The Yangla Cu skarn deposit is located in the central part of the Jinshajiang Suture Zone,southwest China,with a total reserve of 150 Mt Cu@1.03%.The newly discovered antimony orebodies at the depth of Yangla are stri...The Yangla Cu skarn deposit is located in the central part of the Jinshajiang Suture Zone,southwest China,with a total reserve of 150 Mt Cu@1.03%.The newly discovered antimony orebodies at the depth of Yangla are strictly controlled by the stratum,structure,and lithology,which are lenticular and vein-like within the marble fracture zone,which can provide a window into multistage miner-alization and ore genesis at Yangla.Mineralization can be divided into three types,Cu–Pb–Zn(skarn)pyrite,galena,and sphalerite,Cu(porphyry)chalcopyrite and pyrite,and Sb(hydrothermal)stibnite and pyrite.The mineral assem-blages were stibnite+pyrite+calcite+quartz±minor scheelite in antimony ores.This study presents quantitative measurements of the trace element compositions of pyrite and stibnite from the Yangla antimony ores.Analysis of pyrite with electron probe microanalysis(EPMA)showed enrichment in Co,Ni,Sb,As,and Mo,and deficit in its S and Fe contents when compared to the stoichiometric con-centrations of S and Fe in pyrite.The Sb-related pyrite may belong to sedimentary-reworked genesis and may be modi-fied by hydrothermalfluids,thereby presenting a certain dif-ference(i.e.,crystal morphology,texture,and chemical com-position)compared to the skarn and porphyry Cu-related pyrite in the Yangla Cu skarn deposit.Analysis of stibnite with EPMA and inductively coupled plasma-mass spectrom-etry showed enrichment in As,Pb,Sn,Pb,Cu,and Zn,and presented much higher Sb contents and slightly lower S con-tents when compared to the stoichiometric concentrations of Sb and S in stibnite.Statistical analysis of the stibnite trace elements showed correlations for the elemental pairs Cu–Pb,As–Sb,and Sn–Pb,and the coupled substitution equations Sb^(3+)↔Cu^(+)+Pb^(2+),Sb^(3+)↔As^(3+),and Sn^(2+)↔Pb^(2+)may be the major factors governed the incorporating Cu,Pb,As and Sn within the stibnite.Moreover,this study preliminary shows that the antimony mineralization may belong to a car-bonate replacement hydrothermal genesis at Yangla.展开更多
To study the status of soil quality in an antimony mine, soil samples were collected from different regions and the elements' contents of Sb, Cd, Cr, Cu, Zn, Pb, Hg, Ni and As were analyzed using single factor pollut...To study the status of soil quality in an antimony mine, soil samples were collected from different regions and the elements' contents of Sb, Cd, Cr, Cu, Zn, Pb, Hg, Ni and As were analyzed using single factor pollution index, Nemerow index and potential ecological risk index. The heavy metal contamination of soils were evaluated. The results showed that Nemerow index for each sampled point was less than 0.7, meaning a clean state. When potential ecological risk assessment was conducted, the sampled point was less than 150, belonging to light pollution.展开更多
In recent years, most of domestic and foreign researches about heavy metal pollutions of metal mine mainly focus on water, soil and plants on the surface. There is lack of researches about heavy metal pollution in gro...In recent years, most of domestic and foreign researches about heavy metal pollutions of metal mine mainly focus on water, soil and plants on the surface. There is lack of researches about heavy metal pollution in groundwater of metal mine. In this research, a certain antimony mine area is selected as a typical study area. Also, the study about statistical characteristics of heavy metals in groundwater has been carried out. Furthermore, the interrelationships have been preliminarily discussed through related analysis, such as relevant analysis, cluster analysis and principle component analysis. The results show that: the excessive elements in groundwater of study area are Sb, As, Pb, Se, and Ni. The average mass concentration of Sb, As, and Pb is higher than that of drinking water standards(GB5749-2006). The concentration of most heavy metals in dry season is lower than or equal to that in wet season for groundwater. Zn is the only metal in groundwater showing a different pattern, the concentration of which in dry season is higher than that in wet season. Under the impacts of stratum leaching and absorption effect, the concentration of heavy metals(except Pb and Ba) in groundwater are lower than or equal to that in surface water. As and Se, the two heavy metals have a significant positive correlation, which shows the two elements might have gone through similar environmental geochemical effect. Also, the connection among Zn, Hg, Pb, and Mn is not obvious; therefore, the sources of those elements are quite different. In addition, the elements of Se and As have obvious positive interrelationship with elements of CO_3^(2-) and F^-. Also, the Pb has significant positive correlation with PO_4^(3-), H_2SiO_3 and oxygen consumption. The results of cluster analysis show that 9 different heavy metals in the study area can be divided into 3 categories: Zn, Cd, Mn, Hg, Cu, and Cr belong to the first category, Se and As belong to the second one, and the last category is Pb. Also, the principle component analysis divides 6 heavy metals(Zn, As, Hg, Pb, Mn, and Se) into 4 different principle components, which can be utilized to assess heavy metals pollution situations in groundwater. The reliability of this method is higher than 91%. Moreover, the research provides theory basis and models for establishing evaluation index system and exploring the evaluation method of heavy mental pollution in groundwater.展开更多
Large areas of old basements of metamorphic volcanic series, and magmatic and sedimentary rocks of different ages existing in China. China is rich in Mesozoic granite rocks which are closely related to nonferrous meta...Large areas of old basements of metamorphic volcanic series, and magmatic and sedimentary rocks of different ages existing in China. China is rich in Mesozoic granite rocks which are closely related to nonferrous metals ore deposits, and favourable for the formation of tungsten, titanium, rare earths and antimony ore deposits. The article identifies the major types and locations of these mineral resources from a geological point of view.展开更多
The Xikuangshan antimony deposit in central Hunan, South China, is the largest antimony deposit ever known in the world. The ore bodies are strictly confined to the footwalls of mafor high-angle normal faults which tr...The Xikuangshan antimony deposit in central Hunan, South China, is the largest antimony deposit ever known in the world. The ore bodies are strictly confined to the footwalls of mafor high-angle normal faults which transect the inclined folds in the flank;away from the fault planes,both the homogenization temperatures of inclusions in gangue minerals and the intensity of antimony mineralization decrease.These characteristics strongly demonstrate that the faults are used as the conduit for the metal-bearing fluid in mineralization.The normal faults,striking the NE to NNE,are interpreted to be generated by the postmgenic extension in the time from Cretaceous to Paleogene.Crustal or lithospheric thinning, directly resulting from regional extension inevitably increase the geothermal gradient, Which is likely to cause large-scale convection of underground water that may leach out and transport valuablemetals such as Sb from source rocks.Focussed discharge along the fault zones contributes to the formation of the supergiant antimony deposit in Xikuangshan under the appropriate sedimentary barrier.展开更多
The pollution caused by the mining and smelting of heavy metals is becoming an increasingly severe environmental problem.In this study,the environmental risks of mine tailings were explored using typical antimony tail...The pollution caused by the mining and smelting of heavy metals is becoming an increasingly severe environmental problem.In this study,the environmental risks of mine tailings were explored using typical antimony tailings(the depth of the sample taken from the ground to the deepest position of 120 cm)from the Zuoxiguo mine in Yunnan Province,Southwest China.The tailings were examined to explore the geological background,distribution characteristics,and release characteristics of heavy metals.Additionally,stabilizer treatments for heavy metals were investigated in consideration of waste treatment.The results showed that the contents of Sb and As(8.93×103 and 425 mg/kg,respectively)in the tailings were considerably higher than the local soil background values,suggesting that these metals pose a considerable threat to the surrounding environment.The geological background values of Cr,Cd,Pb,Cu,and Zn were relatively low.The results of static release showed that Sb,As,Cd,and Cr leached from the tailings more easily than Cu,Zn,and Pb under acidic conditions(pH=2.98).Geo-accumulation indices and potential ecological risk indices showed that Sb,As,Cd,and Pb were highly enriched in the tailings,whereas Cu,Cr,and Zn contents were relatively low.The single factor ecological risk index of the mining area showed that Sb and As are high ecological risk factors,whereas Cr,Cu,Zn,Cd,and Pb are not.The results of the orthogonal test results showed that by adding 15.0%(m/m)fly ash and 15.0%(m/m)zeolite powder to the quicklime and curing for 28 d,a significant stabilization effect was observed for Sb,As,and Pb.This study helps determine the priority control components for characteristic heavy metals in antimony tailings,and provides valuable insights regarding the formulation of appropriate mitigation strategies.展开更多
Antimony (Sb) has received increasing environmental concerns due to its potential toxic and carcinogenic properties. In the present work, the electrocoagulation technique was used to treat the flotation wastewater f...Antimony (Sb) has received increasing environmental concerns due to its potential toxic and carcinogenic properties. In the present work, the electrocoagulation technique was used to treat the flotation wastewater from a heavy antimony polluted area, and the mechanism of removing Sb was also investigated. The study focused on the effect of operation parameters such as current density, initial pH and standing time on the Sb removal efficiency. Antimony concentration of below 1 mg/L in the treated wastewater was achieved, which meets the emission standards established by State Department of Environmental Protection and State Administration of China for Quality Supervision and Inspection and Quarantine of China.展开更多
The Muli antimony deposit is located in the Au-Sb polymetallic metallogenic belt in south-eastern Yunnan,China.In this paper,we investigated the concentrations of trace elements in gangue minerals,mainly calcite,quart...The Muli antimony deposit is located in the Au-Sb polymetallic metallogenic belt in south-eastern Yunnan,China.In this paper,we investigated the concentrations of trace elements in gangue minerals,mainly calcite,quartz,and pyrite,which were formed at different metallogenic stages.Meanwhile,the host rocks,predominantly composed of limestone,are also analysed for comparison.The calcite from the Nadan ore section is enriched with medium-heavy rare earth elements(M-HREEs),likely due to the presence of a high concentration of Fe and Mn impurities,which results in the preferential enrichment of M-HREEs in the calcite.Alternatively,the calcite may be precipitated from the M-HREE・rich granitic leaching fluid.In the Muli ore section,both quartz and pyrite in the metallogenic period show enrichment with light rare earth elements(LREEs),and the wall rock is also enriched with LREEs,which indicates that the wall rock material was involved in the metallogenic process.The W-shaped tetrad effect of quartz in the late metallogenic stage was interpreted to determine extensive flu id-rock interactions in highly fractionated Si-rich systems.Fe and Mn impurities cause M-HREE to be preferentially enriched with calcite to some extent.Whether mineralization is related to granite deserves further study.Eu and Ce anomalies of different types of gangue minerals indicate that the temperature and the fO2 were constantly changing during mineralization,and the temperature of the main ore-stage was higher than 200°C in an oxidized state.The various REE patterns,LREE/HREE and(La/Yb)N values,reveal that there may be multi-sources and multi-stage hydrothermal activities in the Muli antimony deposit.The REE distribution patterns of minerals are likely interfered with by many internal and external factors.Studies on REE characteristics of calcite,quartz,pyrite and limestone in the Muli antimony deposit have greatly improved the understanding of ore-forming fluids.When we traced the origin and evolution of ore・forming fluids by means of mineral REE distribution patterns,in addition to the determination of inclusions of ore minerals related to mineralization and the in situ analysis methods performed by LA-ICP-MS,we should also com・bine the REE characteristics of various minerals or trace the ore-forming fluids with multiple methods.展开更多
The mineralogical characterization of antimony-bearing refractory gold concentrates and the antimony extraction by ozonein HCl solution were investigated.The mineralogical study shows that there exist stibnite(Sb2S3),...The mineralogical characterization of antimony-bearing refractory gold concentrates and the antimony extraction by ozonein HCl solution were investigated.The mineralogical study shows that there exist stibnite(Sb2S3),arsenopyrite(FeAsS),pyrite(FeS2)and quartz in the concentrates,and the gold is mainly(67.42%)encapsulated in sulfides.The antimony extraction by ozone inhydrochloric acid was employed and the influences of temperature,liquid/solid ratio,HCl concentration and stirring speed on theextraction of antimony were investigated.High antimony extraction(93.75%)is achieved under the optimized conditions.After thepretreatment by ozone,the antimony is recovered efficiently and the gold is enriched in the leaching residue.展开更多
The Leishan-Rongjiang antimony ore field(LAOF) is in a unique geotectonic location in the uplift between the Youjiang and Xiangzhong basins.This paper focuses on two representative deposits in the LAOF:the Bameng and ...The Leishan-Rongjiang antimony ore field(LAOF) is in a unique geotectonic location in the uplift between the Youjiang and Xiangzhong basins.This paper focuses on two representative deposits in the LAOF:the Bameng and Peize antimony(Sb) deposits.We analyzed fluid inclusions(FIs) in stibnite and coexisting quartz,as well as the sulfur isotopic composition of stibnite,to better understand the nature of the ore-forming fluid and the metallogenic process.The FIs data from samples of the stibnite and coexisting quartz indicate that the ore-forming fluids were characterized by low-temperature(150-210 ℃),low-salinity(1.5 wt%-6.0 wt%NaCl equiv.),and low-density(0.872-0.961 g/cm^3).The δ^(34)S values of stibnite(-8.21‰ to 3.76‰,average =-6.30‰)fall in between the sulfur isotopic compositions of the mantle and of biogenic sulfur in sedimentary rocks.However,the δ^(34)S_(∑s) values(-4.41 ‰ to +0.04‰,average =-2.49‰) of the ore-forming fluids are generally closer to the sulfur isotopic composition of the mantle source,indicating that the sulfur in the LAOF was mainly sourced from the mantle,but with possible involvement of biogenic sulfur.In addition,FIs petrography and ore deposit geology show that fluid boiling resulted from an abrupt decrease in pressure,which may have triggered the precipitation of stibnite.We conclude that low-temperature,dilute hydrothermal fluids with mixed origins migrated along the regional fault and interacted with the wall rock,extracting the ore-forming materials.Then,the oreforming fluids were injected into the fault fracture zones.展开更多
Antimony-based anodes have attracted wide attention in potassium-ion batteries due to their high theoretical specific capacities(∼660 mA h g^(-1))and suitable voltage platforms.However,severe capacity fading caused b...Antimony-based anodes have attracted wide attention in potassium-ion batteries due to their high theoretical specific capacities(∼660 mA h g^(-1))and suitable voltage platforms.However,severe capacity fading caused by huge volume change and limited ion transportation hinders their practical applications.Recently,strategies for controlling the morphologies of Sb-based materials to improve the electrochemical performances have been proposed.Among these,the two-dimensional Sb(2D-Sb)materials present excellent properties due to shorted ion immigration paths and enhanced ion diffusion.Nevertheless,the synthetic methods are usually tedious,and even the mechanism of these strategies remains elusive,especially how to obtain large-scale 2D-Sb materials.Herein,a novel strategy to synthesize 2D-Sb material using a straightforward solvothermal method without the requirement of a complex nanostructure design is provided.This method leverages the selective adsorption of aldehyde groups in furfural to induce crystal growth,while concurrently reducing and coating a nitrogen-doped carbon layer.Compared to the reported methods,it is simpler,more efficient,and conducive to the production of composite nanosheets with uniform thickness(3–4 nm).The 2D-Sb@NC nanosheet anode delivers an extremely high capacity of 504.5 mA h g^(-1) at current densities of 100 mA g^(-1) and remains stable for more than 200 cycles.Through characterizations and molecular dynamic simulations,how potassium storage kinetics between 2D Sb-based materials and bulk Sb-based materials are explored,and detailed explanations are provided.These findings offer novel insights into the development of durable 2D alloy-based anodes for next-generation potassium-ion batteries.展开更多
Tobacco addiction has been mentioned as a leading cause of preventable illnesses and premature disability. Smoking is the main cause of lung cancer and one of the factors that most contribute to the occurrence of hear...Tobacco addiction has been mentioned as a leading cause of preventable illnesses and premature disability. Smoking is the main cause of lung cancer and one of the factors that most contribute to the occurrence of heart diseases, among others. The herbaceous species Nicotiana tabacum is a plant of the solanaceae family used for tobacco production. Some authors have conducted research about heavy metals and the toxicity of tobacco. It is, frequently, found in low concentrations in the ground, and superficial and underground waters, even though they do not have environmental anthropogenic contributions. However, with the increase of industrial activities and mining together with the agrochemical use of contaminated organic and inorganic fertilizers, an alteration of the geochemical cycle occurs. As a consequence, the natural flow of these materials increases and is released into the biosphere, where they are often accumulated in the superior layer of the ground, accessible to the roots of the plants. During planting and plant development, fertilizers and insecticides, including organochlorines and organophosphates, are used;consequently, the smoke from cigarette smoking presents various toxic substances, such as bromine (Br), manganese (Mn) and antimony (Sb), elements studied in this work. The procedures for the preparation of the samples were carried out in our laboratories and submitted to irradiation with thermal neutrons at Nuclear and Energy Research Institute (IPEN/CNEN-SP), in the Atomic Energy Institute IEA-R1 research reactor. The irradiated material was, then, analyzed by gamma spectrometry, using a high purity germanium detector (HPGe).展开更多
Recent research has suggested that increased industrial and technological utilization of antimony and bismuth necessitates greater research to determine the soil and water chemistry and the environmental risks associa...Recent research has suggested that increased industrial and technological utilization of antimony and bismuth necessitates greater research to determine the soil and water chemistry and the environmental risks associated with these elements. The near-total soil profile concentrations of antimony and bismuth were determined for key soil series across southeastern Missouri. The antimony concentrations ranged from 0.65 to 0.08 mg kg<sup>−</sup><sup>1</sup>, whereas the bismuth soil profile concentrations ranged from 0.92 to 0.03 mg kg<sup>−</sup><sup>1</sup>. Most pedons showed antimony concentrations ranging from 20 to 30 mg kg<sup>−</sup><sup>1</sup>, whereas bismuth concentrations were commonly 10 to 20 mg kg<sup>−</sup><sup>1</sup>. For soils having argillic horizons, antimony and bismuth concentrations were greater for the illuvial horizons than the eluvial horizons, whereas Entisols, Inceptisols, and one Vertisol showed rather uniform antimony and bismuth concentrations, features paralleling the soil texture distribution. Both antimony and bismuth showed significant correlations with iron.展开更多
[Objective] This study aimed to investigate the effects of different concen- trations of antimony and modifier calcium magnesium phosphate on photosynthetic characteristics of edible amaranth, flowering Chinese cabbag...[Objective] This study aimed to investigate the effects of different concen- trations of antimony and modifier calcium magnesium phosphate on photosynthetic characteristics of edible amaranth, flowering Chinese cabbage, spinach and flowering Chinese cabbage. [Method] By outdoor potting simulation experiment, soil matrixes containing 10.00, 20.00, 50.00, 70.00 and 100.00 mg/kg antimony (Sb3+) were pre- pared; soil without antimony was used as control (CK). Each pot was loaded with 0.10 kg/kg vegetable special fertilizer, mixed evenly, and divided into two shares: one share was supplemented with 1.75 g/kg modifier calcium magnesium phosphate and mixed evenly; the other share contained no calcium magnesium phosphate. Af- ter the generation of three true leaves, seedlings with uniform growth were trans- planted into the prepared soil matrixes, eights seedlings per pot. Vegetable seedlings were watered regularly to maintain 70% of field capacity. After 45 d, veg- etable plants were harvested and washed clean with distilled water for measurement of indicators of photosynthetic characteristics. [Result] With the increase of antimony concentration, relative chlorophyll content (SPAD value) and net photosynthetic rate of four vegetable species increased first and then declined, while stomatal conduc- tance of vegetable leaves was linearly reduced. [Conclusion] Appropriately adding modifier calcium magnesium phosphate can effectively improve the photosynthetic characteristics of four vegetable species and reduce the toxic effects of heavy metal antimony on vegetables.展开更多
New solid complex of the antimony trichloride and dioxane was obtained th rough a reaction of the dioxane and the absolute methanol solution of the antimony trichloride.The formula of the complex is[SbCl_(3)·{(CH...New solid complex of the antimony trichloride and dioxane was obtained th rough a reaction of the dioxane and the absolute methanol solution of the antimony trichloride.The formula of the complex is[SbCl_(3)·{(CH_(2))_(4)O_(2)}_(1.5)].The crystal structure of the comple x belongs to cubic system,space group I-43d,a=17.1417(5)?,Z=16.The trivalent antimony ion not only bonds directly to three chlorine anions,but also is co ordinated by three oxygen atoms of th e dioxane molecules.Two oxygen atoms in a dioxane molecule wi ll coordinate to different antimony ions,respectively.展开更多
A sensitive method is described for the determination of trace antimony based on the antimony-bromopyrogallol red (BPR) adsorption at a carbon paste electrode (CPE). Three steps were involved in the overall analysis: ...A sensitive method is described for the determination of trace antimony based on the antimony-bromopyrogallol red (BPR) adsorption at a carbon paste electrode (CPE). Three steps were involved in the overall analysis: preconcentration,reduction and stripping. Optimal conditions were found to be an electrode containing 25% paraffin oil and 75% high purity graphite powder as working electrode;a 0.10 mol/L HCl solution containing 40 μmol/L BPR as accumulation medium;a 0.20 mol/L HCl solution as reduction and stripping electrolyte;accumulation time,150 s;reduction potential and time,-0.50 V,60 s;scan range from -0.50 to 0.20 V. Interferences by other ions were studied as well. The detection limit was found to be 0.5 nmol/L for 150 s preconcentration. The linear range was from 1.0 nmol/L to 0.50 μmol/L. Application of the proposed method to the determination of antimony in water and human hair samples gave good results.展开更多
In order to achieve fine debismuthizing of lead bullion,the effects of temperature,adding amount of calcium and magnesium and antimony on the bismuth removal from lead bullion were investigated.The mechanism of debism...In order to achieve fine debismuthizing of lead bullion,the effects of temperature,adding amount of calcium and magnesium and antimony on the bismuth removal from lead bullion were investigated.The mechanism of debismuthizing was also discussed.The results show that when adding amounts of calcium and magnesium reach 0.112% and 0.395%,respectively,bismuth level of 0.001%(mass fraction) in the final lead is achieved at 330 ℃,without the need for antimony addition.Maintaining addition amount of magnesium at 0.155%,when calcium addition amount is less than 0.09%,the concentration of peritectic reaction point,the bismuth concentration can be easily decreased to 0.001% by the following antimony treatment.But the effect of antimony treatment on debismuthizing gets bad if the calcium addition exceeds 0.09%.展开更多
Antimony ore dressing wastewater was treated by using Bacillus sp. and the influences of treatment time, temperature, inoculation size, and pH value on Sb removal effect were explored. The results showed that the best...Antimony ore dressing wastewater was treated by using Bacillus sp. and the influences of treatment time, temperature, inoculation size, and pH value on Sb removal effect were explored. The results showed that the best removal efficiency of Sb in mineral processing wastewater could reach 99.75% in 4 d under the optimum conditions of 30 ℃, microbial inoculated quantity 5%, and pH value at 2.0. After the treatment, the concentration of Sb in wastewater was reduced from 122.21 to 0.30mg/L, which was lower than the local industrial wastewater discharge standard of0.50 mg/L.展开更多
Antimony ore-rocessed wastewater was treated with the optimized bacterium Bacillus sp.The effects of the evaluation indices,including the amount of inoculation,pH value,processing time,and temperature,on the treatment...Antimony ore-rocessed wastewater was treated with the optimized bacterium Bacillus sp.The effects of the evaluation indices,including the amount of inoculation,pH value,processing time,and temperature,on the treatment of antimony ore-rocessed wastewater were studied through orthogonal experiments.The results show that the degrees of effects of the indices on the removal of antimony from wastewater by Bacillus sp.are in the following descending order:the amount of inoculation,pH value,processing time,and temperature.The optimal treatment conditions were attained when the amount of inoculation was 5%,the pH value was 2.5,the processing time was three days,and the temperature was 30 ℃.展开更多
The role of trivalent antimony was investigated in removing As, Sb, and Bi impurities from a copper electrolyte. Puri- fication experiments were carried out by adding a various concentrations of Sb(III) ions in a sy...The role of trivalent antimony was investigated in removing As, Sb, and Bi impurities from a copper electrolyte. Puri- fication experiments were carried out by adding a various concentrations of Sb(III) ions in a synthetic electrolyte containing 185 g/L sulfuric acid, 45 g/L Cu2+, 10 g/L As, and 0.5 g/L Bi under stirring at 65℃ for 2 h. The electrolyte was filtered, and the structure, morphology and composition of the precipitate were analyzed by means of chemical analysis, scanning electron mi- croscopy (SEM), X-ray diffraction (XRD), transmission electron microscopy (TEM), and IR spectroscopy. The precipitate is composed of irregular lumps which are agglomerated by fine dendritic and floccus particles, and it mainly consists of As, Sb, Bi, and O elements. Characteristic bands in the IR spectra of the precipitate are As-OX (X=As, Sb, Bi), Sb-OY (Y=Sb, Bi), O-As-O1 As-OH, Sb-OH, and O-H. The precipitate is a mixture of microcrystalline SbAsQ, (Sb,As)203, and amorphous phases. As, Sb, and Bi impurities are effectively removed from the copper electrolyte by Sb(III) ions attributing to these pre- cipitates.展开更多
基金This research was funded by the National Natural Science Foundation of China(No.41862007)the Key Disciplines Construction of Kunming University of Science and Technology(No.14078384)the Yunnan Ten Thousand Talents Plan Young&Elite Talents Project(YNWR-QNBJ-2018-093)。
文摘The Yangla Cu skarn deposit is located in the central part of the Jinshajiang Suture Zone,southwest China,with a total reserve of 150 Mt Cu@1.03%.The newly discovered antimony orebodies at the depth of Yangla are strictly controlled by the stratum,structure,and lithology,which are lenticular and vein-like within the marble fracture zone,which can provide a window into multistage miner-alization and ore genesis at Yangla.Mineralization can be divided into three types,Cu–Pb–Zn(skarn)pyrite,galena,and sphalerite,Cu(porphyry)chalcopyrite and pyrite,and Sb(hydrothermal)stibnite and pyrite.The mineral assem-blages were stibnite+pyrite+calcite+quartz±minor scheelite in antimony ores.This study presents quantitative measurements of the trace element compositions of pyrite and stibnite from the Yangla antimony ores.Analysis of pyrite with electron probe microanalysis(EPMA)showed enrichment in Co,Ni,Sb,As,and Mo,and deficit in its S and Fe contents when compared to the stoichiometric con-centrations of S and Fe in pyrite.The Sb-related pyrite may belong to sedimentary-reworked genesis and may be modi-fied by hydrothermalfluids,thereby presenting a certain dif-ference(i.e.,crystal morphology,texture,and chemical com-position)compared to the skarn and porphyry Cu-related pyrite in the Yangla Cu skarn deposit.Analysis of stibnite with EPMA and inductively coupled plasma-mass spectrom-etry showed enrichment in As,Pb,Sn,Pb,Cu,and Zn,and presented much higher Sb contents and slightly lower S con-tents when compared to the stoichiometric concentrations of Sb and S in stibnite.Statistical analysis of the stibnite trace elements showed correlations for the elemental pairs Cu–Pb,As–Sb,and Sn–Pb,and the coupled substitution equations Sb^(3+)↔Cu^(+)+Pb^(2+),Sb^(3+)↔As^(3+),and Sn^(2+)↔Pb^(2+)may be the major factors governed the incorporating Cu,Pb,As and Sn within the stibnite.Moreover,this study preliminary shows that the antimony mineralization may belong to a car-bonate replacement hydrothermal genesis at Yangla.
文摘To study the status of soil quality in an antimony mine, soil samples were collected from different regions and the elements' contents of Sb, Cd, Cr, Cu, Zn, Pb, Hg, Ni and As were analyzed using single factor pollution index, Nemerow index and potential ecological risk index. The heavy metal contamination of soils were evaluated. The results showed that Nemerow index for each sampled point was less than 0.7, meaning a clean state. When potential ecological risk assessment was conducted, the sampled point was less than 150, belonging to light pollution.
基金supported by Homeland Resource Non-Profit Research Special Funding Project(No.200911036)
文摘In recent years, most of domestic and foreign researches about heavy metal pollutions of metal mine mainly focus on water, soil and plants on the surface. There is lack of researches about heavy metal pollution in groundwater of metal mine. In this research, a certain antimony mine area is selected as a typical study area. Also, the study about statistical characteristics of heavy metals in groundwater has been carried out. Furthermore, the interrelationships have been preliminarily discussed through related analysis, such as relevant analysis, cluster analysis and principle component analysis. The results show that: the excessive elements in groundwater of study area are Sb, As, Pb, Se, and Ni. The average mass concentration of Sb, As, and Pb is higher than that of drinking water standards(GB5749-2006). The concentration of most heavy metals in dry season is lower than or equal to that in wet season for groundwater. Zn is the only metal in groundwater showing a different pattern, the concentration of which in dry season is higher than that in wet season. Under the impacts of stratum leaching and absorption effect, the concentration of heavy metals(except Pb and Ba) in groundwater are lower than or equal to that in surface water. As and Se, the two heavy metals have a significant positive correlation, which shows the two elements might have gone through similar environmental geochemical effect. Also, the connection among Zn, Hg, Pb, and Mn is not obvious; therefore, the sources of those elements are quite different. In addition, the elements of Se and As have obvious positive interrelationship with elements of CO_3^(2-) and F^-. Also, the Pb has significant positive correlation with PO_4^(3-), H_2SiO_3 and oxygen consumption. The results of cluster analysis show that 9 different heavy metals in the study area can be divided into 3 categories: Zn, Cd, Mn, Hg, Cu, and Cr belong to the first category, Se and As belong to the second one, and the last category is Pb. Also, the principle component analysis divides 6 heavy metals(Zn, As, Hg, Pb, Mn, and Se) into 4 different principle components, which can be utilized to assess heavy metals pollution situations in groundwater. The reliability of this method is higher than 91%. Moreover, the research provides theory basis and models for establishing evaluation index system and exploring the evaluation method of heavy mental pollution in groundwater.
文摘Large areas of old basements of metamorphic volcanic series, and magmatic and sedimentary rocks of different ages existing in China. China is rich in Mesozoic granite rocks which are closely related to nonferrous metals ore deposits, and favourable for the formation of tungsten, titanium, rare earths and antimony ore deposits. The article identifies the major types and locations of these mineral resources from a geological point of view.
文摘The Xikuangshan antimony deposit in central Hunan, South China, is the largest antimony deposit ever known in the world. The ore bodies are strictly confined to the footwalls of mafor high-angle normal faults which transect the inclined folds in the flank;away from the fault planes,both the homogenization temperatures of inclusions in gangue minerals and the intensity of antimony mineralization decrease.These characteristics strongly demonstrate that the faults are used as the conduit for the metal-bearing fluid in mineralization.The normal faults,striking the NE to NNE,are interpreted to be generated by the postmgenic extension in the time from Cretaceous to Paleogene.Crustal or lithospheric thinning, directly resulting from regional extension inevitably increase the geothermal gradient, Which is likely to cause large-scale convection of underground water that may leach out and transport valuablemetals such as Sb from source rocks.Focussed discharge along the fault zones contributes to the formation of the supergiant antimony deposit in Xikuangshan under the appropriate sedimentary barrier.
基金supported by the High-Level Talent Training Program in Guizhou Province(GCC[2023]045)the Guizhou Talent Base Project[RCJD2018-21]。
文摘The pollution caused by the mining and smelting of heavy metals is becoming an increasingly severe environmental problem.In this study,the environmental risks of mine tailings were explored using typical antimony tailings(the depth of the sample taken from the ground to the deepest position of 120 cm)from the Zuoxiguo mine in Yunnan Province,Southwest China.The tailings were examined to explore the geological background,distribution characteristics,and release characteristics of heavy metals.Additionally,stabilizer treatments for heavy metals were investigated in consideration of waste treatment.The results showed that the contents of Sb and As(8.93×103 and 425 mg/kg,respectively)in the tailings were considerably higher than the local soil background values,suggesting that these metals pose a considerable threat to the surrounding environment.The geological background values of Cr,Cd,Pb,Cu,and Zn were relatively low.The results of static release showed that Sb,As,Cd,and Cr leached from the tailings more easily than Cu,Zn,and Pb under acidic conditions(pH=2.98).Geo-accumulation indices and potential ecological risk indices showed that Sb,As,Cd,and Pb were highly enriched in the tailings,whereas Cu,Cr,and Zn contents were relatively low.The single factor ecological risk index of the mining area showed that Sb and As are high ecological risk factors,whereas Cr,Cu,Zn,Cd,and Pb are not.The results of the orthogonal test results showed that by adding 15.0%(m/m)fly ash and 15.0%(m/m)zeolite powder to the quicklime and curing for 28 d,a significant stabilization effect was observed for Sb,As,and Pb.This study helps determine the priority control components for characteristic heavy metals in antimony tailings,and provides valuable insights regarding the formulation of appropriate mitigation strategies.
基金supported by the Innovative Program of the Chinese Academy of Sciences (No. kzcx2-yw-102)the National Nature Science Foundation of China (No. 40525011, 40632011)
文摘Antimony (Sb) has received increasing environmental concerns due to its potential toxic and carcinogenic properties. In the present work, the electrocoagulation technique was used to treat the flotation wastewater from a heavy antimony polluted area, and the mechanism of removing Sb was also investigated. The study focused on the effect of operation parameters such as current density, initial pH and standing time on the Sb removal efficiency. Antimony concentration of below 1 mg/L in the treated wastewater was achieved, which meets the emission standards established by State Department of Environmental Protection and State Administration of China for Quality Supervision and Inspection and Quarantine of China.
基金supported by the National Natural Science Foundation of China (Grant Nos. 41772070, 41303038)Open Fund of State Key Laboratory of Ore Deposit Geochemistry (201502)
文摘The Muli antimony deposit is located in the Au-Sb polymetallic metallogenic belt in south-eastern Yunnan,China.In this paper,we investigated the concentrations of trace elements in gangue minerals,mainly calcite,quartz,and pyrite,which were formed at different metallogenic stages.Meanwhile,the host rocks,predominantly composed of limestone,are also analysed for comparison.The calcite from the Nadan ore section is enriched with medium-heavy rare earth elements(M-HREEs),likely due to the presence of a high concentration of Fe and Mn impurities,which results in the preferential enrichment of M-HREEs in the calcite.Alternatively,the calcite may be precipitated from the M-HREE・rich granitic leaching fluid.In the Muli ore section,both quartz and pyrite in the metallogenic period show enrichment with light rare earth elements(LREEs),and the wall rock is also enriched with LREEs,which indicates that the wall rock material was involved in the metallogenic process.The W-shaped tetrad effect of quartz in the late metallogenic stage was interpreted to determine extensive flu id-rock interactions in highly fractionated Si-rich systems.Fe and Mn impurities cause M-HREE to be preferentially enriched with calcite to some extent.Whether mineralization is related to granite deserves further study.Eu and Ce anomalies of different types of gangue minerals indicate that the temperature and the fO2 were constantly changing during mineralization,and the temperature of the main ore-stage was higher than 200°C in an oxidized state.The various REE patterns,LREE/HREE and(La/Yb)N values,reveal that there may be multi-sources and multi-stage hydrothermal activities in the Muli antimony deposit.The REE distribution patterns of minerals are likely interfered with by many internal and external factors.Studies on REE characteristics of calcite,quartz,pyrite and limestone in the Muli antimony deposit have greatly improved the understanding of ore-forming fluids.When we traced the origin and evolution of ore・forming fluids by means of mineral REE distribution patterns,in addition to the determination of inclusions of ore minerals related to mineralization and the in situ analysis methods performed by LA-ICP-MS,we should also com・bine the REE characteristics of various minerals or trace the ore-forming fluids with multiple methods.
基金Project(51474257) supported by the National Natural Science Foundation of ChinaProject(2015zzts037) supported by the Postgraduate Research and Innovation Projects of Hunan province,ChinaProject(2015JC3005) supported by the Key Technology Research and Development Program of Hunan Province,China
文摘The mineralogical characterization of antimony-bearing refractory gold concentrates and the antimony extraction by ozonein HCl solution were investigated.The mineralogical study shows that there exist stibnite(Sb2S3),arsenopyrite(FeAsS),pyrite(FeS2)and quartz in the concentrates,and the gold is mainly(67.42%)encapsulated in sulfides.The antimony extraction by ozone inhydrochloric acid was employed and the influences of temperature,liquid/solid ratio,HCl concentration and stirring speed on theextraction of antimony were investigated.High antimony extraction(93.75%)is achieved under the optimized conditions.After thepretreatment by ozone,the antimony is recovered efficiently and the gold is enriched in the leaching residue.
基金financially supported by the National Natural Science Foundation (Grant No.41503030)the Planning Project of Science and Technology Cooperation of Guizhou Province (Grant Nos.20157663,20152032)
文摘The Leishan-Rongjiang antimony ore field(LAOF) is in a unique geotectonic location in the uplift between the Youjiang and Xiangzhong basins.This paper focuses on two representative deposits in the LAOF:the Bameng and Peize antimony(Sb) deposits.We analyzed fluid inclusions(FIs) in stibnite and coexisting quartz,as well as the sulfur isotopic composition of stibnite,to better understand the nature of the ore-forming fluid and the metallogenic process.The FIs data from samples of the stibnite and coexisting quartz indicate that the ore-forming fluids were characterized by low-temperature(150-210 ℃),low-salinity(1.5 wt%-6.0 wt%NaCl equiv.),and low-density(0.872-0.961 g/cm^3).The δ^(34)S values of stibnite(-8.21‰ to 3.76‰,average =-6.30‰)fall in between the sulfur isotopic compositions of the mantle and of biogenic sulfur in sedimentary rocks.However,the δ^(34)S_(∑s) values(-4.41 ‰ to +0.04‰,average =-2.49‰) of the ore-forming fluids are generally closer to the sulfur isotopic composition of the mantle source,indicating that the sulfur in the LAOF was mainly sourced from the mantle,but with possible involvement of biogenic sulfur.In addition,FIs petrography and ore deposit geology show that fluid boiling resulted from an abrupt decrease in pressure,which may have triggered the precipitation of stibnite.We conclude that low-temperature,dilute hydrothermal fluids with mixed origins migrated along the regional fault and interacted with the wall rock,extracting the ore-forming materials.Then,the oreforming fluids were injected into the fault fracture zones.
基金financially supported by the Science and Technology Development Program of Jilin Province(YDZJ202101ZYTS185)the National Natural Science Foundation of China(21975250)。
文摘Antimony-based anodes have attracted wide attention in potassium-ion batteries due to their high theoretical specific capacities(∼660 mA h g^(-1))and suitable voltage platforms.However,severe capacity fading caused by huge volume change and limited ion transportation hinders their practical applications.Recently,strategies for controlling the morphologies of Sb-based materials to improve the electrochemical performances have been proposed.Among these,the two-dimensional Sb(2D-Sb)materials present excellent properties due to shorted ion immigration paths and enhanced ion diffusion.Nevertheless,the synthetic methods are usually tedious,and even the mechanism of these strategies remains elusive,especially how to obtain large-scale 2D-Sb materials.Herein,a novel strategy to synthesize 2D-Sb material using a straightforward solvothermal method without the requirement of a complex nanostructure design is provided.This method leverages the selective adsorption of aldehyde groups in furfural to induce crystal growth,while concurrently reducing and coating a nitrogen-doped carbon layer.Compared to the reported methods,it is simpler,more efficient,and conducive to the production of composite nanosheets with uniform thickness(3–4 nm).The 2D-Sb@NC nanosheet anode delivers an extremely high capacity of 504.5 mA h g^(-1) at current densities of 100 mA g^(-1) and remains stable for more than 200 cycles.Through characterizations and molecular dynamic simulations,how potassium storage kinetics between 2D Sb-based materials and bulk Sb-based materials are explored,and detailed explanations are provided.These findings offer novel insights into the development of durable 2D alloy-based anodes for next-generation potassium-ion batteries.
文摘Tobacco addiction has been mentioned as a leading cause of preventable illnesses and premature disability. Smoking is the main cause of lung cancer and one of the factors that most contribute to the occurrence of heart diseases, among others. The herbaceous species Nicotiana tabacum is a plant of the solanaceae family used for tobacco production. Some authors have conducted research about heavy metals and the toxicity of tobacco. It is, frequently, found in low concentrations in the ground, and superficial and underground waters, even though they do not have environmental anthropogenic contributions. However, with the increase of industrial activities and mining together with the agrochemical use of contaminated organic and inorganic fertilizers, an alteration of the geochemical cycle occurs. As a consequence, the natural flow of these materials increases and is released into the biosphere, where they are often accumulated in the superior layer of the ground, accessible to the roots of the plants. During planting and plant development, fertilizers and insecticides, including organochlorines and organophosphates, are used;consequently, the smoke from cigarette smoking presents various toxic substances, such as bromine (Br), manganese (Mn) and antimony (Sb), elements studied in this work. The procedures for the preparation of the samples were carried out in our laboratories and submitted to irradiation with thermal neutrons at Nuclear and Energy Research Institute (IPEN/CNEN-SP), in the Atomic Energy Institute IEA-R1 research reactor. The irradiated material was, then, analyzed by gamma spectrometry, using a high purity germanium detector (HPGe).
文摘Recent research has suggested that increased industrial and technological utilization of antimony and bismuth necessitates greater research to determine the soil and water chemistry and the environmental risks associated with these elements. The near-total soil profile concentrations of antimony and bismuth were determined for key soil series across southeastern Missouri. The antimony concentrations ranged from 0.65 to 0.08 mg kg<sup>−</sup><sup>1</sup>, whereas the bismuth soil profile concentrations ranged from 0.92 to 0.03 mg kg<sup>−</sup><sup>1</sup>. Most pedons showed antimony concentrations ranging from 20 to 30 mg kg<sup>−</sup><sup>1</sup>, whereas bismuth concentrations were commonly 10 to 20 mg kg<sup>−</sup><sup>1</sup>. For soils having argillic horizons, antimony and bismuth concentrations were greater for the illuvial horizons than the eluvial horizons, whereas Entisols, Inceptisols, and one Vertisol showed rather uniform antimony and bismuth concentrations, features paralleling the soil texture distribution. Both antimony and bismuth showed significant correlations with iron.
基金Supported by Fund of Director of Hunan Institute of HorticultureProject for Cultivation Post in Citrus Industry System of Hunan Province(2013)~~
文摘[Objective] This study aimed to investigate the effects of different concen- trations of antimony and modifier calcium magnesium phosphate on photosynthetic characteristics of edible amaranth, flowering Chinese cabbage, spinach and flowering Chinese cabbage. [Method] By outdoor potting simulation experiment, soil matrixes containing 10.00, 20.00, 50.00, 70.00 and 100.00 mg/kg antimony (Sb3+) were pre- pared; soil without antimony was used as control (CK). Each pot was loaded with 0.10 kg/kg vegetable special fertilizer, mixed evenly, and divided into two shares: one share was supplemented with 1.75 g/kg modifier calcium magnesium phosphate and mixed evenly; the other share contained no calcium magnesium phosphate. Af- ter the generation of three true leaves, seedlings with uniform growth were trans- planted into the prepared soil matrixes, eights seedlings per pot. Vegetable seedlings were watered regularly to maintain 70% of field capacity. After 45 d, veg- etable plants were harvested and washed clean with distilled water for measurement of indicators of photosynthetic characteristics. [Result] With the increase of antimony concentration, relative chlorophyll content (SPAD value) and net photosynthetic rate of four vegetable species increased first and then declined, while stomatal conduc- tance of vegetable leaves was linearly reduced. [Conclusion] Appropriately adding modifier calcium magnesium phosphate can effectively improve the photosynthetic characteristics of four vegetable species and reduce the toxic effects of heavy metal antimony on vegetables.
文摘New solid complex of the antimony trichloride and dioxane was obtained th rough a reaction of the dioxane and the absolute methanol solution of the antimony trichloride.The formula of the complex is[SbCl_(3)·{(CH_(2))_(4)O_(2)}_(1.5)].The crystal structure of the comple x belongs to cubic system,space group I-43d,a=17.1417(5)?,Z=16.The trivalent antimony ion not only bonds directly to three chlorine anions,but also is co ordinated by three oxygen atoms of th e dioxane molecules.Two oxygen atoms in a dioxane molecule wi ll coordinate to different antimony ions,respectively.
文摘A sensitive method is described for the determination of trace antimony based on the antimony-bromopyrogallol red (BPR) adsorption at a carbon paste electrode (CPE). Three steps were involved in the overall analysis: preconcentration,reduction and stripping. Optimal conditions were found to be an electrode containing 25% paraffin oil and 75% high purity graphite powder as working electrode;a 0.10 mol/L HCl solution containing 40 μmol/L BPR as accumulation medium;a 0.20 mol/L HCl solution as reduction and stripping electrolyte;accumulation time,150 s;reduction potential and time,-0.50 V,60 s;scan range from -0.50 to 0.20 V. Interferences by other ions were studied as well. The detection limit was found to be 0.5 nmol/L for 150 s preconcentration. The linear range was from 1.0 nmol/L to 0.50 μmol/L. Application of the proposed method to the determination of antimony in water and human hair samples gave good results.
文摘In order to achieve fine debismuthizing of lead bullion,the effects of temperature,adding amount of calcium and magnesium and antimony on the bismuth removal from lead bullion were investigated.The mechanism of debismuthizing was also discussed.The results show that when adding amounts of calcium and magnesium reach 0.112% and 0.395%,respectively,bismuth level of 0.001%(mass fraction) in the final lead is achieved at 330 ℃,without the need for antimony addition.Maintaining addition amount of magnesium at 0.155%,when calcium addition amount is less than 0.09%,the concentration of peritectic reaction point,the bismuth concentration can be easily decreased to 0.001% by the following antimony treatment.But the effect of antimony treatment on debismuthizing gets bad if the calcium addition exceeds 0.09%.
基金Supported by National Water Pollution and Treatment Major Project(2009ZX07212001)Hunan Environment Protection Technology Major Project(2009sk4013)~~
文摘Antimony ore dressing wastewater was treated by using Bacillus sp. and the influences of treatment time, temperature, inoculation size, and pH value on Sb removal effect were explored. The results showed that the best removal efficiency of Sb in mineral processing wastewater could reach 99.75% in 4 d under the optimum conditions of 30 ℃, microbial inoculated quantity 5%, and pH value at 2.0. After the treatment, the concentration of Sb in wastewater was reduced from 122.21 to 0.30mg/L, which was lower than the local industrial wastewater discharge standard of0.50 mg/L.
文摘Antimony ore-rocessed wastewater was treated with the optimized bacterium Bacillus sp.The effects of the evaluation indices,including the amount of inoculation,pH value,processing time,and temperature,on the treatment of antimony ore-rocessed wastewater were studied through orthogonal experiments.The results show that the degrees of effects of the indices on the removal of antimony from wastewater by Bacillus sp.are in the following descending order:the amount of inoculation,pH value,processing time,and temperature.The optimal treatment conditions were attained when the amount of inoculation was 5%,the pH value was 2.5,the processing time was three days,and the temperature was 30 ℃.
基金support by the National Natural Scientific Foundation of China(No. 50904023)the Natural Science Research Project of the Education Department of Henan Province (No.2010B450001)+1 种基金the Innovation Scientists and Technicians Troop Construction Projects of Henan Province(No. 104100510005)the Basic and Frontier Technologies Research Projects of Henan Province, China(No. 092300410064)
文摘The role of trivalent antimony was investigated in removing As, Sb, and Bi impurities from a copper electrolyte. Puri- fication experiments were carried out by adding a various concentrations of Sb(III) ions in a synthetic electrolyte containing 185 g/L sulfuric acid, 45 g/L Cu2+, 10 g/L As, and 0.5 g/L Bi under stirring at 65℃ for 2 h. The electrolyte was filtered, and the structure, morphology and composition of the precipitate were analyzed by means of chemical analysis, scanning electron mi- croscopy (SEM), X-ray diffraction (XRD), transmission electron microscopy (TEM), and IR spectroscopy. The precipitate is composed of irregular lumps which are agglomerated by fine dendritic and floccus particles, and it mainly consists of As, Sb, Bi, and O elements. Characteristic bands in the IR spectra of the precipitate are As-OX (X=As, Sb, Bi), Sb-OY (Y=Sb, Bi), O-As-O1 As-OH, Sb-OH, and O-H. The precipitate is a mixture of microcrystalline SbAsQ, (Sb,As)203, and amorphous phases. As, Sb, and Bi impurities are effectively removed from the copper electrolyte by Sb(III) ions attributing to these pre- cipitates.