Under the indoor simulant conditions, toxic effects of crude-oil-contaminated soil which was put into aquatic environment on the young fishes Carassius auratus and their hepatic antioxidant system after a 20-d exposur...Under the indoor simulant conditions, toxic effects of crude-oil-contaminated soil which was put into aquatic environment on the young fishes Carassius auratus and their hepatic antioxidant system after a 20-d exposure were investigated. Results showed that the relationship between the mortality of C. auratus and the exposed doses could be divided into 3 phases: fishes exposed to the low dose groups (0.5-5.0 g/L) were dead due to the ingestion of crude-oil-contaminated soils in aquatic environment; at the medium dose groups (5.0-25.0 g/L) fishes were dead due to the penetration of toxic substances; at the high dose groups (25.0-50.0 g/L) fishes were dead due to environmental stress. The highest mortality and death speed were found in the 1.0 g/L dose group, and the death speed was sharply increased in the 50.0 g/L dose group in the late phase of exposure. The activities of superoxide dismutase (SOD), catalase (CAT) and glutathione S-transferase (GST) and the content of malaondialdehyde (MDA) in the hepatic tissues of C. auratus were induced significantly. The activity of SOD was increased and then decreased. It was significantly inhibited in the 50.0 g/L dose group. The activity of CAT was highly induced, and restored to a level which is little more than the control when the exposed doses exceeded 10.0 g/L. The activity of GST was the most sensitive, it was significantly induced in all dose groups, and the highest elevation was up to 6 times in the 0.5 g/L dose group comparing with the control. The MDA content was significantly elevated in the 50.0 g/L dose group, and the changes of the MDA content were opposite with the changes of GST activity.展开更多
The study was conducted to investigate fasting effects on flesh composition and antioxidant defenses of market-size Sparus macrocephalus. Two hundred fish (main initial weight 580 g) were divided into two groups (cont...The study was conducted to investigate fasting effects on flesh composition and antioxidant defenses of market-size Sparus macrocephalus. Two hundred fish (main initial weight 580 g) were divided into two groups (control and fasted) and reared in 6 cages. After two weeks of adaptation, group I fasted for 28 d; group II was fed normally as a control. In 3, 7, 14, 21 and 28 d, 6 fish per group were sampled for proximate flesh composition, liver antioxidant enzyme activities and malondialdehyde flesh content analyses. In fasted fish, the reduction of lipid content in muscle occurred after day 3, and, compared to controls, the content of protein decreased from day 14, the activities of liver antioxidative enzymes superoxide dismutase (SOD) and glutathione peroxidase (GPX) increased from day 3, and flesh malondialdehyde levels increased from day 21. Flesh fat reduction shows that fasting may be used as a technique to reduce flesh lipid content in Sparus macrocephalus. However, considering flesh protein loss and the subsequent oxidative stress, the fasting technique should be used with precautions.展开更多
AIM:To determine whether an antisense RNA corresponding to the human Alu transposable element(Aluas RNA)can protect human lens epithelial cells(HLECs)from methylglyoxal-induced apoptosis.METHODS:Cell counting kit-8(CC...AIM:To determine whether an antisense RNA corresponding to the human Alu transposable element(Aluas RNA)can protect human lens epithelial cells(HLECs)from methylglyoxal-induced apoptosis.METHODS:Cell counting kit-8(CCK-8)and 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide(MTT)assays were used to assess HLEC viability.HLEC viability/death was detected using a Calcein-AM/PI double staining kit;the annexin V-FITC method was used to detect HLEC apoptosis.The cytosolic reactive oxygen species(ROS)levels in HLECs were determined using a reactive species assay kit.The levels of malondialdehyde(MDA)and the antioxidant activities of total-superoxide dismutase(T-SOD)and glutathione peroxidase(GSH-Px)were assessed in HLECs using their respective kits.RT-q PCR and Western blotting were used to measure m RNA and protein expression levels of the genes.RESULTS:Aluas RNA rescued methylglyoxal-induced apoptosis in HLECs and ameliorated both the methylglyoxalinduced decrease in Bcl-2 m RNA and the methylglyoxalinduced increase in Bax m RNA.In addition,Aluas RNA inhibited the methylglyoxal-induced increase in Alu sense RNA expression.Aluas RNA inhibited the production of ROS induced by methylglyoxal,restored T-SOD and GSHPx activity,and moderated the increase in MDA content after treatment with methylglyoxal.Aluas RNA significantly restored the methylglyoxal-induced down-regulation of Nrf2 gene and antioxidant defense genes,including glutathione peroxidase,heme oxygenase 1,γ-glutamylcysteine synthetase and quinone oxidoreductase 1.Aluas RNA ameliorated methylglyoxal-induced increases of the m RNA and protein expression of Keap1 that is the negative regulator of Nrf2.CONCLUSION:Aluas RNA reduces apoptosis induced by methylglyoxal by enhancing antioxidant defense.展开更多
Salinity is one of the most severe abiotic stresses for crop production.The present study investigates the salinityinduced modulation in growth indicators,morphology and movement of stomata,photosynthetic pigments,act...Salinity is one of the most severe abiotic stresses for crop production.The present study investigates the salinityinduced modulation in growth indicators,morphology and movement of stomata,photosynthetic pigments,activity of carbonic anhydrase as well as nitrate reductase,and antioxidant systems in two varieties of chickpea(Pusa-BG5023,and Pusa-BGD72).On 20^(th) day of sowing,plants were treated with varying levels of NaCl(0,50,100,150 and 200 mM)followed by sampling on 45 days of sowing.Recorded observations on both the varieties reveal that salt stress leads to a significant decline in growth,dry biomass,leaf area,photosynthetic pigments,protein content,stomatal behavior,cell viability,activity of nitrate reductase and carbonic anhydrase with the rise in the concentration of salt.However,quantitatively these changes were less in Pusa-BG5023 as compared to Pusa-BGD72.Furthermore,salinity-induced oxidative stress enhanced malondialdehyde content,superoxide radicals,foliar proline content,and the enzymatic activities of superoxide dismutase,catalase,and peroxidase.The variety Pusa-BGD72 was found more sensitive than Pusa-BG5023 to salt stress.Out of different graded concentrations(50,100,150 and 200 mM)of sodium chloride,50 mM was least toxic,and 200 mM was most damaging.The differential behavior of these two varieties measured in terms of stomatal behavior,cell viability,photosynthetic pigments,and antioxidant defense system can be used as prospective indicators for selection of chickpea plants for salt tolerance and sensitivity.展开更多
Extreme hot weather is occurring more frequently due to global warming,posing a significant threat to species survival.Birds in particular are more likely to overheat in hot weather because they have a higher body tem...Extreme hot weather is occurring more frequently due to global warming,posing a significant threat to species survival.Birds in particular are more likely to overheat in hot weather because they have a higher body temperature.This study used a heat stress model to investigate the antioxidant defense mechanisms and changes in fatty acid catabolism in Red-billed Leiothrix(Leiothrix lutea)to gain an understanding of how birds adapt to high temperatures.The birds were divided into five groups:a control group(30℃for 0 days),1 D group(40℃for 1 day),3 D group(40℃for 3 days),14 D group(40℃for 14 days)and recovery group(40℃for 14 days,then 30℃for 14 days).Our results indicated that when Red-billed Leiothrix are subjected to heat stress,malondialdehyde(MDA)content in the liver significantly increased,as did the enzyme activities of catalase(CAT),glutathione-SH-peroxidase(GSH-PX)and total antioxidant capacity(T-AOC)in the liver.Furthermore,there was a significant increase in heat shock protein 70(HSP70)expression in the liver,while avian uncoupling protein(avUCP)expression in muscle was significantly reduced.Additionally,there was a significant reduction in fatty acid catabolism enzyme activity such as 3-hydroxyacyl-CoAdehydrogenase(HOAD)activity in the heart,and carnitine palmitoyl transferase 1(CPT-1)and citrate synthase(CS)activity in the heart and liver.Furthermore,fatty acid translocase(FAT/CD36)in the heart,heart-type fatty acid binding protein(H-FABP)and fatty acid binding protein(FABP-pm)in the liver and heart were also significantly decreased.These changes reverted after treatment,but not to the same level as the control group.Our results indicated that when Red-billed Leiothrix are exposed to heat stress their internal antioxidant defense system is activated to counteract the damage caused by high temperatures.However,even with high antioxidant levels,prolonged high temperature exposure still caused some degree of oxidative damage possibly requiring a longer recovery time.Additionally,Red-billed Leiothrix may be able to resist heat stress by reducing fatty acid transport and catabolism.展开更多
Arsenic(As)contaminated food chains have emerged as a serious public concern for humans and animals and are known to affect the cultivation of edible crops throughout the world.Therefore,the present study was designed...Arsenic(As)contaminated food chains have emerged as a serious public concern for humans and animals and are known to affect the cultivation of edible crops throughout the world.Therefore,the present study was designed to investigate the individual as well as the combined effects of exogenous silicon(Si)and sodium nitroprusside(SNP),a nitric oxide(NO)donor,on plant growth,metabolites,and antioxidant defense systems of radish(Raphanus sativus L.)plants under three different concentrations of As stress,i.e.,0.3,0.5,and 0.7 mM in a pot experiment.The results showed that As stress reduced the growth parameters of radish plants by increasing the level of oxidative stress markers,i.e.,malondialdehyde and hydrogen peroxide.However,foliar application of Si(2 mM)and pretreatment with SNP(100μM)alone as well as in combination with Si improved the plant growth parameters,i.e.,root length,fresh and dry weight of plants under As stress.Furthermore,As stress also reduced protein,and metabolites contents(flavonoids,phenolic and anthocyanin).Activities of antioxidative enzymes such as catalase(CAT),ascorbate peroxidase(APX),guaiacol peroxidase(POD),and polyphenol oxidase(PPO),as well as the content of non-enzymatic antioxidants(glutathione and ascorbic acid)decreased under As stress.In most of the parameters in radish,As III concentration showed maximum reduction,as compared to As I and II concentrations.However,the individual and combined application of Si and NO significantly alleviated the As-mediated oxidative stress in radish plants by increasing the protein,and metabolites content.Enhancement in the activities of CAT,APX,POD and PPO enzymes were recorded.Contents of glutathione and ascorbic acid were also enhanced in response to co-application of Si and NO under As stress.Results obtained were more pronounced when Si and NO were applied in combination under As stress,as compared to their individual application.In short,the current study highlights that Si and NO synergistically regulate plant growth through lowering the As-mediated oxidative stress by upregulating the metabolites content,activity of antioxidative enzymes and non-enzymatic antioxidants in radish plants.展开更多
Marine zooplankton responds sensitively to elevated seawater CO_2 concentration. However, the underlying physiological mechanisms have not been studied well. We therefore investigated the effects of elevated CO_2conce...Marine zooplankton responds sensitively to elevated seawater CO_2 concentration. However, the underlying physiological mechanisms have not been studied well. We therefore investigated the effects of elevated CO_2concentration(0.08%, 0.20%, 0.50% and 1.00%) on antioxidant defense components, as well as two detoxification enzymes of Calanus sinicus(copepod). The results showed that glutathione peroxidase(GPx) activity exposed to CO_2-acidified seawater was significantly stimulated while other antioxidant components, including glutathione-Stransferase(GST) activity, superoxide dismutase(SOD) activity decreased significantly with reduced glutathione(GSH) level and GSH/oxidized glutathione(GSSG) value. CO_2-acidified seawater exhibited stimulatory effects on adenosine triphosphatase(ATPase) activity and acetylcholinesterase(Ach E) activity was inhibited. Moreover, the results of principal component analysis indicated that 75.93% of the overall variance was explained by the first two principal components. The elevated CO_2 concentration may affect the metabolism and survivals of copepods through impacts these enzymes activities. Further studies are needed to focus on the synergistic effects of elevated CO_2 concentration and other environmental factors on copepods.展开更多
The response of enzyme and non-enzymatic antioxidants of Mn hyperaccumuator, Polygonum hydropiper (P. hydropiper), to Mn stress was studied using hydroponics culture experiments to explore the mechanism of Mn tolera...The response of enzyme and non-enzymatic antioxidants of Mn hyperaccumuator, Polygonum hydropiper (P. hydropiper), to Mn stress was studied using hydroponics culture experiments to explore the mechanism of Mn tolerance in this species. Results showed that both chlorophyll and carotenoid contents significantly (p〈0.05) decreased with increasing Mn treatment levels (0, 0.5, 1, 2, 4, and 8 mg/L) in hydroponics. The concentrations of malondialdehyde (MDA) and hydrogen peroxide (H202) in the root and shoot of P hydropiper were accumulated under Mn stress. Meanwhile, the anti-oxidative functions of several important enzymes, including superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX) and peroxidase (POD) in plants were stimulated by Mn spike in leaves and roots, especially at low Mn stress; while sulfhydryl group (--SH) and glutathion (GSH) were likely involved in Mn detoxification ofP. hydropiper under high Mn stress.展开更多
Acute pancreatitis is an inflammation initially localized in the pancreas,which may be accompanied with severe complications such as multi-organ failure,gastrointestinal hemorrhage and malnutrition.One in ten severe c...Acute pancreatitis is an inflammation initially localized in the pancreas,which may be accompanied with severe complications such as multi-organ failure,gastrointestinal hemorrhage and malnutrition.One in ten severe cases of acute pancreatitis develops systemic inflammatory response syndrome.Despite treatment,acute pancreatitis can be a life-threatening disease as its mortality rate amounts to 5%-10%in general,and up to 35%in cases of severe course.[1]Over the years,the role of oxidative stress展开更多
Marine ecosystems are facing escalating environmental fluctuations owing to climate change and human activities,imposing pressures on marine species.To withstand recurring environmental challenges,marine organisms,esp...Marine ecosystems are facing escalating environmental fluctuations owing to climate change and human activities,imposing pressures on marine species.To withstand recurring environmental challenges,marine organisms,especially benthic species lacking behavioral choices to select optimal habitats,have to utilize well-established strategies such as the antioxidant defense system(ADS)to ensure their survival.Therefore,understanding of the mechanisms governing the ADS-based response is essential for gaining insights into adaptive strategies for managing environmental challenges.Here we conducted a com-parative analysis of the physiological and transcriptional responses based on the ADS during two rounds of'hypersalinity-recovery'challenges in two model congeneric invasive ascidians,Ciona robusta and C.savignyi.Our results demonstrated that C.savignyi exhibited higher tolerance and resistance to salinity stresses at the physiological level,while C.robusta demonstrated heightened responses at the transcriptional level.We observed distinct transcriptional responses,particularly in the utilization of two superoxide dismutase(SOD)isoforms.Both Ciona species developed physiological stress memory with elevated total SOD(T-SOD)and glutathione(GSH)responses,while only C.robusta demonstrated transcriptional stress memory.The regulatory distinctions within the Nrf2-Keap1 signalling pathway likely explain the formation disparity of transcriptional stress memory between both Ciona species.These findings support the'context-dependent stress memory hypothesis',emphasizing the emergence of species-specific stress memory at diverse regulatory levels in response to recurrent environmental challenges.Our results enhance our understanding of the mechanisms of environmental challenge manage-ment in marine species,particularly those related to the ADS.展开更多
C2H2-type zinc finger proteins (ZFPs) are thought to play important roles in modulating the responses of plants to drought, salinity and oxidative stress. However, direct evidence is lacking for the involvement of t...C2H2-type zinc finger proteins (ZFPs) are thought to play important roles in modulating the responses of plants to drought, salinity and oxidative stress. However, direct evidence is lacking for the involvement of these ZFPs in abscisic acid (ABA)-induced antioxidant defense in plants. In this study, the role of the rice (Oryza sativa L. sub.japonica cv. Nipponbare) C2H2-type ZFP ZFP182 in ABA-induced antioxidant defense and the relationship between ZFP182 and two rice MAPKs, OsMPK1 and OsMPK5 in ABA signaling were investigated. ABA treatment induced the increases in the expression of ZFP182, OsMPK1 and OsMPK5, and the activities of superoxide dismutase (SOD) and ascorbate peroxidase (APX) in rice leaves. The transient gene expression analysis and the transient RNA interference (RNAi) analysis in protoplasts showed that ZFP182, OsMPK1 and OsMPK5 are involved in ABA-induced up-regulation in the activities of SOD and APX. Besides, OsMPK1 and OsMPK5 were shown to be required for the up-regulation in the expression of ZFP182 in ABA signaling, but ZFP182 did not mediate the ABA-induced up-regulation in the expression of OsMPK1 and OsMPKS. These results indicate that ZFP182 is required for ABA-induced antioxidant defense and the expression of ZFP182 is regulated by rice MAPKs in ABA signaling.展开更多
Ca^2+ and calmodulin (CAM) have been shown to play an important role in abscisic acid (ABA)-induced anti- oxidant defense. However, it is unknown whether Ca^2+/CaM-dependent protein kinase (CCaMK) is involved ...Ca^2+ and calmodulin (CAM) have been shown to play an important role in abscisic acid (ABA)-induced anti- oxidant defense. However, it is unknown whether Ca^2+/CaM-dependent protein kinase (CCaMK) is involved in the pro- cess. In the present study, the role of rice CCaMK, OsDMI3, in ABA-induced antioxidant defense was investigated in leaves of rice (Oryza sativa) plants. Treatments with ABA, H2O2, and polyethylene glycol (PEG) induced the expression of OsDMI3 and the activity of OsDMI3, and H2O2 is required for the ABA-induced increases in the expression and the activity of OsDMI3 under water stress. Subcellular localization analysis showed that OsDMI3 is located in the nucleus, the cytoplasm, and the plasma membrane. The analysis of the transient expression of OsDMI3 in rice protoplasts and the RNA interference (RNAi) silencing of OsDMI3 in rice protoplasts showed that OsDMI3 is required for ABA-induced increases in the expression and the activities of superoxide dismutase (SOD) and catalase (CAT). Further, the oxidative damage induced by higher concentrations of PEG and H202 was aggravated in the mutant of OsDMI3. Moreover, the analysis of the RNAi silencing of OsDMI3 in protoplasts and the mutant of OsDMI3 showed that higher levels of H2O2 accumulation require OsDMI3 activation in ABA signaling, but the initial H2O2 production induced by ABA is not depend- ent on the activation of OsDMI3 in leaves of rice plants. Our data reveal that OsDMI3 is an important component in ABA-induced antioxidant defense in rice.展开更多
Using pharmacological and biochemical approaches, the role of maize polyamine oxidase (MPAO) in abscisic acid (ABA)- induced antioxidant defense in leaves of maize (Zea mays L.) plants was investigated. Exogenou...Using pharmacological and biochemical approaches, the role of maize polyamine oxidase (MPAO) in abscisic acid (ABA)- induced antioxidant defense in leaves of maize (Zea mays L.) plants was investigated. Exogenous ABA treatment enhanced the expression of the MPAO gene and the activities of apoplastic MPAO. Pretreatment with two different inhibitors for apoplastic MPAO partly reduced hydrogen peroxide (H202) accumulation induced by ABA and blocked the ABA-induced expression of the antioxidant genes superoxide dismutase 4 and cytosolic ascorbate peroxidase and the activities of the cytosolic antioxidant enzymes. Treatment with spermidine, the optimum substrate of MPAO, also induced the expression and the activities of the antioxidant enzymes, and the upregulation of the antioxidant enzymes was prevented by two inhibitors of MPAO and two scavengers of H202. These results suggest that MPAO contributes to ABA-induced cytosolic antioxidant defense through H202, a Spd catabolic product.展开更多
In this study, the role of the rice (Oryza sativa L.) histidine kinase OsHK3 in abscisic acid (ABA)-induced antioxidant defense was investigated. Treatments with ABA, H2O2, and polyethylene glycol (PEG) induced ...In this study, the role of the rice (Oryza sativa L.) histidine kinase OsHK3 in abscisic acid (ABA)-induced antioxidant defense was investigated. Treatments with ABA, H2O2, and polyethylene glycol (PEG) induced the expression of OsHK3 in rice leaves, and H2O2 is required for ABA-induced increase in the expression of OsHK3 under water stress. Subcellular localization analysis showed that OsHK3 is located in the cytoplasm and the plasma membrane. The transient expression analysis and the transient RNA interference test in rice protoplasts showed that OsHK3 is required for ABA-induced upreguiation in the expression of antioxidant enzymes genes and the activities of antioxidant enzymes. Further analysis showed that OsHK3 functions upstream of the calcium/ calmodulin-dependent protein kinase OsDMI3 and the mitogen-activated protein kinase OsMPK1 to regulate the activities of antioxidant enzymes in ABA signaling. Moreover, OsHK3 was also shown to regulate the expression of nicotinamide adenine dinucleotide phosphate oxidase genes, OsrbohB and OsrbohE, and the production of H2O2 in ABA signaling. Our data indicate that OsHK3 play an important role in the regulation of ABA-induced antioxidant defense and in the feedback regulation of H2O2 production in ABA signaling.展开更多
Using pharmacological and biochemical approaches, the role of protein phosphorylation and the interrelationship between water stress-enhanced kinase activity, antioxidant enzyme activity, hydrogen peroxide (H202) ac...Using pharmacological and biochemical approaches, the role of protein phosphorylation and the interrelationship between water stress-enhanced kinase activity, antioxidant enzyme activity, hydrogen peroxide (H202) accumulation and endogenous abscisic acid in maize (Zea mays L.) leaves were investigated. Water-stress upregulated the activities of total protein phosphorylation and Ca^2+-dependent protein kinase, and the upregulation was blocked in abscisic aciddeficient vp5 mutant. Furthermore, pretreatments with a nicotinamide adenine dinucleotide phosphate oxidase inhibitor and a scavenger of H2O2 significantly reduced the increased activities of total protein kinase and Ca^2+-dependent protein kinase in maize leaves exposed to water stress. Pretreatments with different protein kinase inhibitors also reduced the water stress-induced H2O2 production and the water stress-enhanced activities of antioxidant enzymes such as superoxide dismutase, catalase, ascorbate peroxidase and glutathione reductase. The data suggest that protein phosphorylation and H2O2 generation are required for water stress-induced antioxidant defense in maize leaves and that crosstalk between protein phosphorylation and H2O2 generation may occur.展开更多
Non-hydraulic root signals(nHRS)are affirmed as a unique positive response to soil drying,and play a crucial role in regulating water use efficiency and yield formation in dryland wheat production.Strigolactones(SLs)c...Non-hydraulic root signals(nHRS)are affirmed as a unique positive response to soil drying,and play a crucial role in regulating water use efficiency and yield formation in dryland wheat production.Strigolactones(SLs)can enhance plant drought adaptability.However,the question of whether strigolactones enhance grain yield and water use efficiency by regulating nHRS and antioxidant defense systems in dryland wheat remains unanswered.In this study,pot experiments were conducted to investigate the effects of strigolactones on nHRS,antioxidant defense system,and grain yield and water use efficiency in dryland wheat.The results showed that external application of SLs increased drought-induced abscisic acid(ABA)accumulation and activated an earlier trigger of nHRS at 73.4% field capacity(FC),compared to 68.5%FC in the control group(CK).This phenomenon was mechanically associated with the physiological mediation of SLs.The application of SLs significantly enhanced the activities of leaf antioxidant enzymes,reduced ROS production,and mitigated oxidative damage to lipid membrane.Additionally,root biomass,root length density,and root to shoot ratio were increased under strigolactone treatment.Furthermore,exogenous application of SLs significantly increased grain yield by 34.9%under moderate drought stress.Water use efficiency was also increased by 21.5% and 33.3% under moderate and severe drought conditions respectively,compared to the control group(CK).The results suggested that the application of strigolactones triggered earlier drought-sensing mechanism and improved the antioxidant defense ability,thus enhancing grain yield and water use efficiency in dryland wheat production.展开更多
Objective:To analyze the effect of Cadmium(Cd)on the metabolism of reduced glutathione(GSH)in roots and leaves of Glycine max L.Methods:A capillary electrophoresis methodology was optimized to determinate simultaneous...Objective:To analyze the effect of Cadmium(Cd)on the metabolism of reduced glutathione(GSH)in roots and leaves of Glycine max L.Methods:A capillary electrophoresis methodology was optimized to determinate simultaneously GSH and reduced and oxidized GSH in a precise and accurate way.The functional role of the genes involved in GSH cellular metabolism(γ-glutamylcysteine synthetase),GSH synthetase and glutathione reductase(GR)was evaluated.Finally,the activities of antioxidant enzymes as GR and superoxide dismutases were determinate.Results:The studies ofγ-glutamylcysteine synthetase and GSH synthetase gene expression showed an increase and GR showed a decrease in Cd-treated plants.GR and superoxide dismutases activities increased at 24 h and 6 h respectively in roots under Cd exposure.GSH content was higher and showed a significant increase in roots and leaves at 6 h and 24 h of treatment.Conclusions:The results of the present study showed a better understanding in signaling pathway by alterations in antioxidant mechanisms by Cd in soybean seedlings.展开更多
It has been reported that there is an interaction between Benzo[a]pyrene (BaP), a widespread carcinogenic polycyclic aromatic hydrocarbon, and tributyltin (TBT), an organometal used as an antifouling biocide. This...It has been reported that there is an interaction between Benzo[a]pyrene (BaP), a widespread carcinogenic polycyclic aromatic hydrocarbon, and tributyltin (TBT), an organometal used as an antifouling biocide. This study was therefore designed to examine the potential in vivo influence of BaP, TBT and their mixture on splenic antioxidant defense systems of Sebastiscus marmoratus. The fish were exposed to water containing environmentally relevant concentrations of BaP, TBT and their mixture. Spleens were collected for biochemical analysis after exposure for 7, 25, 50 d and after recovery for 7, 20 d. Cotreatment with BaP and TBT for 7 d potentiated the induction of glutathione peroxidase (GPx) activity by BaP or TBT alone. The cotreatment for 25 and 50 d resulted in inhibition of GPx activity, which was similar to the effect of TBT. Splenic glutathione S-transferase (GST) activities were significantly elevated in S. marmoratus exposed to BaP starting from 7 d and remained high up to 25 d. However, no further activity change was found with prolonged exposure. Cotreatment of BaP and TBT primarily inhibited the GST activity, which was similar to the effect of TBT. Cotreatment with BaP and TBT for 25 or 50 d potentiated the depletion of GSH (glutathione) by BaP or TBT alone. MDA (malondialdehyde) contents in spleen of S. marmoratus were not significantly altered compared with the control during the test period. Spleen, as an immune organ, is sensitive to exposure of BaP or TBT. It should have an effective mechanism to counteract oxidative damage. Antioxidative defense systems in spleen of S. marmoratus should be considered as potential biomarkers. Short-term exposure of BaP or TBT could result in induction of antioxidant defense system. A significant decrease of these indices, such as GSH, GST, GPx might indicate more severe contamination.展开更多
Foxtail millet (Setaria italica L.) is an important food and fodder crop in semi-arid areas. However, there are few herbicides suitable for use on weed control in field-grown foxtail millet during the post-emergence...Foxtail millet (Setaria italica L.) is an important food and fodder crop in semi-arid areas. However, there are few herbicides suitable for use on weed control in field-grown foxtail millet during the post-emergence herbicides stage. The present study was conducted using four concentrations (0.5, 1, 2, and 4 L ai ha-1) of foliar-applied fluroxypyr, and the effect of fluroxypyr on selected metabolic and stress-related parameters in foxtail millet were assessed after 15 days. In this study, increasing concentrations decreased plant height and accumulation of chlorophylls. Our results also showed that malondialdehyde (MDA) accumulated in response to fluroxypyr application, demonstrating increased lipid peroxidation due to excessive reactive oxygen species production. In response to this oxidative stress, the activities of antioxidant enzymes were generally enhanced. Non-enzymatic antioxidant defense systems, which function in concert with antioxidant enzymes, can also protect plant cells from oxidative damage by scavenging reactive oxygen species (ROS). In conclusion, the hybrid variety (Zhangzagu) exhibited a greater tolerance to fluroxypyr than did the conventional variety Jingu 21, which might be associated with the antioxidant mechanisms of Zhangzagu hybrid millet.展开更多
A potted experiment was carried out to study the effect of an arbuscular mycorrhizal fungus(Diversispora versiformis)and arbuscular mycorrhizal like fungus(Piriformospora indica)on antioxidant enzyme defense system of...A potted experiment was carried out to study the effect of an arbuscular mycorrhizal fungus(Diversispora versiformis)and arbuscular mycorrhizal like fungus(Piriformospora indica)on antioxidant enzyme defense system of Satsuma orange(Citrus sinensis cv.Oita 4)grafted on Poncirus trifoliata under favourable temperature(25°C)and cold temperature(0°C)for 12 h.Such short-term treatment of cold temperature did not cause any significant change in root fungal colonization and spore density in soil.Under cold stress,D.versiformis inoculation did not change the activity of superoxide dismutase(SOD),catalase(CAT),and peroxidase(POD)in leaves and roots,whereas P.indica inoculation significantly increased the activity of CAT in roots and POD in leaves only.In addition,inoculation of two mycorrhizal fungi under cold stress significantly increased the relative expression levels of PtPOD and PtF-SOD in leaves,P.indica up-regulated the expression levels of PtCu/Zn-SOD in leaves,and D.versiformis also induced the expression levels of PtMn-SOD and PtCAT1 in leaves.In addition,inoculated Oita 4 trees maintained significantly lower hydrogen peroxide levels and malondialdehyde contents in leaves and roots under cold temperature,suggesting lower oxidative damage.Therefore,we concluded that arbuscular mycorrhizal fungi(especially P.indica)mainly induced the expression of antioxidant enzyme genes,depending on the fungal species,and thus mitigated oxidative damage for higher cold resistance in inoculated plants.展开更多
基金supported by the National Natural Science Foundation of China (No. 20777040)the Hi-TechResearch and Development Program (863) of China (No.2007AA061201).
文摘Under the indoor simulant conditions, toxic effects of crude-oil-contaminated soil which was put into aquatic environment on the young fishes Carassius auratus and their hepatic antioxidant system after a 20-d exposure were investigated. Results showed that the relationship between the mortality of C. auratus and the exposed doses could be divided into 3 phases: fishes exposed to the low dose groups (0.5-5.0 g/L) were dead due to the ingestion of crude-oil-contaminated soils in aquatic environment; at the medium dose groups (5.0-25.0 g/L) fishes were dead due to the penetration of toxic substances; at the high dose groups (25.0-50.0 g/L) fishes were dead due to environmental stress. The highest mortality and death speed were found in the 1.0 g/L dose group, and the death speed was sharply increased in the 50.0 g/L dose group in the late phase of exposure. The activities of superoxide dismutase (SOD), catalase (CAT) and glutathione S-transferase (GST) and the content of malaondialdehyde (MDA) in the hepatic tissues of C. auratus were induced significantly. The activity of SOD was increased and then decreased. It was significantly inhibited in the 50.0 g/L dose group. The activity of CAT was highly induced, and restored to a level which is little more than the control when the exposed doses exceeded 10.0 g/L. The activity of GST was the most sensitive, it was significantly induced in all dose groups, and the highest elevation was up to 6 times in the 0.5 g/L dose group comparing with the control. The MDA content was significantly elevated in the 50.0 g/L dose group, and the changes of the MDA content were opposite with the changes of GST activity.
基金Project (No. 2006C12098) supported by the Science and Technology Department of Zhejiang Province, China
文摘The study was conducted to investigate fasting effects on flesh composition and antioxidant defenses of market-size Sparus macrocephalus. Two hundred fish (main initial weight 580 g) were divided into two groups (control and fasted) and reared in 6 cages. After two weeks of adaptation, group I fasted for 28 d; group II was fed normally as a control. In 3, 7, 14, 21 and 28 d, 6 fish per group were sampled for proximate flesh composition, liver antioxidant enzyme activities and malondialdehyde flesh content analyses. In fasted fish, the reduction of lipid content in muscle occurred after day 3, and, compared to controls, the content of protein decreased from day 14, the activities of liver antioxidative enzymes superoxide dismutase (SOD) and glutathione peroxidase (GPX) increased from day 3, and flesh malondialdehyde levels increased from day 21. Flesh fat reduction shows that fasting may be used as a technique to reduce flesh lipid content in Sparus macrocephalus. However, considering flesh protein loss and the subsequent oxidative stress, the fasting technique should be used with precautions.
基金Supported by the National Natural Science Foundation of China(No.81771499)the Natural Science Foundation of Hebei Province,China(No.H2018206099,No.H2021206460)。
文摘AIM:To determine whether an antisense RNA corresponding to the human Alu transposable element(Aluas RNA)can protect human lens epithelial cells(HLECs)from methylglyoxal-induced apoptosis.METHODS:Cell counting kit-8(CCK-8)and 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide(MTT)assays were used to assess HLEC viability.HLEC viability/death was detected using a Calcein-AM/PI double staining kit;the annexin V-FITC method was used to detect HLEC apoptosis.The cytosolic reactive oxygen species(ROS)levels in HLECs were determined using a reactive species assay kit.The levels of malondialdehyde(MDA)and the antioxidant activities of total-superoxide dismutase(T-SOD)and glutathione peroxidase(GSH-Px)were assessed in HLECs using their respective kits.RT-q PCR and Western blotting were used to measure m RNA and protein expression levels of the genes.RESULTS:Aluas RNA rescued methylglyoxal-induced apoptosis in HLECs and ameliorated both the methylglyoxalinduced decrease in Bcl-2 m RNA and the methylglyoxalinduced increase in Bax m RNA.In addition,Aluas RNA inhibited the methylglyoxal-induced increase in Alu sense RNA expression.Aluas RNA inhibited the production of ROS induced by methylglyoxal,restored T-SOD and GSHPx activity,and moderated the increase in MDA content after treatment with methylglyoxal.Aluas RNA significantly restored the methylglyoxal-induced down-regulation of Nrf2 gene and antioxidant defense genes,including glutathione peroxidase,heme oxygenase 1,γ-glutamylcysteine synthetase and quinone oxidoreductase 1.Aluas RNA ameliorated methylglyoxal-induced increases of the m RNA and protein expression of Keap1 that is the negative regulator of Nrf2.CONCLUSION:Aluas RNA reduces apoptosis induced by methylglyoxal by enhancing antioxidant defense.
文摘Salinity is one of the most severe abiotic stresses for crop production.The present study investigates the salinityinduced modulation in growth indicators,morphology and movement of stomata,photosynthetic pigments,activity of carbonic anhydrase as well as nitrate reductase,and antioxidant systems in two varieties of chickpea(Pusa-BG5023,and Pusa-BGD72).On 20^(th) day of sowing,plants were treated with varying levels of NaCl(0,50,100,150 and 200 mM)followed by sampling on 45 days of sowing.Recorded observations on both the varieties reveal that salt stress leads to a significant decline in growth,dry biomass,leaf area,photosynthetic pigments,protein content,stomatal behavior,cell viability,activity of nitrate reductase and carbonic anhydrase with the rise in the concentration of salt.However,quantitatively these changes were less in Pusa-BG5023 as compared to Pusa-BGD72.Furthermore,salinity-induced oxidative stress enhanced malondialdehyde content,superoxide radicals,foliar proline content,and the enzymatic activities of superoxide dismutase,catalase,and peroxidase.The variety Pusa-BGD72 was found more sensitive than Pusa-BG5023 to salt stress.Out of different graded concentrations(50,100,150 and 200 mM)of sodium chloride,50 mM was least toxic,and 200 mM was most damaging.The differential behavior of these two varieties measured in terms of stomatal behavior,cell viability,photosynthetic pigments,and antioxidant defense system can be used as prospective indicators for selection of chickpea plants for salt tolerance and sensitivity.
基金This study was financially supported by grants from the National Natural Science Foundation of China(No.31971420,32171497).
文摘Extreme hot weather is occurring more frequently due to global warming,posing a significant threat to species survival.Birds in particular are more likely to overheat in hot weather because they have a higher body temperature.This study used a heat stress model to investigate the antioxidant defense mechanisms and changes in fatty acid catabolism in Red-billed Leiothrix(Leiothrix lutea)to gain an understanding of how birds adapt to high temperatures.The birds were divided into five groups:a control group(30℃for 0 days),1 D group(40℃for 1 day),3 D group(40℃for 3 days),14 D group(40℃for 14 days)and recovery group(40℃for 14 days,then 30℃for 14 days).Our results indicated that when Red-billed Leiothrix are subjected to heat stress,malondialdehyde(MDA)content in the liver significantly increased,as did the enzyme activities of catalase(CAT),glutathione-SH-peroxidase(GSH-PX)and total antioxidant capacity(T-AOC)in the liver.Furthermore,there was a significant increase in heat shock protein 70(HSP70)expression in the liver,while avian uncoupling protein(avUCP)expression in muscle was significantly reduced.Additionally,there was a significant reduction in fatty acid catabolism enzyme activity such as 3-hydroxyacyl-CoAdehydrogenase(HOAD)activity in the heart,and carnitine palmitoyl transferase 1(CPT-1)and citrate synthase(CS)activity in the heart and liver.Furthermore,fatty acid translocase(FAT/CD36)in the heart,heart-type fatty acid binding protein(H-FABP)and fatty acid binding protein(FABP-pm)in the liver and heart were also significantly decreased.These changes reverted after treatment,but not to the same level as the control group.Our results indicated that when Red-billed Leiothrix are exposed to heat stress their internal antioxidant defense system is activated to counteract the damage caused by high temperatures.However,even with high antioxidant levels,prolonged high temperature exposure still caused some degree of oxidative damage possibly requiring a longer recovery time.Additionally,Red-billed Leiothrix may be able to resist heat stress by reducing fatty acid transport and catabolism.
文摘Arsenic(As)contaminated food chains have emerged as a serious public concern for humans and animals and are known to affect the cultivation of edible crops throughout the world.Therefore,the present study was designed to investigate the individual as well as the combined effects of exogenous silicon(Si)and sodium nitroprusside(SNP),a nitric oxide(NO)donor,on plant growth,metabolites,and antioxidant defense systems of radish(Raphanus sativus L.)plants under three different concentrations of As stress,i.e.,0.3,0.5,and 0.7 mM in a pot experiment.The results showed that As stress reduced the growth parameters of radish plants by increasing the level of oxidative stress markers,i.e.,malondialdehyde and hydrogen peroxide.However,foliar application of Si(2 mM)and pretreatment with SNP(100μM)alone as well as in combination with Si improved the plant growth parameters,i.e.,root length,fresh and dry weight of plants under As stress.Furthermore,As stress also reduced protein,and metabolites contents(flavonoids,phenolic and anthocyanin).Activities of antioxidative enzymes such as catalase(CAT),ascorbate peroxidase(APX),guaiacol peroxidase(POD),and polyphenol oxidase(PPO),as well as the content of non-enzymatic antioxidants(glutathione and ascorbic acid)decreased under As stress.In most of the parameters in radish,As III concentration showed maximum reduction,as compared to As I and II concentrations.However,the individual and combined application of Si and NO significantly alleviated the As-mediated oxidative stress in radish plants by increasing the protein,and metabolites content.Enhancement in the activities of CAT,APX,POD and PPO enzymes were recorded.Contents of glutathione and ascorbic acid were also enhanced in response to co-application of Si and NO under As stress.Results obtained were more pronounced when Si and NO were applied in combination under As stress,as compared to their individual application.In short,the current study highlights that Si and NO synergistically regulate plant growth through lowering the As-mediated oxidative stress by upregulating the metabolites content,activity of antioxidative enzymes and non-enzymatic antioxidants in radish plants.
文摘Marine zooplankton responds sensitively to elevated seawater CO_2 concentration. However, the underlying physiological mechanisms have not been studied well. We therefore investigated the effects of elevated CO_2concentration(0.08%, 0.20%, 0.50% and 1.00%) on antioxidant defense components, as well as two detoxification enzymes of Calanus sinicus(copepod). The results showed that glutathione peroxidase(GPx) activity exposed to CO_2-acidified seawater was significantly stimulated while other antioxidant components, including glutathione-Stransferase(GST) activity, superoxide dismutase(SOD) activity decreased significantly with reduced glutathione(GSH) level and GSH/oxidized glutathione(GSSG) value. CO_2-acidified seawater exhibited stimulatory effects on adenosine triphosphatase(ATPase) activity and acetylcholinesterase(Ach E) activity was inhibited. Moreover, the results of principal component analysis indicated that 75.93% of the overall variance was explained by the first two principal components. The elevated CO_2 concentration may affect the metabolism and survivals of copepods through impacts these enzymes activities. Further studies are needed to focus on the synergistic effects of elevated CO_2 concentration and other environmental factors on copepods.
基金Project(41161057)supported by the National Natural Science Foundation of ChinaProject(Guikezhuan 14122008-2)supported by Guangxi Provincial Science and Technology Development,China+2 种基金Project(2014GXNSFAA118303)supported by the Natural Science Foundation of Guangxi Province,ChinaProjects(YRHJ15K002,YRHJ15Z026)supported by Key Laboratory of Karst Ecology and Environment Change of Guangxi Normal University,ChinaProject(2016JJ6135)supported by the Natural Science Foundation of Hunan Province,China
文摘The response of enzyme and non-enzymatic antioxidants of Mn hyperaccumuator, Polygonum hydropiper (P. hydropiper), to Mn stress was studied using hydroponics culture experiments to explore the mechanism of Mn tolerance in this species. Results showed that both chlorophyll and carotenoid contents significantly (p〈0.05) decreased with increasing Mn treatment levels (0, 0.5, 1, 2, 4, and 8 mg/L) in hydroponics. The concentrations of malondialdehyde (MDA) and hydrogen peroxide (H202) in the root and shoot of P hydropiper were accumulated under Mn stress. Meanwhile, the anti-oxidative functions of several important enzymes, including superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX) and peroxidase (POD) in plants were stimulated by Mn spike in leaves and roots, especially at low Mn stress; while sulfhydryl group (--SH) and glutathion (GSH) were likely involved in Mn detoxification ofP. hydropiper under high Mn stress.
文摘Acute pancreatitis is an inflammation initially localized in the pancreas,which may be accompanied with severe complications such as multi-organ failure,gastrointestinal hemorrhage and malnutrition.One in ten severe cases of acute pancreatitis develops systemic inflammatory response syndrome.Despite treatment,acute pancreatitis can be a life-threatening disease as its mortality rate amounts to 5%-10%in general,and up to 35%in cases of severe course.[1]Over the years,the role of oxidative stress
基金supported by the National Natural Science Foundation of China(Grant No.32061143012 to A.Z.,32101352 to X.H.).
文摘Marine ecosystems are facing escalating environmental fluctuations owing to climate change and human activities,imposing pressures on marine species.To withstand recurring environmental challenges,marine organisms,especially benthic species lacking behavioral choices to select optimal habitats,have to utilize well-established strategies such as the antioxidant defense system(ADS)to ensure their survival.Therefore,understanding of the mechanisms governing the ADS-based response is essential for gaining insights into adaptive strategies for managing environmental challenges.Here we conducted a com-parative analysis of the physiological and transcriptional responses based on the ADS during two rounds of'hypersalinity-recovery'challenges in two model congeneric invasive ascidians,Ciona robusta and C.savignyi.Our results demonstrated that C.savignyi exhibited higher tolerance and resistance to salinity stresses at the physiological level,while C.robusta demonstrated heightened responses at the transcriptional level.We observed distinct transcriptional responses,particularly in the utilization of two superoxide dismutase(SOD)isoforms.Both Ciona species developed physiological stress memory with elevated total SOD(T-SOD)and glutathione(GSH)responses,while only C.robusta demonstrated transcriptional stress memory.The regulatory distinctions within the Nrf2-Keap1 signalling pathway likely explain the formation disparity of transcriptional stress memory between both Ciona species.These findings support the'context-dependent stress memory hypothesis',emphasizing the emergence of species-specific stress memory at diverse regulatory levels in response to recurrent environmental challenges.Our results enhance our understanding of the mechanisms of environmental challenge manage-ment in marine species,particularly those related to the ADS.
基金supported by the National Basic Research Program of China (2012CB114306)the National Natural Science Foundation of China (90717108, 30700491, 30970238, 31070254, and 31071344)+5 种基金the Fundamental Research Funds for the Central Universities (KYZ200905, KYT201001, and KYZ201157)the Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutionsthe Natural Science Foundation of Jiangsu Province (BK2010455)the Research Fund for the Doctoral Program of Higher Education of China (20090097110017)the Program for New Century Excellent Talents in University (NCET-10-0498)the Grant from the Education Department of Jiangsu (200910)
文摘C2H2-type zinc finger proteins (ZFPs) are thought to play important roles in modulating the responses of plants to drought, salinity and oxidative stress. However, direct evidence is lacking for the involvement of these ZFPs in abscisic acid (ABA)-induced antioxidant defense in plants. In this study, the role of the rice (Oryza sativa L. sub.japonica cv. Nipponbare) C2H2-type ZFP ZFP182 in ABA-induced antioxidant defense and the relationship between ZFP182 and two rice MAPKs, OsMPK1 and OsMPK5 in ABA signaling were investigated. ABA treatment induced the increases in the expression of ZFP182, OsMPK1 and OsMPK5, and the activities of superoxide dismutase (SOD) and ascorbate peroxidase (APX) in rice leaves. The transient gene expression analysis and the transient RNA interference (RNAi) analysis in protoplasts showed that ZFP182, OsMPK1 and OsMPK5 are involved in ABA-induced up-regulation in the activities of SOD and APX. Besides, OsMPK1 and OsMPK5 were shown to be required for the up-regulation in the expression of ZFP182 in ABA signaling, but ZFP182 did not mediate the ABA-induced up-regulation in the expression of OsMPK1 and OsMPKS. These results indicate that ZFP182 is required for ABA-induced antioxidant defense and the expression of ZFP182 is regulated by rice MAPKs in ABA signaling.
基金the National Basic Research Program of China,the National Natural Science Foundation of China,the Fundamental Research Funds for the Central Universities,the Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions,the Natural Science Foundation of Jiangsu Province,the Research Fund for the Doctoral Program of Higher Education of China,the Program for New Century Excellent Talents in University,the grant from the Education Department of Jiangsu
文摘Ca^2+ and calmodulin (CAM) have been shown to play an important role in abscisic acid (ABA)-induced anti- oxidant defense. However, it is unknown whether Ca^2+/CaM-dependent protein kinase (CCaMK) is involved in the pro- cess. In the present study, the role of rice CCaMK, OsDMI3, in ABA-induced antioxidant defense was investigated in leaves of rice (Oryza sativa) plants. Treatments with ABA, H2O2, and polyethylene glycol (PEG) induced the expression of OsDMI3 and the activity of OsDMI3, and H2O2 is required for the ABA-induced increases in the expression and the activity of OsDMI3 under water stress. Subcellular localization analysis showed that OsDMI3 is located in the nucleus, the cytoplasm, and the plasma membrane. The analysis of the transient expression of OsDMI3 in rice protoplasts and the RNA interference (RNAi) silencing of OsDMI3 in rice protoplasts showed that OsDMI3 is required for ABA-induced increases in the expression and the activities of superoxide dismutase (SOD) and catalase (CAT). Further, the oxidative damage induced by higher concentrations of PEG and H202 was aggravated in the mutant of OsDMI3. Moreover, the analysis of the RNAi silencing of OsDMI3 in protoplasts and the mutant of OsDMI3 showed that higher levels of H2O2 accumulation require OsDMI3 activation in ABA signaling, but the initial H2O2 production induced by ABA is not depend- ent on the activation of OsDMI3 in leaves of rice plants. Our data reveal that OsDMI3 is an important component in ABA-induced antioxidant defense in rice.
基金Supported by the Science Foundation for New Teachers of Doctoral Subject Point of the Ministry of Education of China (20070307018).
文摘Using pharmacological and biochemical approaches, the role of maize polyamine oxidase (MPAO) in abscisic acid (ABA)- induced antioxidant defense in leaves of maize (Zea mays L.) plants was investigated. Exogenous ABA treatment enhanced the expression of the MPAO gene and the activities of apoplastic MPAO. Pretreatment with two different inhibitors for apoplastic MPAO partly reduced hydrogen peroxide (H202) accumulation induced by ABA and blocked the ABA-induced expression of the antioxidant genes superoxide dismutase 4 and cytosolic ascorbate peroxidase and the activities of the cytosolic antioxidant enzymes. Treatment with spermidine, the optimum substrate of MPAO, also induced the expression and the activities of the antioxidant enzymes, and the upregulation of the antioxidant enzymes was prevented by two inhibitors of MPAO and two scavengers of H202. These results suggest that MPAO contributes to ABA-induced cytosolic antioxidant defense through H202, a Spd catabolic product.
基金supported by the National Basic Research Program of China (2012CB114306)the National Natural Science Foundation of China (31070254 and 31271631)+2 种基金the Fundamental Research Funds for the Central Universities (KYZ201157 and KYTZ201402)the Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutionsthe Research Fund for the Doctoral Program of Higher Education of China (20130097110025)
文摘In this study, the role of the rice (Oryza sativa L.) histidine kinase OsHK3 in abscisic acid (ABA)-induced antioxidant defense was investigated. Treatments with ABA, H2O2, and polyethylene glycol (PEG) induced the expression of OsHK3 in rice leaves, and H2O2 is required for ABA-induced increase in the expression of OsHK3 under water stress. Subcellular localization analysis showed that OsHK3 is located in the cytoplasm and the plasma membrane. The transient expression analysis and the transient RNA interference test in rice protoplasts showed that OsHK3 is required for ABA-induced upreguiation in the expression of antioxidant enzymes genes and the activities of antioxidant enzymes. Further analysis showed that OsHK3 functions upstream of the calcium/ calmodulin-dependent protein kinase OsDMI3 and the mitogen-activated protein kinase OsMPK1 to regulate the activities of antioxidant enzymes in ABA signaling. Moreover, OsHK3 was also shown to regulate the expression of nicotinamide adenine dinucleotide phosphate oxidase genes, OsrbohB and OsrbohE, and the production of H2O2 in ABA signaling. Our data indicate that OsHK3 play an important role in the regulation of ABA-induced antioxidant defense and in the feedback regulation of H2O2 production in ABA signaling.
基金Supported by the National Natural Science Foundation of China (90717108 and 30700491)the Open Project of the National Key Laboratory of Crop Genetics and Germplasm Enhancement of Nanjing Agricultural University(ZW2007002)
文摘Using pharmacological and biochemical approaches, the role of protein phosphorylation and the interrelationship between water stress-enhanced kinase activity, antioxidant enzyme activity, hydrogen peroxide (H202) accumulation and endogenous abscisic acid in maize (Zea mays L.) leaves were investigated. Water-stress upregulated the activities of total protein phosphorylation and Ca^2+-dependent protein kinase, and the upregulation was blocked in abscisic aciddeficient vp5 mutant. Furthermore, pretreatments with a nicotinamide adenine dinucleotide phosphate oxidase inhibitor and a scavenger of H2O2 significantly reduced the increased activities of total protein kinase and Ca^2+-dependent protein kinase in maize leaves exposed to water stress. Pretreatments with different protein kinase inhibitors also reduced the water stress-induced H2O2 production and the water stress-enhanced activities of antioxidant enzymes such as superoxide dismutase, catalase, ascorbate peroxidase and glutathione reductase. The data suggest that protein phosphorylation and H2O2 generation are required for water stress-induced antioxidant defense in maize leaves and that crosstalk between protein phosphorylation and H2O2 generation may occur.
基金financially supported by the National Key Research and Development Program of China(2022YFF1302804)the National Natural Science Foundation of China(31901123).
文摘Non-hydraulic root signals(nHRS)are affirmed as a unique positive response to soil drying,and play a crucial role in regulating water use efficiency and yield formation in dryland wheat production.Strigolactones(SLs)can enhance plant drought adaptability.However,the question of whether strigolactones enhance grain yield and water use efficiency by regulating nHRS and antioxidant defense systems in dryland wheat remains unanswered.In this study,pot experiments were conducted to investigate the effects of strigolactones on nHRS,antioxidant defense system,and grain yield and water use efficiency in dryland wheat.The results showed that external application of SLs increased drought-induced abscisic acid(ABA)accumulation and activated an earlier trigger of nHRS at 73.4% field capacity(FC),compared to 68.5%FC in the control group(CK).This phenomenon was mechanically associated with the physiological mediation of SLs.The application of SLs significantly enhanced the activities of leaf antioxidant enzymes,reduced ROS production,and mitigated oxidative damage to lipid membrane.Additionally,root biomass,root length density,and root to shoot ratio were increased under strigolactone treatment.Furthermore,exogenous application of SLs significantly increased grain yield by 34.9%under moderate drought stress.Water use efficiency was also increased by 21.5% and 33.3% under moderate and severe drought conditions respectively,compared to the control group(CK).The results suggested that the application of strigolactones triggered earlier drought-sensing mechanism and improved the antioxidant defense ability,thus enhancing grain yield and water use efficiency in dryland wheat production.
基金Supported by National Scientific and Technical Research Council(CONICET)the National Agency of Scientific and Technologic Promotion(FONCYT)(PICT-BID)and National University of San Luis(Argentina)PROICO N°2/1112,PROICO N°2/0403 and PROICO N°2/1512.
文摘Objective:To analyze the effect of Cadmium(Cd)on the metabolism of reduced glutathione(GSH)in roots and leaves of Glycine max L.Methods:A capillary electrophoresis methodology was optimized to determinate simultaneously GSH and reduced and oxidized GSH in a precise and accurate way.The functional role of the genes involved in GSH cellular metabolism(γ-glutamylcysteine synthetase),GSH synthetase and glutathione reductase(GR)was evaluated.Finally,the activities of antioxidant enzymes as GR and superoxide dismutases were determinate.Results:The studies ofγ-glutamylcysteine synthetase and GSH synthetase gene expression showed an increase and GR showed a decrease in Cd-treated plants.GR and superoxide dismutases activities increased at 24 h and 6 h respectively in roots under Cd exposure.GSH content was higher and showed a significant increase in roots and leaves at 6 h and 24 h of treatment.Conclusions:The results of the present study showed a better understanding in signaling pathway by alterations in antioxidant mechanisms by Cd in soybean seedlings.
基金Project supported by the National Natural Science Foundation of China(No.20447001, 40476049)the Natural Science Foundation of Fujian Province of China(No. D0410007).
文摘It has been reported that there is an interaction between Benzo[a]pyrene (BaP), a widespread carcinogenic polycyclic aromatic hydrocarbon, and tributyltin (TBT), an organometal used as an antifouling biocide. This study was therefore designed to examine the potential in vivo influence of BaP, TBT and their mixture on splenic antioxidant defense systems of Sebastiscus marmoratus. The fish were exposed to water containing environmentally relevant concentrations of BaP, TBT and their mixture. Spleens were collected for biochemical analysis after exposure for 7, 25, 50 d and after recovery for 7, 20 d. Cotreatment with BaP and TBT for 7 d potentiated the induction of glutathione peroxidase (GPx) activity by BaP or TBT alone. The cotreatment for 25 and 50 d resulted in inhibition of GPx activity, which was similar to the effect of TBT. Splenic glutathione S-transferase (GST) activities were significantly elevated in S. marmoratus exposed to BaP starting from 7 d and remained high up to 25 d. However, no further activity change was found with prolonged exposure. Cotreatment of BaP and TBT primarily inhibited the GST activity, which was similar to the effect of TBT. Cotreatment with BaP and TBT for 25 or 50 d potentiated the depletion of GSH (glutathione) by BaP or TBT alone. MDA (malondialdehyde) contents in spleen of S. marmoratus were not significantly altered compared with the control during the test period. Spleen, as an immune organ, is sensitive to exposure of BaP or TBT. It should have an effective mechanism to counteract oxidative damage. Antioxidative defense systems in spleen of S. marmoratus should be considered as potential biomarkers. Short-term exposure of BaP or TBT could result in induction of antioxidant defense system. A significant decrease of these indices, such as GSH, GST, GPx might indicate more severe contamination.
基金supported by the National Natural Science Foundation of China (31301269)the National Key Technologies R&D Program of China (2014BAD07B01)+3 种基金the Scientific and Technological Project in Shanxi Province, China (20150311016-2)the Science and Technology Key Research Project in Shanxi Province, China (2015-TN09)the Key Research and Development General Project in Shanxi Province, China (201603D221003-2)the Program for the Top Young Innovative Talents of Shanxi Agricultural University, China (TYIT201406)
文摘Foxtail millet (Setaria italica L.) is an important food and fodder crop in semi-arid areas. However, there are few herbicides suitable for use on weed control in field-grown foxtail millet during the post-emergence herbicides stage. The present study was conducted using four concentrations (0.5, 1, 2, and 4 L ai ha-1) of foliar-applied fluroxypyr, and the effect of fluroxypyr on selected metabolic and stress-related parameters in foxtail millet were assessed after 15 days. In this study, increasing concentrations decreased plant height and accumulation of chlorophylls. Our results also showed that malondialdehyde (MDA) accumulated in response to fluroxypyr application, demonstrating increased lipid peroxidation due to excessive reactive oxygen species production. In response to this oxidative stress, the activities of antioxidant enzymes were generally enhanced. Non-enzymatic antioxidant defense systems, which function in concert with antioxidant enzymes, can also protect plant cells from oxidative damage by scavenging reactive oxygen species (ROS). In conclusion, the hybrid variety (Zhangzagu) exhibited a greater tolerance to fluroxypyr than did the conventional variety Jingu 21, which might be associated with the antioxidant mechanisms of Zhangzagu hybrid millet.
基金This study was supported by the Plan in Scientific and Technological Innovation Team of Outstanding Young Scientists,Hubei Provincial Department of Education(T201604)the Hubei Agricultural Science and Technology Innovation Action Project(Hubei Nongfa[2018]No.1)+1 种基金The authors would like to extend their sincere appreciation to the Researchers Supporting Project Number(RSP-2021/134)King Saud University,Riyadh,Saudi Arabia.
文摘A potted experiment was carried out to study the effect of an arbuscular mycorrhizal fungus(Diversispora versiformis)and arbuscular mycorrhizal like fungus(Piriformospora indica)on antioxidant enzyme defense system of Satsuma orange(Citrus sinensis cv.Oita 4)grafted on Poncirus trifoliata under favourable temperature(25°C)and cold temperature(0°C)for 12 h.Such short-term treatment of cold temperature did not cause any significant change in root fungal colonization and spore density in soil.Under cold stress,D.versiformis inoculation did not change the activity of superoxide dismutase(SOD),catalase(CAT),and peroxidase(POD)in leaves and roots,whereas P.indica inoculation significantly increased the activity of CAT in roots and POD in leaves only.In addition,inoculation of two mycorrhizal fungi under cold stress significantly increased the relative expression levels of PtPOD and PtF-SOD in leaves,P.indica up-regulated the expression levels of PtCu/Zn-SOD in leaves,and D.versiformis also induced the expression levels of PtMn-SOD and PtCAT1 in leaves.In addition,inoculated Oita 4 trees maintained significantly lower hydrogen peroxide levels and malondialdehyde contents in leaves and roots under cold temperature,suggesting lower oxidative damage.Therefore,we concluded that arbuscular mycorrhizal fungi(especially P.indica)mainly induced the expression of antioxidant enzyme genes,depending on the fungal species,and thus mitigated oxidative damage for higher cold resistance in inoculated plants.