In this study, the changes in activities of peroxidase (POD), glutathione S-transferase (GST), catalase (CAT), and superoxide distmuase (SOD) in leaves of four wheat cultivars, including resistant cultivars Sh...In this study, the changes in activities of peroxidase (POD), glutathione S-transferase (GST), catalase (CAT), and superoxide distmuase (SOD) in leaves of four wheat cultivars, including resistant cultivars Shannong 0431 and Shanhongmai, a mildsusceptible cultivar Lumai 21, and a susceptible cultivar Wenmai 6, were investigated to explore if these antioxidantrelated enzymes were involved in wheat defense response to Rhizoctonia cerealis attack. Results showed that the activities of these enzymes in different wheat cultivars varied greatly after challenging with R. cerealis. The POD activities in resistant cultivars Shannong 0431 and Shanhongmai increased much quicker after the inoculation and displayed much higher activity than that in susceptible cultivar Wenmai 6. In contrast, POD activity showed a slow accumulation and a delayed peak time. The activities of GST and CAT in Shannong 0431 and Lumai 21 increased obviously within 48 h post inoculation (hpi), whereas SOD activity decreased dramatically within 24 hpi in Shannong 0431 and 24-48 hpi in Lumai 21. In susceptible cultivar Wenmai 6, the SOD and CAT activities didn’t change obviously, whereas the activity of GST was decreased. The activities of CAT and GST in Shanhongmai did not show significant difference compared with those in Wenmai 6. Results suggested that POD activity may be positively associated with wheat defense to R. cerealis.展开更多
The current study aimed to assess the effect of timosaponin AⅢ(T-AⅢ)on drug-metabolizing enzymes during anticancer therapy.The in vivo experiments were conducted on nude and ICR mice.Following a 24-day administratio...The current study aimed to assess the effect of timosaponin AⅢ(T-AⅢ)on drug-metabolizing enzymes during anticancer therapy.The in vivo experiments were conducted on nude and ICR mice.Following a 24-day administration of T-AⅢ,the nude mice exhibited an induction of CYP2B10,MDR1,and CYP3A11 expression in the liver tissues.In the ICR mice,the expression levels of CYP2B10 and MDR1 increased after a three-day T-AⅢ administration.The in vitro assessments with HepG2 cells revealed that T-AⅢ induced the expression of CYP2B6,MDR1,and CYP3A4,along with constitutive androstane receptor(CAR)activation.Treatment with CAR siRNA reversed the T-AⅢ-induced increases in CYP2B6 and CYP3A4 expression.Furthermore,other CAR target genes also showed a significant increase in the expression.The up-regulation of murine CAR was observed in the liver tissues of both nude and ICR mice.Subsequent findings demonstrated that T-AⅢ activated CAR by inhibiting ERK1/2 phosphorylation,with this effect being partially reversed by the ERK activator t-BHQ.Inhibition of the ERK1/2 signaling pathway was also observed in vivo.Additionally,T-AⅢ inhibited the phosphorylation of EGFR at Tyr1173 and Tyr845,and suppressed EGF-induced phosphorylation of EGFR,ERK,and CAR.In the nude mice,T-AⅢ also inhibited EGFR phosphorylation.These results collectively indicate that T-AⅢ is a novel CAR activator through inhibition of the EGFR pathway.展开更多
To improve the amylose content(AC)and resistant starch content(RSC)of maize kernel starch,we employed the CRISPR/Cas9 system to create mutants of starch branching enzyme I(SBEI)and starch branching enzyme IIb(SBEIIb)....To improve the amylose content(AC)and resistant starch content(RSC)of maize kernel starch,we employed the CRISPR/Cas9 system to create mutants of starch branching enzyme I(SBEI)and starch branching enzyme IIb(SBEIIb).A frameshift mutation in SBEI(E1,a nucleotide insertion in exon 6)led to plants with higher RSC(1.07%),lower hundred-kernel weight(HKW,24.71±0.14 g),and lower plant height(PH,218.50±9.42 cm)compared to the wild type(WT).Like the WT,E1 kernel starch had irregular,polygonal shapes with sharp edges.A frameshift mutation in SBEIIb(E2,a four-nucleotide deletion in exon 8)led to higher AC(53.48%)and higher RSC(26.93%)than that for the WT.E2 kernel starch was significantly different from the WT regarding granule morphology,chain length distribution pattern,X-ray diffraction pattern,and thermal characteristics;the starch granules were more irregular in shape and comprised typical B-type crystals.Mutating SBEI and SBEIIb(E12)had a synergistic effect on RSC,HKW,PH,starch properties,and starch biosynthesis-associated gene expression.SBEIIa,SS1,SSIIa,SSIIIa,and SSIIIb were upregulated in E12 endosperm compared to WT endosperm.This study lays the foundation for rapidly improving the starch properties of elite maize lines.展开更多
Root exudates serve as crucial mediators for information exchange between plants and soil,and are an important evolutionary mechanism for plants’adaptation to environmental changes.In this study,15 different abiotic ...Root exudates serve as crucial mediators for information exchange between plants and soil,and are an important evolutionary mechanism for plants’adaptation to environmental changes.In this study,15 different abiotic stress models were established using various stress factors,including drought(D),high temperature(T),nitrogen deficiency(N),phosphorus deficiency(P),and their combinations.We investigated their effects on the seedling growth of Salvia miltiorrhiza Bunge and the activities of Solid-Urease(S-UE),Solid-Nitrite Reductase(S-NiR),Solid-Nitrate Reductase(S-NR),Solid-Phosphotransferase(S-PT),and Solid-Catalase(S-CAT),as well as the contents of polysaccharides in the culture medium.The results showed that the growth of S.miltiorrhiza was inhibited under 15 stress conditions.Among them,13 stress conditions increased the root-shoot ratio.These 15 stress conditions significantly reduced the activity of S-NR,two combinations significantly improved the activity of S-NIR,they were synergistic stresses of high temperature and nitrogen deficiency(TN),and synergistic stresses of drought and nitrogen deficiency(DN)(p<0.05).The activity of S-UE was significantly improved under N,D,T,synergistic stresses of drought and high temperature(DT),DN,synergistic stresses of drought and phosphorus deficiency(DP),and synergistic stresses of high temperature,nitrogen,and phosphorus deficiency(TNP)stress conditions(p<0.05).Most stress combinations reduced the activity of S-PT,but D and T significantly improved it.(p<0.05).The N,DN,and TN stress conditions significantly reduced S-CAT activity.The P,DT,and synergistic stresses of drought,high temperature,and phosphorus deficiency(DTP)significantly decreased the total polysaccharide content of the soil(p<0.05).The research suggested that abiotic stress hindered the growth of S.miltiorrhiza and altered the behavior of root secretion.Roots regulated the secretion of several substances in response to various abiotic stresses,including soil nitrogen cycle enzymes,phosphorus transport-related enzymes,and antioxidant enzymes.In conclusion,plants regulate the utilization of rhizosphere substances in response to abiotic stresses by modulating the exudation of soil enzymes and polysaccharides by the root system.At the same time,soil carbon sequestration was affected by the adverse environment,which restricted the input of organic matter into the soil.展开更多
Metabolic dysfunction-associated fatty liver disease(MAFLD)is the most prevalent chronic liver condition worldwide.Current liver enzyme-based screening methods have limitations that may missed diagnoses and treatment ...Metabolic dysfunction-associated fatty liver disease(MAFLD)is the most prevalent chronic liver condition worldwide.Current liver enzyme-based screening methods have limitations that may missed diagnoses and treatment delays.Regarding Chen et al,the risk of developing MAFLD remains elevated even when alanine aminotransferase levels fall within the normal range.Therefore,there is an urgent need for advanced diagnostic techniques and updated algorithms to enhance the accuracy of MAFLD diagnosis and enable early intervention.This paper proposes two potential screening methods for identifying individuals who may be at risk of developing MAFLD:Lowering these thresholds and promoting the use of noninvasive liver fibrosis scores.展开更多
BACKGROUND Schizophrenic patients are prone to violence,frequent recurrence,and difficult to predict.Emotional and behavioral abnormalities during the onset of the disease,resulting in active myocardial enzyme spectru...BACKGROUND Schizophrenic patients are prone to violence,frequent recurrence,and difficult to predict.Emotional and behavioral abnormalities during the onset of the disease,resulting in active myocardial enzyme spectrum.AIM To explored the expression level of myocardial enzymes in patients with schizo-phrenia and its predictive value in the occurrence of violence.METHODS A total of 288 patients with schizophrenia in our hospital from February 2023 to January 2024 were selected as the research object,and 100 healthy people were selected as the control group.Participants’information,clinical data,and labo-ratory examination data were collected.According to Modified Overt Aggression Scale score,patients were further divided into the violent(123 cases)and non-violent group(165 cases).RESULTS The comparative analysis revealed significant differences in serum myocardial enzyme levels between patients with schizophrenia and healthy individuals.In the schizophrenia group,the violent and non-violent groups also exhibited different levels of serum myocardial enzymes.The levels of myocardial enzymes in the non-violent group were lower than those in the violent group,and the patients in the latter also displayed aggressive behavior in the past.CONCLUSION Previous aggressive behavior and the level of myocardial enzymes are of great significance for the diagnosis and prognosis analysis of violent behavior in patients with schizophrenia.By detecting changes in these indicators,we can gain a more comprehensive understanding of a patient’s condition and treatment.展开更多
Recent progress in nanotechnology has provided high-performance nanomaterials for enzyme immobilization.Nanobiocatalysts combining enzymes and nanocarriers are drawing increasing attention because of their high cataly...Recent progress in nanotechnology has provided high-performance nanomaterials for enzyme immobilization.Nanobiocatalysts combining enzymes and nanocarriers are drawing increasing attention because of their high catalytic performance,enhanced stabilities,improved enzyme-substrate affinities,and reusabilities.Many studies have been performed to investigate the efficient use of cellulose nanocrystals,polydopamine-based nanomaterials,and synthetic polymer nanogels for enzyme immobilization.Various nanobiocatalysts are highlighted in this review,with the emphasis on the design,preparation,properties,and potential applications of nanoscale enzyme carriers and nanobiocatalysts.展开更多
[ Objective] The aim was to study the effect of 12C6 + ions beam irradiation to two varieties of sweet sorghum on seed germination and some enzymes activity in seedlings with different doses, and provided a theoretic...[ Objective] The aim was to study the effect of 12C6 + ions beam irradiation to two varieties of sweet sorghum on seed germination and some enzymes activity in seedlings with different doses, and provided a theoretical foundation for sweet sorghum breeding. [ Method] After germination, the germination potential, germination fraction and enzyme activity were detected, respectively. [ Result] The results showed that with the dose increased, the germination potential of sweet sorghum increased first and then decreased, while their germination fraction presented "shoulder like shape" ; the activity of LDH, SOD, CAT and GSH-Px increased first and then decreased with doses, they presented slight differences among different enzymes. [ Conclusion] Low dose radiation could accelerate germination of sweet sorghum seeds and enzyme activity could remain at a relatively high level. Enzyme activity decreased with high doses and the growth of sweet sorghum was inhibited.展开更多
[Objective] The purpose was to study the effects of different arbuscular mycorrhizal fungi strains(AMF)on the mineral nutrition and antioxidant enzymes of Chrysanthemum morifolium.[Method] The pot experiment was con...[Objective] The purpose was to study the effects of different arbuscular mycorrhizal fungi strains(AMF)on the mineral nutrition and antioxidant enzymes of Chrysanthemum morifolium.[Method] The pot experiment was conducted in the greenhouse,C.morifolium 'Jinba' was inoculated with five kinds of AMF,N,P,K,malondial dehyde(MDA)content,as well as the superoxide dismutase(SOD),peroxidase(POD) and catalase(CAT) activity in roots,leaves and petals of C.morifolium were measured at seedling and flowering stages.[Result] The G.i,G.e and G.m treatments could promote mineral nutrient absorption,increase N,P,K content in roots,leaves and petals of C.morifolium compared with the control without inoculation.The G.d、G.e and G.m treatments could significantly reduce MDA content in roots and petals,thus alleviating membrane permeability and lipid peroxidation.The G.i treatments could also improve the SOD,POD and CAT activities of C.morifolium,thereby increasing the capability of scavenging oxygen free radicals.[Conclusion] According to the comprehensive analysis,G.i was screened out as the best strain to improve mineral nutrition and antioxidant enzyme activities of C.morifolium.展开更多
The leaves of Bt (Bacillus thuringiensis) transgenic poplar (Populus nigra L.) and CpTI (Cowpea trypsin inhibitor) transgenic poplar ((P. tomentosa×P. bolleana)×P. Tomentosa) were taken to feed the 4th-5th-i...The leaves of Bt (Bacillus thuringiensis) transgenic poplar (Populus nigra L.) and CpTI (Cowpea trypsin inhibitor) transgenic poplar ((P. tomentosa×P. bolleana)×P. Tomentosa) were taken to feed the 4th-5th-instar larvae of American white moth (Hyphantria cunea (Drury)) for determination of the activities of the protective enzyme system inside larvae’s body. The physiological and biochemical effects of the transgenic poplars on the larvae were studied. The results showed that the two kinds of transgenic poplars had similar effects on the protective enzyme system in the midgut of larvae. The activities of superoxide dismutase, catalase, and peroxidase in midgut of the larvae increased gradually, reached the highest value at a certain time, and then decreased suddenly. For the larvae that were fed with the leaves of Bt transgenic poplar, the peak value of superoxide dismutase and catalase presented at the time of 24-h feeding, while the peak of peroxidase took place at the time of 12-h feeding. The activities of these protective enzymes for the larvae that were fed with leaves of CpTI transgenic poplar peaked 12 h later than that of those fed with leaves of Bt transgenic poplar. The comparison of activities of the protective enzymes was also carried out between the larvae with different levels of intoxication. It was found that the activities of protective enzyme of the seriously intoxicant larvae were higher than that of the lightly intoxicant larvae. This difference was more obvious in the group treated with CpTI transgenic poplar.展开更多
The eelgrass ( Zostera marina L.) was treated with artificial seawater (ASW) of different salinities ( 100%, 150% and 200% seawater) for 5 d. The activities of two enzymes extracted from the plant leaves were determin...The eelgrass ( Zostera marina L.) was treated with artificial seawater (ASW) of different salinities ( 100%, 150% and 200% seawater) for 5 d. The activities of two enzymes extracted from the plant leaves were determined under a salinity grade in vitro So were the photosynthesis rates of the plants from the three treatments in the media with different salinities 100%, 150%, 200%, 300% ASW) and Some physiological data. The data showed that under increased salinities (concentrated seawater), Na+, Cl-, MDA (malon dialdehyde) and glucose contents and the osmotic potentials ( absolute value) in the leaves increased with the salinity elevation in the medium (ASW), but both K+ and free amino acid (mainly proline) contents decreased. Malate dehydrogenase (MDH) from the plant leaves under a salinity grade showed its activities (A) as follows: A(100%) (ASW) > A(150%) (ASW) > A(200%) (ASW). Phosphoenolpyruvate carboxylase (PEPC) extracted from the 100% ASW- and 200% ASW-treated plants showed similar activities (both insensitive to salinities) under the salinity grade in vitro, but the activities of PEPC from plants treated with 150% ASW were dependent oil salinity. Whether the plant is stressed at 150% ASW and can stand higher salinity than seawater needs to be studied further. Meantime, die data do not agree with the opinion that the adaptation of the eelgrass to seawater salinity is partly fulfilled by its insensitiveness to salinities in Some metabolic enzymes. It can be inferred that the lack of transpiration may be an important aspect of tire plant's tolerance to seawater salinity.展开更多
[Objective] This study aimed to determine activities of antioxidant enzymes during gland morphogenesis in cotton, thoroughly explore physiological changes of cotton and provide a scientific basis for the cultivation o...[Objective] This study aimed to determine activities of antioxidant enzymes during gland morphogenesis in cotton, thoroughly explore physiological changes of cotton and provide a scientific basis for the cultivation of excellent cotton varieties. [Method] Based on determination of gossypol contents and antioxidant enzymes ac- tivities during gland morphogenesis in three cotton varieties (Chuanmian2802, Xiang- mian18 and XianwuN5), metabolism of gossypol and morphogenesis of gland in cot- ton were explored. [Result] After gland morphogenesis, the content of gossypol in Chuanmian2802 was gradually reduced in the early period of seed germination, which slowly increased since the 5th d after germination; however, during the seed germination period, the content of gossypol in Xiangmian18 had a slowly increasing trend and was gradually close to the content of gossypol in Chuanmian2802. The results showed that activities of SOD, POD and CAT increased in seed germination, which was contributive to remove the superoxide radicals, decrease the peroxide lev- el, reduce damages to the membrane, enhance the body's resistance to lipid oxida- tion and increase resistance ability to stress. [Conclusion] This study laid the scientif- ic foundation for understanding the characteristics of gland morphogenesis in cotton and cotton cultivation by using gland traits.展开更多
The distribution and ecological characters of grapefruit were analyzed mainly,and the research trends of stock and scion selection for grafting,the healing-anatomy process and enzymology were summarized systematically...The distribution and ecological characters of grapefruit were analyzed mainly,and the research trends of stock and scion selection for grafting,the healing-anatomy process and enzymology were summarized systematically.The results indicated that the range of stock and scion apolegamy decreased through the application of molecular technique.But the study on stock variety and scion selection was still in need of expanding and the key enzyme played a vital role in the healing of the stock and scion,which provided a chance for the regulation and control of healing force by hormones and also provided a theoretical basis for the regulation of gene.展开更多
The 3'-OH, 4'-OH and 2"-OH of kanamycin A were modified in search of new aminoglycosides to overcome resistant enzymes, ANTs and APHs. The key intermediate was a dibenzylidene-protected derivative of kanamycin A. T...The 3'-OH, 4'-OH and 2"-OH of kanamycin A were modified in search of new aminoglycosides to overcome resistant enzymes, ANTs and APHs. The key intermediate was a dibenzylidene-protected derivative of kanamycin A. The aimed sites were masked by benzyl, methyl and allyl groups. Multi-step reactions gave the desired aminoglycoside derivatives but showed less antibiotic activity than kanamycin A.展开更多
[Objective] This study aimed to explore the effects of spores and crude toxins of Helminthosporium gramineum Rabenh f. sp. echinochloae(HGE) on the ac- tivity of defensive enzymes of barnyardgrass [Echinochloa crus-...[Objective] This study aimed to explore the effects of spores and crude toxins of Helminthosporium gramineum Rabenh f. sp. echinochloae(HGE) on the ac- tivity of defensive enzymes of barnyardgrass [Echinochloa crus-galli (L.) Beauv.]. [Method] The effects of spores and crude toxins of HGE, as well as the mixture of spores and crude toxins on the activity of defensive enzymes in barnyardgrass were determined under laboratory conditions. [Result] Spores and crude toxins of HGE had varying degrees of effects on PAL and POD activity, and no obvious effect on SOD activity in barnyardgrass. In addition, spores and toxins had some similar im- pacts on the defensive enzymes in barnyardgrass. [Conclusion] Since toxins have similar effects on the hosts as spores of fungal pathogen do, they can be a substi- tute for the fungal pathogen in studying the partial pathogenic mechanism of this pathogen due to its complexity in pathogenic process.展开更多
A study was conducted to determine the responses of soil enzymes (invertase, polyphenol oxidase, catalase, and dehydrogenase) to long-term CO2 enrichment at the Research Station of Changbai Mountain Forest Ecosystem...A study was conducted to determine the responses of soil enzymes (invertase, polyphenol oxidase, catalase, and dehydrogenase) to long-term CO2 enrichment at the Research Station of Changbai Mountain Forest Ecosystems, Chinese Academy of Sciences (42°24'N, 128°28'E; 738 m in elevation) in the northeast China during 1999-2006. Three treatments of the CO2 enrichment, designed as 500 μmol·mol-1 CO2 open-top chamber (OTC), ambient control chamber and unchambered field (approx. 370 μmol·mol^-1CO2), were conducted with Pinus koraiensis and Pinus sylvestriformis tree species. Soil sampling was made and analyzed separately in spring, summer and autumn in 2006 after the soil enzymes were exposed to elevated CO2 concentration (500 μmol·mol^-1) for eight growing seasons. Results showed that, at elevated CO2 concentration (500 μmol·mol^-1), the activities of invertase (except for the summer samples of P. koraiensis) presented a remarkable decline in all growing seasons, while the activities of dehydrogenase had an increase but only part of the results was remarkable; the activities of polyphenol oxidase in P. sylvestriformis rhizosphere showed a remarkable decrease; the catalase activities increased in spring, while in turn were decline in other seasons. This study also revealed that the soil enzyme activities are significantly correlated with the tree species under the CO2 enhancement.展开更多
[Objective] Mononychellus tanajoa is a mite speices recently invaded into China in 2008. Temperature is one of the most important ecological factors affecting the growth and reproduction of M. tanajoa. The objective o...[Objective] Mononychellus tanajoa is a mite speices recently invaded into China in 2008. Temperature is one of the most important ecological factors affecting the growth and reproduction of M. tanajoa. The objective of the current study was to reveal the effects of high temperature incubation on the activities of some protective enzymes in M. tanajoa at different growth stages. The results would contribute to the understanding of the adaptable distribution of M. tanajoa after its invasion into China, the mechanisms in its invasion, diffusion and ecological adaptation, and the monitor- ing, early warning and effective prevention of its damage. [Method] Six protective enzymes, Le. polyphenol oxidase (PPO), peroxidase (POD), ascorbate oxidase (AsA- POD), catalase (CAT), superoxide dismutase (SOD) and esterase (EST), were cho- sen to study their activities after the mites at different growth stages were incubated at a extremely high temperature of 42 ~C for a certain period of time up to 24 h. The activities were measured by spectrophotometric endpoint assay method. [Results] Enzyme activities in M. tanajoa were affected by the high temperature incubation. However, differences in enzyme activity changes were found among different protec- tive enzymes and among different growth stages of M. tanajoa. Activities of PPO, POD, AsA-POD and CAT were significantly increased in the larval mites and female adult mites of M. tanajoa. CAT activity was significantly decreased in protonymph and deutonymph of M. tanajoa. Activities of PPO, POD and AsA-POD in protonymph and deutonymph showed no obvious difference from the control. [Conclusion] The activity changes of some protective enzymes in M. tanajoa following high-temperature treatment are part of its anti-stress reaction mechanism. In mite protonymph and deutonymph, activities of PPO, POD and AsA-POD are similar to the untreated con- trol which may be associated with the thermostability of M. tanajoa. It is concluded that, the long-time stress of extreme temperature may result in the increase of the thermostability of mite individuals, the enhancement of the population thermal stability and subsequently lead to rapid expansion of the population.展开更多
[Objective] The aim was to explore physiological mechanism effects in growth promotion by ethametsulfuron of lower concentration through research on content variations of protective enzymes and endogenous hormones by ...[Objective] The aim was to explore physiological mechanism effects in growth promotion by ethametsulfuron of lower concentration through research on content variations of protective enzymes and endogenous hormones by ethametsulfuron of low concentration. [Method] Rice of different leaf ages were treated in ethametsulfuron of two concentrations through soil culture. Leaves of rice were col- lected after 15 d. POD activity, PPO activity, and contents of GA, ZR, and ABA were measured by guaiacol-hydrogen peroxide method, catechol method, and ELISA method, respectively. [Result] After treatment by ethametsulfuron at 2 μg/kg, activity of PPO was greatly enhanced, of POD was a little lower than that of control group; contents of GA and ZR increased a lot and of ABA decreased much; GA/ABA val- ues were higher than that of control group. In contrast, with treatment of ethamet- sulfuron at 20 μg/kg, activity of POD was greatly increased, of PPO was a little low- er than that of control group; contents of GA, ZR increased a lot and of ABA was greatly decreased; ratio of GA and ABA was smaller than that of control group. Among treated leaves during the period when the seventh leaf grew, three hormones contents were so close to that of control group. [Conclusion] If rice was tested with ethametsulfuron of 2 μg/kg, value of GA/ABA in leaves was higher than that of con- trol group, for which rice growth would be promoted. When the concentration was 20 μg/kg, ratio of GA and ABA was smaller than that of control group, for which, rice growth would be inhibited, and during the seventh leaf growing, ethametsul- furon's effect on rice growth was weaker than that of term before the fourth one growing.展开更多
[Objective] This study aimed to investigate the effects of heavy-ion beams irradiation on the seed germination potential, survival rate, antioxidant enzyme activi- ties and lipid peroxidation of sweet sorghum. [Method...[Objective] This study aimed to investigate the effects of heavy-ion beams irradiation on the seed germination potential, survival rate, antioxidant enzyme activi- ties and lipid peroxidation of sweet sorghum. [Method] The dry seeds were irradiated by '2(36. heavy ion beams with absorbed doses: 0, 40, 80, 120, 160 and 200 Gy, respectively. Then, the seed germination potential, survival rate, antioxidant enzyme activities and lipid peroxidation of sweet sorghum were measured. [Result] Heavy-ion beams irradiation exhibited different influence on germination potential and survival rates. Germination rate showed a downward trend, but the corresponding survival curve of seedlings was saddle-shaped. The activities of SOD, POD, CAT and ASA- POD changed in different trends as well. The MDA content rose toward increasing irradiation dose, suggesting that high dose of heavy-ion beams irradiation enhanced the damage to membrane of sweet sorghum seedlings. [Conclusion] After being irra- diated, germination potential and survival rates of sweet sorghum were decreased, and antioxidant enzymes activity changed greatly. This study laid the basis for fur- ther work on breeding and improvement of sweet sorghum irradiated by ,^(12)C^(6+) heavy ion beams.展开更多
Activities of several key enzymes of C-4 photosynthesis pathway and stable carbon isotope discrimination were investigated in flag leaves of a super high-yield hybrid rice (Oryza sativa L.) cv. Peiai 64S/E32 and a tra...Activities of several key enzymes of C-4 photosynthesis pathway and stable carbon isotope discrimination were investigated in flag leaves of a super high-yield hybrid rice (Oryza sativa L.) cv. Peiai 64S/E32 and a traditional hybrid rice cv. Shanyou 63 at different developing stages. Results show that the activity of PEP carboxylase (PEPCase) increased with age of flag leave; the activity of NADP-malate dehydrogenase (NADP-MDH) increased and reached to a peak value at grain filling stage (68-75 d after transplanting), then fell down; the activity of NADP-MDH in cv. Peiai 64S/E32 was much higher than that in cv. Shanyou 63. Before ripening stage (95 d after transplanting), NADP-malic enzyme activity rose gradually. The level of stable carbon isotope discrimination (Delta(13)C) in flag leaves and grains at different developing stages were similar and exhibited a comparative high value at ripening stage. The average Delta(13)C in leaf of cv. Peiai 64S/E32 during different developing stages was 0.43parts per thousand more than that in cv. Shanyou 63.展开更多
基金supported by the National High-Tech R&D Program of China (2006AA10A104)the CoreResearch Budget of the Nonprofit Governmental Re-search Institution (the Public Welfare Project of CAAS,China, 2060302-2-09)
文摘In this study, the changes in activities of peroxidase (POD), glutathione S-transferase (GST), catalase (CAT), and superoxide distmuase (SOD) in leaves of four wheat cultivars, including resistant cultivars Shannong 0431 and Shanhongmai, a mildsusceptible cultivar Lumai 21, and a susceptible cultivar Wenmai 6, were investigated to explore if these antioxidantrelated enzymes were involved in wheat defense response to Rhizoctonia cerealis attack. Results showed that the activities of these enzymes in different wheat cultivars varied greatly after challenging with R. cerealis. The POD activities in resistant cultivars Shannong 0431 and Shanhongmai increased much quicker after the inoculation and displayed much higher activity than that in susceptible cultivar Wenmai 6. In contrast, POD activity showed a slow accumulation and a delayed peak time. The activities of GST and CAT in Shannong 0431 and Lumai 21 increased obviously within 48 h post inoculation (hpi), whereas SOD activity decreased dramatically within 24 hpi in Shannong 0431 and 24-48 hpi in Lumai 21. In susceptible cultivar Wenmai 6, the SOD and CAT activities didn’t change obviously, whereas the activity of GST was decreased. The activities of CAT and GST in Shanhongmai did not show significant difference compared with those in Wenmai 6. Results suggested that POD activity may be positively associated with wheat defense to R. cerealis.
基金supported by the National Natural Science Foundation of China(Grant Nos.82073934,81872937,and 81673513).
文摘The current study aimed to assess the effect of timosaponin AⅢ(T-AⅢ)on drug-metabolizing enzymes during anticancer therapy.The in vivo experiments were conducted on nude and ICR mice.Following a 24-day administration of T-AⅢ,the nude mice exhibited an induction of CYP2B10,MDR1,and CYP3A11 expression in the liver tissues.In the ICR mice,the expression levels of CYP2B10 and MDR1 increased after a three-day T-AⅢ administration.The in vitro assessments with HepG2 cells revealed that T-AⅢ induced the expression of CYP2B6,MDR1,and CYP3A4,along with constitutive androstane receptor(CAR)activation.Treatment with CAR siRNA reversed the T-AⅢ-induced increases in CYP2B6 and CYP3A4 expression.Furthermore,other CAR target genes also showed a significant increase in the expression.The up-regulation of murine CAR was observed in the liver tissues of both nude and ICR mice.Subsequent findings demonstrated that T-AⅢ activated CAR by inhibiting ERK1/2 phosphorylation,with this effect being partially reversed by the ERK activator t-BHQ.Inhibition of the ERK1/2 signaling pathway was also observed in vivo.Additionally,T-AⅢ inhibited the phosphorylation of EGFR at Tyr1173 and Tyr845,and suppressed EGF-induced phosphorylation of EGFR,ERK,and CAR.In the nude mice,T-AⅢ also inhibited EGFR phosphorylation.These results collectively indicate that T-AⅢ is a novel CAR activator through inhibition of the EGFR pathway.
基金supported by the National Key Research and Development Program of China(2023YFD1202901)the China Agriculture Research System of MOF and MARA(CARS-02-06)the Key Area Research and Development Program of Guangdong Province(2018B020202008).
文摘To improve the amylose content(AC)and resistant starch content(RSC)of maize kernel starch,we employed the CRISPR/Cas9 system to create mutants of starch branching enzyme I(SBEI)and starch branching enzyme IIb(SBEIIb).A frameshift mutation in SBEI(E1,a nucleotide insertion in exon 6)led to plants with higher RSC(1.07%),lower hundred-kernel weight(HKW,24.71±0.14 g),and lower plant height(PH,218.50±9.42 cm)compared to the wild type(WT).Like the WT,E1 kernel starch had irregular,polygonal shapes with sharp edges.A frameshift mutation in SBEIIb(E2,a four-nucleotide deletion in exon 8)led to higher AC(53.48%)and higher RSC(26.93%)than that for the WT.E2 kernel starch was significantly different from the WT regarding granule morphology,chain length distribution pattern,X-ray diffraction pattern,and thermal characteristics;the starch granules were more irregular in shape and comprised typical B-type crystals.Mutating SBEI and SBEIIb(E12)had a synergistic effect on RSC,HKW,PH,starch properties,and starch biosynthesis-associated gene expression.SBEIIa,SS1,SSIIa,SSIIIa,and SSIIIb were upregulated in E12 endosperm compared to WT endosperm.This study lays the foundation for rapidly improving the starch properties of elite maize lines.
基金the National Natural Science Foundation of China(Grant Number 81973416)this research was funded by the Science and Technology Department of Sichuan Province(2021YFS0045).
文摘Root exudates serve as crucial mediators for information exchange between plants and soil,and are an important evolutionary mechanism for plants’adaptation to environmental changes.In this study,15 different abiotic stress models were established using various stress factors,including drought(D),high temperature(T),nitrogen deficiency(N),phosphorus deficiency(P),and their combinations.We investigated their effects on the seedling growth of Salvia miltiorrhiza Bunge and the activities of Solid-Urease(S-UE),Solid-Nitrite Reductase(S-NiR),Solid-Nitrate Reductase(S-NR),Solid-Phosphotransferase(S-PT),and Solid-Catalase(S-CAT),as well as the contents of polysaccharides in the culture medium.The results showed that the growth of S.miltiorrhiza was inhibited under 15 stress conditions.Among them,13 stress conditions increased the root-shoot ratio.These 15 stress conditions significantly reduced the activity of S-NR,two combinations significantly improved the activity of S-NIR,they were synergistic stresses of high temperature and nitrogen deficiency(TN),and synergistic stresses of drought and nitrogen deficiency(DN)(p<0.05).The activity of S-UE was significantly improved under N,D,T,synergistic stresses of drought and high temperature(DT),DN,synergistic stresses of drought and phosphorus deficiency(DP),and synergistic stresses of high temperature,nitrogen,and phosphorus deficiency(TNP)stress conditions(p<0.05).Most stress combinations reduced the activity of S-PT,but D and T significantly improved it.(p<0.05).The N,DN,and TN stress conditions significantly reduced S-CAT activity.The P,DT,and synergistic stresses of drought,high temperature,and phosphorus deficiency(DTP)significantly decreased the total polysaccharide content of the soil(p<0.05).The research suggested that abiotic stress hindered the growth of S.miltiorrhiza and altered the behavior of root secretion.Roots regulated the secretion of several substances in response to various abiotic stresses,including soil nitrogen cycle enzymes,phosphorus transport-related enzymes,and antioxidant enzymes.In conclusion,plants regulate the utilization of rhizosphere substances in response to abiotic stresses by modulating the exudation of soil enzymes and polysaccharides by the root system.At the same time,soil carbon sequestration was affected by the adverse environment,which restricted the input of organic matter into the soil.
基金the National Natural Science Foundation of China,No.82070588 and No.82370577.
文摘Metabolic dysfunction-associated fatty liver disease(MAFLD)is the most prevalent chronic liver condition worldwide.Current liver enzyme-based screening methods have limitations that may missed diagnoses and treatment delays.Regarding Chen et al,the risk of developing MAFLD remains elevated even when alanine aminotransferase levels fall within the normal range.Therefore,there is an urgent need for advanced diagnostic techniques and updated algorithms to enhance the accuracy of MAFLD diagnosis and enable early intervention.This paper proposes two potential screening methods for identifying individuals who may be at risk of developing MAFLD:Lowering these thresholds and promoting the use of noninvasive liver fibrosis scores.
基金The Shaoxing Science and Technology Plan Project Plan,No.2022A14002.
文摘BACKGROUND Schizophrenic patients are prone to violence,frequent recurrence,and difficult to predict.Emotional and behavioral abnormalities during the onset of the disease,resulting in active myocardial enzyme spectrum.AIM To explored the expression level of myocardial enzymes in patients with schizo-phrenia and its predictive value in the occurrence of violence.METHODS A total of 288 patients with schizophrenia in our hospital from February 2023 to January 2024 were selected as the research object,and 100 healthy people were selected as the control group.Participants’information,clinical data,and labo-ratory examination data were collected.According to Modified Overt Aggression Scale score,patients were further divided into the violent(123 cases)and non-violent group(165 cases).RESULTS The comparative analysis revealed significant differences in serum myocardial enzyme levels between patients with schizophrenia and healthy individuals.In the schizophrenia group,the violent and non-violent groups also exhibited different levels of serum myocardial enzymes.The levels of myocardial enzymes in the non-violent group were lower than those in the violent group,and the patients in the latter also displayed aggressive behavior in the past.CONCLUSION Previous aggressive behavior and the level of myocardial enzymes are of great significance for the diagnosis and prognosis analysis of violent behavior in patients with schizophrenia.By detecting changes in these indicators,we can gain a more comprehensive understanding of a patient’s condition and treatment.
基金supported by the National Natural Science Foundation of China(21336002,21222606,21376096)the Key Program of Guangdong Natural Science Foundation(S2013020013049)+2 种基金the Fundamental Research Funds for the Chinese Universities(2015PT002,2015ZP009)the Program of State Key Laboratory of Pulp and Paper Engineering(2015C04)the South China University of Technology Doctoral Student Short-Term Overseas Visiting Study Funding Project~~
文摘Recent progress in nanotechnology has provided high-performance nanomaterials for enzyme immobilization.Nanobiocatalysts combining enzymes and nanocarriers are drawing increasing attention because of their high catalytic performance,enhanced stabilities,improved enzyme-substrate affinities,and reusabilities.Many studies have been performed to investigate the efficient use of cellulose nanocrystals,polydopamine-based nanomaterials,and synthetic polymer nanogels for enzyme immobilization.Various nanobiocatalysts are highlighted in this review,with the emphasis on the design,preparation,properties,and potential applications of nanoscale enzyme carriers and nanobiocatalysts.
基金Supported by Director Fund for the Year 2008 Project(0806230SZO)Training Projects of Light of Western in Chinese Academy of Sciences(0906040XBO)Chinese Academy of science and Technology Project in Support of Gansu(0806300YDO)~~
文摘[ Objective] The aim was to study the effect of 12C6 + ions beam irradiation to two varieties of sweet sorghum on seed germination and some enzymes activity in seedlings with different doses, and provided a theoretical foundation for sweet sorghum breeding. [ Method] After germination, the germination potential, germination fraction and enzyme activity were detected, respectively. [ Result] The results showed that with the dose increased, the germination potential of sweet sorghum increased first and then decreased, while their germination fraction presented "shoulder like shape" ; the activity of LDH, SOD, CAT and GSH-Px increased first and then decreased with doses, they presented slight differences among different enzymes. [ Conclusion] Low dose radiation could accelerate germination of sweet sorghum seeds and enzyme activity could remain at a relatively high level. Enzyme activity decreased with high doses and the growth of sweet sorghum was inhibited.
基金Supported by National Science and Technology Support Project(2006BAD07B05)Cooperation Project of Institute of Vegetables and Flowers,Chinese Academy of Agricultural Sciences,with Bei-jing Daxing District(2009-2011)~~
文摘[Objective] The purpose was to study the effects of different arbuscular mycorrhizal fungi strains(AMF)on the mineral nutrition and antioxidant enzymes of Chrysanthemum morifolium.[Method] The pot experiment was conducted in the greenhouse,C.morifolium 'Jinba' was inoculated with five kinds of AMF,N,P,K,malondial dehyde(MDA)content,as well as the superoxide dismutase(SOD),peroxidase(POD) and catalase(CAT) activity in roots,leaves and petals of C.morifolium were measured at seedling and flowering stages.[Result] The G.i,G.e and G.m treatments could promote mineral nutrient absorption,increase N,P,K content in roots,leaves and petals of C.morifolium compared with the control without inoculation.The G.d、G.e and G.m treatments could significantly reduce MDA content in roots and petals,thus alleviating membrane permeability and lipid peroxidation.The G.i treatments could also improve the SOD,POD and CAT activities of C.morifolium,thereby increasing the capability of scavenging oxygen free radicals.[Conclusion] According to the comprehensive analysis,G.i was screened out as the best strain to improve mineral nutrition and antioxidant enzyme activities of C.morifolium.
文摘The leaves of Bt (Bacillus thuringiensis) transgenic poplar (Populus nigra L.) and CpTI (Cowpea trypsin inhibitor) transgenic poplar ((P. tomentosa×P. bolleana)×P. Tomentosa) were taken to feed the 4th-5th-instar larvae of American white moth (Hyphantria cunea (Drury)) for determination of the activities of the protective enzyme system inside larvae’s body. The physiological and biochemical effects of the transgenic poplars on the larvae were studied. The results showed that the two kinds of transgenic poplars had similar effects on the protective enzyme system in the midgut of larvae. The activities of superoxide dismutase, catalase, and peroxidase in midgut of the larvae increased gradually, reached the highest value at a certain time, and then decreased suddenly. For the larvae that were fed with the leaves of Bt transgenic poplar, the peak value of superoxide dismutase and catalase presented at the time of 24-h feeding, while the peak of peroxidase took place at the time of 12-h feeding. The activities of these protective enzymes for the larvae that were fed with leaves of CpTI transgenic poplar peaked 12 h later than that of those fed with leaves of Bt transgenic poplar. The comparison of activities of the protective enzymes was also carried out between the larvae with different levels of intoxication. It was found that the activities of protective enzyme of the seriously intoxicant larvae were higher than that of the lightly intoxicant larvae. This difference was more obvious in the group treated with CpTI transgenic poplar.
文摘The eelgrass ( Zostera marina L.) was treated with artificial seawater (ASW) of different salinities ( 100%, 150% and 200% seawater) for 5 d. The activities of two enzymes extracted from the plant leaves were determined under a salinity grade in vitro So were the photosynthesis rates of the plants from the three treatments in the media with different salinities 100%, 150%, 200%, 300% ASW) and Some physiological data. The data showed that under increased salinities (concentrated seawater), Na+, Cl-, MDA (malon dialdehyde) and glucose contents and the osmotic potentials ( absolute value) in the leaves increased with the salinity elevation in the medium (ASW), but both K+ and free amino acid (mainly proline) contents decreased. Malate dehydrogenase (MDH) from the plant leaves under a salinity grade showed its activities (A) as follows: A(100%) (ASW) > A(150%) (ASW) > A(200%) (ASW). Phosphoenolpyruvate carboxylase (PEPC) extracted from the 100% ASW- and 200% ASW-treated plants showed similar activities (both insensitive to salinities) under the salinity grade in vitro, but the activities of PEPC from plants treated with 150% ASW were dependent oil salinity. Whether the plant is stressed at 150% ASW and can stand higher salinity than seawater needs to be studied further. Meantime, die data do not agree with the opinion that the adaptation of the eelgrass to seawater salinity is partly fulfilled by its insensitiveness to salinities in Some metabolic enzymes. It can be inferred that the lack of transpiration may be an important aspect of tire plant's tolerance to seawater salinity.
基金Supported by National Natural Science Foundation of China(3044003230771311)+1 种基金Natural Science Foundation of Chongqing City(cstc2009BB1328)Project of Nan'an District Science and Technology Commission of Chongqing City(2008)~~
文摘[Objective] This study aimed to determine activities of antioxidant enzymes during gland morphogenesis in cotton, thoroughly explore physiological changes of cotton and provide a scientific basis for the cultivation of excellent cotton varieties. [Method] Based on determination of gossypol contents and antioxidant enzymes ac- tivities during gland morphogenesis in three cotton varieties (Chuanmian2802, Xiang- mian18 and XianwuN5), metabolism of gossypol and morphogenesis of gland in cot- ton were explored. [Result] After gland morphogenesis, the content of gossypol in Chuanmian2802 was gradually reduced in the early period of seed germination, which slowly increased since the 5th d after germination; however, during the seed germination period, the content of gossypol in Xiangmian18 had a slowly increasing trend and was gradually close to the content of gossypol in Chuanmian2802. The results showed that activities of SOD, POD and CAT increased in seed germination, which was contributive to remove the superoxide radicals, decrease the peroxide lev- el, reduce damages to the membrane, enhance the body's resistance to lipid oxida- tion and increase resistance ability to stress. [Conclusion] This study laid the scientif- ic foundation for understanding the characteristics of gland morphogenesis in cotton and cotton cultivation by using gland traits.
基金Supported by Grapefruit Project under State Forestry(2010-2012[2010]47)Basic Academic Discipline Project of Yunnan Province,Southwest Forestry University[xkz200906]~~
文摘The distribution and ecological characters of grapefruit were analyzed mainly,and the research trends of stock and scion selection for grafting,the healing-anatomy process and enzymology were summarized systematically.The results indicated that the range of stock and scion apolegamy decreased through the application of molecular technique.But the study on stock variety and scion selection was still in need of expanding and the key enzyme played a vital role in the healing of the stock and scion,which provided a chance for the regulation and control of healing force by hormones and also provided a theoretical basis for the regulation of gene.
基金National Basic Research Program(973 Program,Grant No.2004CB518904).
文摘The 3'-OH, 4'-OH and 2"-OH of kanamycin A were modified in search of new aminoglycosides to overcome resistant enzymes, ANTs and APHs. The key intermediate was a dibenzylidene-protected derivative of kanamycin A. The aimed sites were masked by benzyl, methyl and allyl groups. Multi-step reactions gave the desired aminoglycoside derivatives but showed less antibiotic activity than kanamycin A.
基金Supported by Research Fund of the State Tobacco Monopoly Bureau(110201002002)the Open Research Project of Key Laboratory of Tobacco Genetics and Breeding in the Tobacco Industry(TB201006)~~
文摘[Objective] This study aimed to explore the effects of spores and crude toxins of Helminthosporium gramineum Rabenh f. sp. echinochloae(HGE) on the ac- tivity of defensive enzymes of barnyardgrass [Echinochloa crus-galli (L.) Beauv.]. [Method] The effects of spores and crude toxins of HGE, as well as the mixture of spores and crude toxins on the activity of defensive enzymes in barnyardgrass were determined under laboratory conditions. [Result] Spores and crude toxins of HGE had varying degrees of effects on PAL and POD activity, and no obvious effect on SOD activity in barnyardgrass. In addition, spores and toxins had some similar im- pacts on the defensive enzymes in barnyardgrass. [Conclusion] Since toxins have similar effects on the hosts as spores of fungal pathogen do, they can be a substi- tute for the fungal pathogen in studying the partial pathogenic mechanism of this pathogen due to its complexity in pathogenic process.
基金This research was supported by National Basic Research Program of China (No.2002CB412502)Project of Key Pro-gram of the National Science Foundation of China (No.90411020)Natural Science Foundation of China (No.30400051)
文摘A study was conducted to determine the responses of soil enzymes (invertase, polyphenol oxidase, catalase, and dehydrogenase) to long-term CO2 enrichment at the Research Station of Changbai Mountain Forest Ecosystems, Chinese Academy of Sciences (42°24'N, 128°28'E; 738 m in elevation) in the northeast China during 1999-2006. Three treatments of the CO2 enrichment, designed as 500 μmol·mol-1 CO2 open-top chamber (OTC), ambient control chamber and unchambered field (approx. 370 μmol·mol^-1CO2), were conducted with Pinus koraiensis and Pinus sylvestriformis tree species. Soil sampling was made and analyzed separately in spring, summer and autumn in 2006 after the soil enzymes were exposed to elevated CO2 concentration (500 μmol·mol^-1) for eight growing seasons. Results showed that, at elevated CO2 concentration (500 μmol·mol^-1), the activities of invertase (except for the summer samples of P. koraiensis) presented a remarkable decline in all growing seasons, while the activities of dehydrogenase had an increase but only part of the results was remarkable; the activities of polyphenol oxidase in P. sylvestriformis rhizosphere showed a remarkable decrease; the catalase activities increased in spring, while in turn were decline in other seasons. This study also revealed that the soil enzyme activities are significantly correlated with the tree species under the CO2 enhancement.
基金Supported by Special Fund for Cassava Technology System Fund (CARS-12-hncq)the Central-level Public Welfare Research Institutes for Basic R & D Operations (No.2011h-zs1J014,No.2009hzs1J013)+1 种基金Agricultural Public Welfare Industry-specific (200903034-5)Science and Technology Program Project of Hainan Province (ZDXM20100022,ZDXM20110032)~~
文摘[Objective] Mononychellus tanajoa is a mite speices recently invaded into China in 2008. Temperature is one of the most important ecological factors affecting the growth and reproduction of M. tanajoa. The objective of the current study was to reveal the effects of high temperature incubation on the activities of some protective enzymes in M. tanajoa at different growth stages. The results would contribute to the understanding of the adaptable distribution of M. tanajoa after its invasion into China, the mechanisms in its invasion, diffusion and ecological adaptation, and the monitor- ing, early warning and effective prevention of its damage. [Method] Six protective enzymes, Le. polyphenol oxidase (PPO), peroxidase (POD), ascorbate oxidase (AsA- POD), catalase (CAT), superoxide dismutase (SOD) and esterase (EST), were cho- sen to study their activities after the mites at different growth stages were incubated at a extremely high temperature of 42 ~C for a certain period of time up to 24 h. The activities were measured by spectrophotometric endpoint assay method. [Results] Enzyme activities in M. tanajoa were affected by the high temperature incubation. However, differences in enzyme activity changes were found among different protec- tive enzymes and among different growth stages of M. tanajoa. Activities of PPO, POD, AsA-POD and CAT were significantly increased in the larval mites and female adult mites of M. tanajoa. CAT activity was significantly decreased in protonymph and deutonymph of M. tanajoa. Activities of PPO, POD and AsA-POD in protonymph and deutonymph showed no obvious difference from the control. [Conclusion] The activity changes of some protective enzymes in M. tanajoa following high-temperature treatment are part of its anti-stress reaction mechanism. In mite protonymph and deutonymph, activities of PPO, POD and AsA-POD are similar to the untreated con- trol which may be associated with the thermostability of M. tanajoa. It is concluded that, the long-time stress of extreme temperature may result in the increase of the thermostability of mite individuals, the enhancement of the population thermal stability and subsequently lead to rapid expansion of the population.
基金Supported by Natural Science Foundation of Jiangsu Education Department(07KJB210137)~~
文摘[Objective] The aim was to explore physiological mechanism effects in growth promotion by ethametsulfuron of lower concentration through research on content variations of protective enzymes and endogenous hormones by ethametsulfuron of low concentration. [Method] Rice of different leaf ages were treated in ethametsulfuron of two concentrations through soil culture. Leaves of rice were col- lected after 15 d. POD activity, PPO activity, and contents of GA, ZR, and ABA were measured by guaiacol-hydrogen peroxide method, catechol method, and ELISA method, respectively. [Result] After treatment by ethametsulfuron at 2 μg/kg, activity of PPO was greatly enhanced, of POD was a little lower than that of control group; contents of GA and ZR increased a lot and of ABA decreased much; GA/ABA val- ues were higher than that of control group. In contrast, with treatment of ethamet- sulfuron at 20 μg/kg, activity of POD was greatly increased, of PPO was a little low- er than that of control group; contents of GA, ZR increased a lot and of ABA was greatly decreased; ratio of GA and ABA was smaller than that of control group. Among treated leaves during the period when the seventh leaf grew, three hormones contents were so close to that of control group. [Conclusion] If rice was tested with ethametsulfuron of 2 μg/kg, value of GA/ABA in leaves was higher than that of con- trol group, for which rice growth would be promoted. When the concentration was 20 μg/kg, ratio of GA and ABA was smaller than that of control group, for which, rice growth would be inhibited, and during the seventh leaf growing, ethametsul- furon's effect on rice growth was weaker than that of term before the fourth one growing.
基金Supported by Knowledge Innovation Program of the Chinese Academy of Sciences(KJCX2-EW-N05)~~
文摘[Objective] This study aimed to investigate the effects of heavy-ion beams irradiation on the seed germination potential, survival rate, antioxidant enzyme activi- ties and lipid peroxidation of sweet sorghum. [Method] The dry seeds were irradiated by '2(36. heavy ion beams with absorbed doses: 0, 40, 80, 120, 160 and 200 Gy, respectively. Then, the seed germination potential, survival rate, antioxidant enzyme activities and lipid peroxidation of sweet sorghum were measured. [Result] Heavy-ion beams irradiation exhibited different influence on germination potential and survival rates. Germination rate showed a downward trend, but the corresponding survival curve of seedlings was saddle-shaped. The activities of SOD, POD, CAT and ASA- POD changed in different trends as well. The MDA content rose toward increasing irradiation dose, suggesting that high dose of heavy-ion beams irradiation enhanced the damage to membrane of sweet sorghum seedlings. [Conclusion] After being irra- diated, germination potential and survival rates of sweet sorghum were decreased, and antioxidant enzymes activity changed greatly. This study laid the basis for fur- ther work on breeding and improvement of sweet sorghum irradiated by ,^(12)C^(6+) heavy ion beams.
文摘Activities of several key enzymes of C-4 photosynthesis pathway and stable carbon isotope discrimination were investigated in flag leaves of a super high-yield hybrid rice (Oryza sativa L.) cv. Peiai 64S/E32 and a traditional hybrid rice cv. Shanyou 63 at different developing stages. Results show that the activity of PEP carboxylase (PEPCase) increased with age of flag leave; the activity of NADP-malate dehydrogenase (NADP-MDH) increased and reached to a peak value at grain filling stage (68-75 d after transplanting), then fell down; the activity of NADP-MDH in cv. Peiai 64S/E32 was much higher than that in cv. Shanyou 63. Before ripening stage (95 d after transplanting), NADP-malic enzyme activity rose gradually. The level of stable carbon isotope discrimination (Delta(13)C) in flag leaves and grains at different developing stages were similar and exhibited a comparative high value at ripening stage. The average Delta(13)C in leaf of cv. Peiai 64S/E32 during different developing stages was 0.43parts per thousand more than that in cv. Shanyou 63.