期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Sulforaphane protects liver injury induced by intestinal ischemia reperfusion through Nrf2-ARE pathway 被引量:23
1
作者 Zhao, Hai-Dong Zhang, Feng +6 位作者 Shen, Gang Li, Yu-Bing Li, Ying-Hua Jing, Hui-Rong Ma, Ling-Fei Yao, Ji-Hong Tian, Xiao-Feng 《World Journal of Gastroenterology》 SCIE CAS CSCD 2010年第24期3002-3010,共9页
AIM: To investigate the effect of sulforaphane (SFN) on regulation of NF-E2-related factor-2 (Nrf2)-antiox-idant response element (ARE) pathway in liver injury induced by intestinal ischemia/reperfusion (I/R). METHODS... AIM: To investigate the effect of sulforaphane (SFN) on regulation of NF-E2-related factor-2 (Nrf2)-antiox-idant response element (ARE) pathway in liver injury induced by intestinal ischemia/reperfusion (I/R). METHODS: Rats were divided randomly into four ex-perimental groups: control, SFN control, intestinal I/R and SFN pretreatment groups (n = 8 in each group). The intestinal I/R model was established by clamping the superior mesenteric artery for 1 h and 2 h reperfu-sion. In the SFN pretreatment group, surgery was performed as in the intestinal I/R group, with intraperitoneal administration of 3 mg/kg SFN 1 h before the op-eration. Intestine and liver histology was investigated. Serum levels of aspartate aminotransferase (AST), and alanine aminotransferase (ALT) were measured. Liver tissue superoxide dismutase (SOD), myeloperoxidase (MPO), glutathione (GSH) and glutathione peroxidase (GSH-Px) activity were assayed. The liver transcription factor Nrf2 and heme oxygenase-1 (HO-1) were determined by immunohistochemical analysis and Western blotting analysis.RESULTS: Intestinal I/R induced intestinal and liver injury, characterized by histological changes as well as a signif icant increase in serum AST and ALT levels (AST: 260.13 ± 40.17 U/L vs 186.00 ± 24.21 U/L, P < 0.01; ALT: 139.63 ± 11.35 U/L vs 48.38 ± 10.73 U/L, P < 0.01), all of which were reduced by pretreatment with SFN, respectively (AST: 260.13 ± 40.17 U/L vs 216.63 ± 22.65 U/L, P < 0.05; ALT: 139.63 ± 11.35 U/L vs 97.63 ± 15.56 U/L, P < 0.01). The activity of SOD in the liver tissue decreased after intestinal I/R (P < 0.01), which was enhanced by SFN pretreatment (P < 0.05). In ad-dition, compared with the control group, SFN markedly reduced liver tissue MPO activity (P < 0.05) and elevat-ed liver tissue GSH and GSH-Px activity (P < 0.05, P < 0.05), which was in parallel with the increased level of liver Nrf2 and HO-1 expression.CONCLUSION: SFN pretreatment attenuates liver injury induced by intestinal I/R in rats, attributable to the antioxidant effect through Nrf2-ARE pathway. 展开更多
关键词 SULFORAPHANE Liver injury Intestinal isch-emia reperfusion NF-E2-related factor-2 antioxidant response element
下载PDF
Pachymic Acid Ameliorates Pulmonary Hypertension by Regulating Nrf2-Keap1-ARE Pathway 被引量:7
2
作者 Yuan HE Jian-hua ZHONG +6 位作者 Xiao-dong WEI Chu-ying HUANG Pai-lan PENG Jun YAO Xiu-sheng SONG Wan-li FAN Guang-cai LI 《Current Medical Science》 SCIE CAS 2022年第1期56-67,共12页
Objective:Pulmonary hypertension(PH)is a severe pulmonary vascular disease that eventually leads to right ventricular failure and death.The purpose of this study was to investigate the mechanism by which pachymic acid... Objective:Pulmonary hypertension(PH)is a severe pulmonary vascular disease that eventually leads to right ventricular failure and death.The purpose of this study was to investigate the mechanism by which pachymic acid(PA)pretreatment affects PH and pulmonary vascular remodeling in rats.Methods:PH was induced via hypoxia exposure and administration of PA(5 mg/kg per day)in male Sprague-Dawley rats.Hemodynamic parameters were measured using a right ventricular floating catheter and pulmonary vascular morphometry was measured by hematoxylin-eosin(HE),a-SMA and Masson staining.MTT assays and EdU staining were used to detect cell proliferation,and apoptosis was analyzed by TUNEL staining.Western blotting and immunohistochemistry were used to detect the expression of proteins related to the Nrf2-Keapl-ARE pathway. 展开更多
关键词 pulmonary hypertension pachymic acid nuclear factor erythroid 2-related factor 2 Kelch-like epichlorohydrin-related protein 1 antioxidant response element
下载PDF
Low- and high-dose hydrogen peroxide regulation of transcription factor NF-E2-related factor 2 被引量:7
3
作者 NING Jiao-lin MO Li-wen LAI Xi-nan 《Chinese Medical Journal》 SCIE CAS CSCD 2010年第8期1063-1069,共7页
Background Reactive oxygen species (ROS) may play both physiological and pathophysiological roles. Transcription factor NF-E2-related factor 2 (Nrf2) regulates antioxidant response element (ARE)-mediated genes e... Background Reactive oxygen species (ROS) may play both physiological and pathophysiological roles. Transcription factor NF-E2-related factor 2 (Nrf2) regulates antioxidant response element (ARE)-mediated genes expression and coordinates induction of chemoprotective proteins in response to physical and chemical stresses. The exact role of Nrf2 in cellular responses to different levels of oxidative stresses remains unknown. Methods Rat pulmonary microvascular endothelial cells were cultured and treated with 0 mmol/L, 0.125 mmol/L, 0.25 mmol/L, 0.5 mmol/L, 1.0 mmol/L and 2.0 mmol/L hydrogen peroxide solution for 2 hours. Nrf2 gene expression was assayed by reverse transcription-PCR, Nrf2-ARE binding activity was assayed with electrophoretic mobility shift assay (EMSA), and localization of Nrf2 was detected with immunohistochemistry. Results Low and moderate (0.125 mmol/L, 0.25 mmol/L and 0.5 mmol/L) doses hydrogen peroxide exposure of rat pulmonary microvascular endothelial cells led to the nuclear accumulation of Nrf2, increased activity of transcription regulation and up-regulation of ARE-medicated gene expression. In contrast, high doses of hydrogen peroxide (1 mmol/L 2 mmol/L) exposure of the cells led to the nuclear exclusion of Nrf2, decreased activity transcription regulation and down-regulation of ARE-mediated gene expression. Conclusion Low and moderate doses of hydrogen peroxide play protective roles by increasing transcription activity of Nrf2, whereas high- dose hydrogen peroxide plays a deleterious role by decreasing transcription activity of Nrf2. 展开更多
关键词 pulmonary micro-vascular endothelial cells antioxidant responsive element hydrogen peroxide NF-E2-related factor 2
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部