sb-amorphous-carbon composite prepared by the same CVD method but using Sb2O3 as the precur- sor. Improvements in cycling stability of the Sb-Fe-CF composite can be attributed to the formation of three-dimensional network structure by CFs, which can connect Sb particles firmly. In addition, the CF layer can buffer the volume change effectively.
文摘The LPE growth of quaternary InAs11-x-yPxSby with x = 0.2 and y = 0.09 on InAs substrate has been studied. This composition is very suitable for the laser and detector applications at about 2.5 μm. We show that in InAsPSb/InAs system there is a determinate relation between the surface morphology and the lattice mismatch of the epi-wafers, by which we can easily control the melt composition to grow high quality hetero-structures. The reason has been discussed. The p-n junctions with fairly good carrier profile have been prepared in this system.
文摘Based on the phase diagrams, measured activities and the annexation principle, the calculating models of mass action concentrations for Cd-Pb, Pb-Sb and Cd-Sb binary as well as Cd-Pb-Sb ternary metallic melts have been formulated. The results of calculation both agree with practice and obey the mass action law. This in turn testifies that the models formulated can reflect the structural reality of corresponding melts and the annexation principle is applicable to these melts.
基金financially supported by the National Key Research and Development Program of China(No.2016YFA0202603)the National Basic Research Program of China(No.2013CB934103)+4 种基金the Program of Introducing Talents of Discipline to Universities(No.B17034)the National Natural Science Foundation of China(No.51521001)the National Natural Science Fund for Distinguished Young Scholars(No.51425204)the Fundamental Research Funds for the Central Universities(Nos.2016III001 and 2016-JL-004)the China Scholarship Council(No.201606955096)
文摘The development of alternative electrode materials with high energy densities and power densities for batteries has been actively pursued to satisfy the power demands for electronic devices and hybrid electric vehicles. Recently, antimony(Sb)-based intermetallic compounds have attracted considerable research interests as new candidate anode materials for high-performance lithium-ion batteries(LIBs) and sodium-ion batteries(SIBs) due to their high theoretical capacity and suitable operating voltage. However, these intermetallic systems undergo large volume change during charge and discharge processes, which prohibits them from practical application. The rational construction of advanced anode with unique structures has been proved to be an effective approach to enhance its electrochemical performance. This review highlights the recent progress in improving and understanding the electrochemical performances of various Sb-based intermetallic compound anodes. The developments of synthesis and construction of Sb-based intermetallic compounds are systematically summarized. The electrochemical performances of various Sb-based intermetallic compound anodes are compared in its typical applications(LIBs or SIBs).