Antistatic polymer fibers were investigated by using carbon nanotubes (CNTs) to enhance the antistatic ability of inner antistatic agents based on the mechanism of attracting moisture by polar radical groups. It is ...Antistatic polymer fibers were investigated by using carbon nanotubes (CNTs) to enhance the antistatic ability of inner antistatic agents based on the mechanism of attracting moisture by polar radical groups. It is indicated that the antistatic ability of the fibers filled with composite antistatic agents that contain CNTs and organic antistatic agents was superior to that of the fibers filled either with pure organic antistatic agents or pure CNTs. The antistatic ability of the composite antistatic agent fabricated by an in situ process was superior to that of the composite antistatic agent fabricated by direct dispersing CNTs in the antistatic agent carrier. Moreover, the heat-treated CNTs could further enhance the antistatic effect compared with the initial CNTs. The antistatic effect is significantly influenced by the content of CNTs in the composite antistatic agent.展开更多
The hydrophilicity, dyeing and antistatic ability of polypropylene microfibre (PPMF) were improved by plasma-induced vapor grafting with acrylic acid. The effects of plasma discharge time, power, liquid phase acrylic ...The hydrophilicity, dyeing and antistatic ability of polypropylene microfibre (PPMF) were improved by plasma-induced vapor grafting with acrylic acid. The effects of plasma discharge time, power, liquid phase acrylic acid temperature and environmental temperature on grafting yield were investigated. The existence of grafted polyacrylic acid (PAA) was verified by ESCA and ATR FT-IR. The morphology of grafted PAA was directly observed by SEM. The wicking test shows that the hydrophilicity of modified PPMF is greatly enhanced. The dyeability test of modified PPMF was carried out using Dispersion Yellow. It was found that the dye uptake ratio is linear to the weight percent of grafting. The antistatic ability was indicated by specific resistance. The specific resistance of modified PPMF was reduced to 10(6) similar to 10(7) Ohm . cm, thus the antistatic ability was considerably improved.展开更多
The synthesis of reaction flame retarding unsaturated polyester resin and the flame retarding mechanism are investigated.By taking the synthesis flame retarding unsaturated polyester resin as a base material,glass fib...The synthesis of reaction flame retarding unsaturated polyester resin and the flame retarding mechanism are investigated.By taking the synthesis flame retarding unsaturated polyester resin as a base material,glass fibers as reinforced material,under the condition of adding graphite or carbon black respectively,the composites were manufactured.The flame retarding and antistatic properties are also studied.In the experiment,bromide-bearing flame retarding resin decomposed under a high temperature.Compound HBr was set out and retarded or stopped the flame.High concentration of HBr gas wall was formed between gas and solid phrases,which decreased flame.The results show that antistatic property of carbon black is higher than that of graphite.Adding a threshed value of 1% carbon black into composite,the antistatic property is at its highest value.展开更多
Functional multiblock poly(ether-b-amide)(PEBA)copolymers,comprised of PA1212(polyamide 1212)as hard segments and Jeffamine ED-2003 as soft segments,were successfully prepared via two-step melt polycondensation withou...Functional multiblock poly(ether-b-amide)(PEBA)copolymers,comprised of PA1212(polyamide 1212)as hard segments and Jeffamine ED-2003 as soft segments,were successfully prepared via two-step melt polycondensation without any amidation catalyst.Here,using diamino-terminated poly(propylene oxide)-poly(ethylene oxide)-poly(propylene oxide)(PPO-PEO-PPO),Jeffamine ED-2003,enhances the compatibility between polyamide oligomer and polyether,which is better than the traditional route using hydroxyl-terminated polyether.The chemical structure of multiblock PEBAs,as well as the microphase separated structure with crystalline phase of polyamide and polyether,were confirmed by heteronuclear multiple-bond correlation spectrum,heteronuclear multiple quantum correlation spectrum,Fourier transform infrared spectroscopy(FT-IR),differential scanning calorimetry and dynamic mechanical analysis.The hydrophilic PEBA copolymers showed water adsorption ranging from 87.3%to 17.1%depending on the polyether content,and specially showed moisture responsive behavior within seconds when exposed to moisture.The corresponding mechanism was studied using time-resolved attenuated total reflectance FT-IR spectroscopy in the molecular level and the water diffusion coefficient was estimated to be 1.07×10^(–8)cm^(2)∙s^(-1).Two-dimensional correlation FT-IR spectra analysis was performed to confirm that the interaction between water and polyether phase was in preference to that between water and polyamide matrix,and water molecule only forms hydrogen bond with the polyether segment.Due to the incorporation of PEO segments,the PEBAs have the surface resistivity varying from 5.6×10^(9)to 6.5×10^(10)Ω,which makes PEBA potential candidate as permanent antistatic agent.展开更多
Light-colored antistatic polyacrylonitrile(PAN)composite fiber was successfully prepared via a facile wet-spinning process using ATZO@TiO_(2)whiskers as conductive fillers.This kind of low-cost fiber meets the require...Light-colored antistatic polyacrylonitrile(PAN)composite fiber was successfully prepared via a facile wet-spinning process using ATZO@TiO_(2)whiskers as conductive fillers.This kind of low-cost fiber meets the requirements of light-colored and antistatic ability,which is quite suitable for mass production of dust-proof and safety workwear.The conductive whiskers are well dispersed in the fiber and form a continuous conductive pathway,which makes the fiber to possess a long conductive ability.The lowest resistance of antistatic ATZO@TiO_(2)/PAN fiber was 2.1×10^(7)Ω·cm.展开更多
In this paper, glucose was used as a green reducing agent and a capping reagent in the synthesis of water dispersible graphene, while using exfoliated graphite oxide (GO) as the precursor with the modified Hummers m...In this paper, glucose was used as a green reducing agent and a capping reagent in the synthesis of water dispersible graphene, while using exfoliated graphite oxide (GO) as the precursor with the modified Hummers method. Characterizations of the graphene were conducted by UV-visihle absorption spectroscopy and X-ray diffraction (XRD). Then the spunlaid-melthlowing-spuulaid (SMS) nonwovens were treated with the graphene solution via pad-dry-cure process. The surface and the antistatic property of the obtained nonwovens were tested. The results showed that O. 1 mg/mL graphene solution exhibited good stability in water. When treated with this solution, the graphene could be evenly dispersed on SMS nonwovens and the nonwovens had an excellent antistatic performance and a high relatively antistatic durability.展开更多
Lipase preparation from Aspergillus oryzae could act on ester bonds on the surface of poly (ethylene terephthalate) fibers and a possible hydrolytic product mono (2-hydroxyethyl) terephthalate was released. After ...Lipase preparation from Aspergillus oryzae could act on ester bonds on the surface of poly (ethylene terephthalate) fibers and a possible hydrolytic product mono (2-hydroxyethyl) terephthalate was released. After the iipase modification, there were more carboxyi groups on the treated poly (ethylene terephthalate) fabric surface that resulted in binding with more cationic dyes. Increased hydrophilicity and antistatic ability of poly (ethylene terephthalate) samples were found based on moisture regain, water contact angle and static half decay time.展开更多
Polypropylene(PP) composites that contain silver micro-particles(MILLION KILLER, denoted as Ag-Ms) and conductive carbon black(CB) have both antibacterial and antistatic properties. In the present study, the ant...Polypropylene(PP) composites that contain silver micro-particles(MILLION KILLER, denoted as Ag-Ms) and conductive carbon black(CB) have both antibacterial and antistatic properties. In the present study, the antibacterial and antistatic PP/Ag-Ms/CB composites were prepared by melt blending. The results showed that when the content was 0.8 wt%, Ag-Ms could be uniformly dispersed in the PP matrix and the mechanical properties of the composites remained stable. And the reduction percentages of Staphylococcus aureus and Escherichia coli were more than 80% which showed the good antibacterial behavior. In addition, conductive carbon black had reinforcing and toughening effects on the mechanical properties of PP/Ag-Ms/CB composites. When the content of CB was beyond 30 wt%, the surface resistance of the composite was reduced to less than 108 Ω which showed a remarkable antistatic property. According to the different filling content of conductive carbon black, it can flexibly regulate the resistivity of PP, and the conductive effect is durable and stable. We thus can produce permanent antistatic materials.展开更多
From the effects of the composition of the three kinds ofblended systems, the antistatic agent content and theblending methods on the spinnability, the antistatic prop-erty, and the wash fastness of PET filament, it i...From the effects of the composition of the three kinds ofblended systems, the antistatic agent content and theblending methods on the spinnability, the antistatic prop-erty, and the wash fastness of PET filament, it is foundthat the antistatic behavior of the (PET) - (PEG) -(SDBS) - stearate quaternary system is improved greatlydue to the synergefic effect of the combined antistaticagents and the volume resistivity of the fiber made.Thereof reaches 10~8 ~ 10~9Ω·cm after being washed 20 tines in saponaceous water at 40℃. Its spinnability anddrawing behavior are good. The effect of the antistaticagent content on the mechanical property of PET fila-ment is also studied.展开更多
Abstract: PAN (Polyacrylonitrile)-based carbonaceous fibers were prepared at the heat treatment temperature (HTT) range of 650 to 900 ℃. The relationships among HTT, carbon content and volume resistivity of the ...Abstract: PAN (Polyacrylonitrile)-based carbonaceous fibers were prepared at the heat treatment temperature (HTT) range of 650 to 900 ℃. The relationships among HTT, carbon content and volume resistivity of the carbonaceous fibers were investigated. The carbonaceous fibers/PTFE (Polytetrafluoroethylene) antistatic coatings were prepared by the spraying technology and the effects of carbonaceous fibers and pigments on surface resistivity of the coatings were systematically discussed. Micrographs provide insight into the antistatic mechanism of the coating. The results show that carbon content of the carbonaceous fibers increases from 68.8% to 74.8% (mass fraction) and the volume resistivity decreases drastically from 1.94× 10^-3 to 8.27× 10 ^-2.cm. The surface resistivity of the antistatic coating is adjustable between 10^5 and 10^8Ω2 to fit the different antistatic materials. Static is dissipated by a conductive network of short fibers and the tunneling effect between the neighboring fibers and conductive pigments. Conductive pigments make the conductive network more perfect and improve the antistatic ability, but insulating pigments acting as barriers for the formation of conductive channel increases the surface resistivity of the coatings. The influence of pigments on the surface resistivity drops gradually with the decrease of the carbonaceous fibers volume resistivity.展开更多
A branched polyethyleneimine (BPEI) was applied to poly(ethylene terephthalate)(PET) fabric to improve its surface moisture absorption so that the fabric becomes lessliable to retention of electrostatic charg. The dur...A branched polyethyleneimine (BPEI) was applied to poly(ethylene terephthalate)(PET) fabric to improve its surface moisture absorption so that the fabric becomes lessliable to retention of electrostatic charg. The durability of this treatment was assessed bywashing and followed by measurement of charge development on the fabric. The treatedsamples showed improved surface wetting compared to the untreated. The results areconsistent with attachment of the BPEI to the PET surface by a cross-linking mechanism.展开更多
In order to develop a fabric with excellent flame resistance function,antistatic function,moisture absorption and breathability,the polysulfonamide(PSA)fiber and the flame retardant viscose(FRV)fiber were blended.Mean...In order to develop a fabric with excellent flame resistance function,antistatic function,moisture absorption and breathability,the polysulfonamide(PSA)fiber and the flame retardant viscose(FRV)fiber were blended.Meanwhile,the conductive filaments were used as the core yarn,and then they were made into the core-spun yarn and the fabric at different blending ratios of PSA/FRV.The effects of the blending ratio of PSA/FRV on the mechanical properties and the evenness of the yarn were studied.The effects of the blending ratio of PSA/FRV on mechanical properties,flame retardant properties,antistatic properties,moisture permeability and drape of the fabric were analyzed.With the increase of the blending ratios of PSA/FRV,the strength and the elongation of the core-spun yarn increased firstly and then decreased.Moreover,the evenness of the core-spun yarn was improved,the fabric strength increased firstly and then decreased,the flame resistance decreased,and the antistatic performance improved.These results provide an important basis for the preparation and wide application of fabrics made of PSA/FRV/conductive filament.展开更多
In order to improve the electrical conductivity of nylon 6(PA6)and avoid misfires and explosions caused by static charge accumulation,a quaternary ammonium salt polyionic liquid(PIL)antistatic agent was synthesized in...In order to improve the electrical conductivity of nylon 6(PA6)and avoid misfires and explosions caused by static charge accumulation,a quaternary ammonium salt polyionic liquid(PIL)antistatic agent was synthesized in this paper.The surface resistance of PA6 was reduced to 10~8Ωwith the addition of 2 wt%antistatic agent,and the mechanical properties and aging resistance of the substrate were improved.Meanwhile,the morphology and crystallinity of PIL/PA6 composites were further characterized by scanning electron microscope(SEM),energy dispersion spectrometer(EDS)and X-ray diffraction(XRD).It is worth noting that the quaternary ammonium salt polyionic liquid antistatic agent synthesized in this paper has the advantages of excellent antistatic effect,durability,low cost,and simple reaction condition,so it has a broad application prospect in the antistatic aspect of PA6.展开更多
Sb-doped SnO2(ATO)-(CeO2-TiO2) thin Films were deposited on glass substrates using the mixed solution including CeO2-TiO2 precursor and ATO particles by sol-gel dip coating process.ATO particles were prepared using lo...Sb-doped SnO2(ATO)-(CeO2-TiO2) thin Films were deposited on glass substrates using the mixed solution including CeO2-TiO2 precursor and ATO particles by sol-gel dip coating process.ATO particles were prepared using low-temperature hydrothermal process.The mixed molar ratio of ATO to(CeO2-TiO2) vs the properties of CeO2-TiO2 thin film was investigated.The optical properties of the films were characterized by UV-visible transmission and infrared reflection spectra,the sheet resistance of ATO particles and films were measured by rubber sheeter(MYI-50) and four-point probe(HisuperGroup Inc,SDY-5),the surface morphology and structure of the films were analyzed using 3D Digitale Mikroskop and X-ray diffraction(XRD),respectively.The results showed that the ATO precursor solution lost weight completely at about 500 oC,and the ATO particles was obtained,which indicated the same rutile lattice structure as SnO2.The glass substrates coated with ATO-(CeO2-TiO2) thin films showed better properties in antistatic electricity(104-106 Ω/),shielding UV(almost 100%),visible light transmission(70%) and infrared reflection(】30%).展开更多
Research on antistatic superhydrophobic surfaces has attracted widespread attention in some fields.However,in the application of superhydrophobic materials,fabricating stable and practical superhydrophobic surfaces th...Research on antistatic superhydrophobic surfaces has attracted widespread attention in some fields.However,in the application of superhydrophobic materials,fabricating stable and practical superhydrophobic surfaces through facile and low-cost approaches still faces considerable challenges.Herein,a polyphenylene sulfide(PPS)-based antistatic superhydrophobic composite coating with a high water contact angle(166°)and a low sliding angle(2°)was fabricated on a Q345 steel surface through a simple spray-coating method without any modifier.Furthermore,the as-prepared superhydrophobic coating also displayed excellent superhydrophobicity for water droplets at different pH values,as well as self-cleaning,anti-fouling and anti-icing properties.Importantly,the superhydrophobic coating still exhibited superhydrophobicity after calcination at 350°C for 1 h,indicating its outstanding thermal stability.Excellent antistatic and anticorrosion properties were obtained on the prepared coating surface,which allows the coating to be applied under harsh conditions.Benefiting from the above characteristics,compared with the commercial coating,the as-obtained antistatic superhydrophobic coating may be applied more widely in related fields.展开更多
Multilayer graphene was prepared by mechanical exfoliation of natural graphite with dioctyl phthalate (DOP) as milling medium without solvent. The obtained mixture could be directly mixed with poly(vinyl chloride)...Multilayer graphene was prepared by mechanical exfoliation of natural graphite with dioctyl phthalate (DOP) as milling medium without solvent. The obtained mixture could be directly mixed with poly(vinyl chloride) (PVC) for melt-forming, with DOP acting as plasticizer and graphene acting as conductive filler for antistatic performance. The composite showed surface resistance of 2.5 ×10 6 Ω/ at 1 wt% carbon additive, significantly lower than approx. 7 wt% of raw graphite required for achieving the same level. This value is low enough for practical antistatic criterion of 3 × 10 8 Ω/ . The effect of filler addition on mechanical performance was minimal, or even beneficial for the milled carbon in contrast to the case of raw graphite.展开更多
Static charges on optical ant-counterfeiting membranes may lead to materials structural changes,dust stain aggravation,and misreading of optical information.Incorporating conductive particles is a common way to transf...Static charges on optical ant-counterfeiting membranes may lead to materials structural changes,dust stain aggravation,and misreading of optical information.Incorporating conductive particles is a common way to transfer accumulative charges,but the key issue is how to achieve high dispersion and effective distribution of particles.According to the strategy of assembly-induced structural colors,cellulose nanocrystals(CNCS)were employed as a solid emulsifier to stabilize hydrophobic carbon nanoparticles(CNPs)in aqueous media;subsequently.by solvent evaporation-modulated co-assembly under a condition of 30°C and 20 RH%,the binary suspensions containing 2wt% CNC and CNPs with the equivalent concentration relative to CNC ranged from 1:40 to 1:10 were used to prepare antistatic composite membranes.Surface chemistry regulation of CNCs was applied to optimize the dispersiblity of CNPs and the orientation of assembled CNC arrays,and the hydrophilic CNCS were more favorable for dispersion and assembly of binary suspension systems.Meanwhile,one dimension carbon nanotube(CNT)and zero-dimension carbon black(CB)were found to show better dispersibility than two dimension graphene,which was verified by a semi-quantitative theoretical study.Moreover,the stable binary systems of CNT/CNC and CB/CNC were chosen for co-assembly as membranes,and the uniaxial orientation could be optimized as the fll-width of 9.8°at half maximum deviation angle while the surface resistivity could also drop down to 3.42 × 102 Qcmcm-1.The structural color character of such paper homology and antistatic integrated membranes contributes to optical information hiding and-reading,and shows great potential as optical mark recognition materials for electrostatic discharge protective packaging and anti.counterfeiting applications.展开更多
To improve the mechanical properties of bio-based poly(ethylene succinate),the sugar monomer isosorbide,whicli is relatively easy to obtain,was used as a copolymerized third monomer to synthesize poly(ethyleneco-isoso...To improve the mechanical properties of bio-based poly(ethylene succinate),the sugar monomer isosorbide,whicli is relatively easy to obtain,was used as a copolymerized third monomer to synthesize poly(ethyleneco-isosorbide succinate),a 100%biomass copolyester.The effects of isosorbide on the crystallinity and thermal properties of copolyester were studied by nuclear magnetic resonancefH NMR),differential scanning calorimeter(DSC),and thermogravimetric(TG).Owing to its distinct rigid bicyclic structure,isosorbide can improve the glass transition temperature of the copolyester and decrease the crystallization rate,as well as accelerate the hydrolysis of the copolyester.Simultaneously,the introduction of isosorbide can effectively improve the antistatic properties of copolyester.展开更多
Antistatic and strength properties are of vital importance for polyurethane rubber used in moving parts of many industrial instruments.Herein,polyurethane was composited with polyaniline and nanosilica based on in sit...Antistatic and strength properties are of vital importance for polyurethane rubber used in moving parts of many industrial instruments.Herein,polyurethane was composited with polyaniline and nanosilica based on in situ synthesis of polymer and physical mixing of these fillers to reach desired antistatic and mechanical properties.Chemical,morphological and thermal properties of the polyurethane/polyaniline/nanosilica composites were studied.The electrical resistivity of the composite decreased from 1.1×10^(6)MΩto 7.6×10^(4)MΩas a result of the addition of 4%polyaniline.The tensile strength and elongation at break of the polyurethane composites improved by nearly 300%and100%,respectively,when compared with those of the neat polyurethane.The electronic resistance of PU/PANI/NS ternary is low enough for its antistatic property and decreases with the increase of the added nanosilica,which is unexpectedly and rather significant.Our results would shed light on the development of antistatic PU with excellent mechanical performance.展开更多
基金This work was financially supported by the Major State Basic Research Development Program of China (No.10332020)
文摘Antistatic polymer fibers were investigated by using carbon nanotubes (CNTs) to enhance the antistatic ability of inner antistatic agents based on the mechanism of attracting moisture by polar radical groups. It is indicated that the antistatic ability of the fibers filled with composite antistatic agents that contain CNTs and organic antistatic agents was superior to that of the fibers filled either with pure organic antistatic agents or pure CNTs. The antistatic ability of the composite antistatic agent fabricated by an in situ process was superior to that of the composite antistatic agent fabricated by direct dispersing CNTs in the antistatic agent carrier. Moreover, the heat-treated CNTs could further enhance the antistatic effect compared with the initial CNTs. The antistatic effect is significantly influenced by the content of CNTs in the composite antistatic agent.
文摘The hydrophilicity, dyeing and antistatic ability of polypropylene microfibre (PPMF) were improved by plasma-induced vapor grafting with acrylic acid. The effects of plasma discharge time, power, liquid phase acrylic acid temperature and environmental temperature on grafting yield were investigated. The existence of grafted polyacrylic acid (PAA) was verified by ESCA and ATR FT-IR. The morphology of grafted PAA was directly observed by SEM. The wicking test shows that the hydrophilicity of modified PPMF is greatly enhanced. The dyeability test of modified PPMF was carried out using Dispersion Yellow. It was found that the dye uptake ratio is linear to the weight percent of grafting. The antistatic ability was indicated by specific resistance. The specific resistance of modified PPMF was reduced to 10(6) similar to 10(7) Ohm . cm, thus the antistatic ability was considerably improved.
文摘The synthesis of reaction flame retarding unsaturated polyester resin and the flame retarding mechanism are investigated.By taking the synthesis flame retarding unsaturated polyester resin as a base material,glass fibers as reinforced material,under the condition of adding graphite or carbon black respectively,the composites were manufactured.The flame retarding and antistatic properties are also studied.In the experiment,bromide-bearing flame retarding resin decomposed under a high temperature.Compound HBr was set out and retarded or stopped the flame.High concentration of HBr gas wall was formed between gas and solid phrases,which decreased flame.The results show that antistatic property of carbon black is higher than that of graphite.Adding a threshed value of 1% carbon black into composite,the antistatic property is at its highest value.
基金financially supported by the National Natural Science Foundation of China (21978089 and 21878256)the Fundamental Research Funds for the Central Universities (22221818010)+1 种基金the 111 Project (B20031)the Program of Shanghai Subject Chief Scientist (21XD1433000)
文摘Functional multiblock poly(ether-b-amide)(PEBA)copolymers,comprised of PA1212(polyamide 1212)as hard segments and Jeffamine ED-2003 as soft segments,were successfully prepared via two-step melt polycondensation without any amidation catalyst.Here,using diamino-terminated poly(propylene oxide)-poly(ethylene oxide)-poly(propylene oxide)(PPO-PEO-PPO),Jeffamine ED-2003,enhances the compatibility between polyamide oligomer and polyether,which is better than the traditional route using hydroxyl-terminated polyether.The chemical structure of multiblock PEBAs,as well as the microphase separated structure with crystalline phase of polyamide and polyether,were confirmed by heteronuclear multiple-bond correlation spectrum,heteronuclear multiple quantum correlation spectrum,Fourier transform infrared spectroscopy(FT-IR),differential scanning calorimetry and dynamic mechanical analysis.The hydrophilic PEBA copolymers showed water adsorption ranging from 87.3%to 17.1%depending on the polyether content,and specially showed moisture responsive behavior within seconds when exposed to moisture.The corresponding mechanism was studied using time-resolved attenuated total reflectance FT-IR spectroscopy in the molecular level and the water diffusion coefficient was estimated to be 1.07×10^(–8)cm^(2)∙s^(-1).Two-dimensional correlation FT-IR spectra analysis was performed to confirm that the interaction between water and polyether phase was in preference to that between water and polyamide matrix,and water molecule only forms hydrogen bond with the polyether segment.Due to the incorporation of PEO segments,the PEBAs have the surface resistivity varying from 5.6×10^(9)to 6.5×10^(10)Ω,which makes PEBA potential candidate as permanent antistatic agent.
文摘Light-colored antistatic polyacrylonitrile(PAN)composite fiber was successfully prepared via a facile wet-spinning process using ATZO@TiO_(2)whiskers as conductive fillers.This kind of low-cost fiber meets the requirements of light-colored and antistatic ability,which is quite suitable for mass production of dust-proof and safety workwear.The conductive whiskers are well dispersed in the fiber and form a continuous conductive pathway,which makes the fiber to possess a long conductive ability.The lowest resistance of antistatic ATZO@TiO_(2)/PAN fiber was 2.1×10^(7)Ω·cm.
基金the Fundamental Research Funds for the Central Universities,China
文摘In this paper, glucose was used as a green reducing agent and a capping reagent in the synthesis of water dispersible graphene, while using exfoliated graphite oxide (GO) as the precursor with the modified Hummers method. Characterizations of the graphene were conducted by UV-visihle absorption spectroscopy and X-ray diffraction (XRD). Then the spunlaid-melthlowing-spuulaid (SMS) nonwovens were treated with the graphene solution via pad-dry-cure process. The surface and the antistatic property of the obtained nonwovens were tested. The results showed that O. 1 mg/mL graphene solution exhibited good stability in water. When treated with this solution, the graphene could be evenly dispersed on SMS nonwovens and the nonwovens had an excellent antistatic performance and a high relatively antistatic durability.
基金Program for Changjiang Scholars and Inno■tive Research Team in University (IRT 0526)the Scientific Research Foundation for the Returned Overseas Chinese Scholars,State Education Ministry
文摘Lipase preparation from Aspergillus oryzae could act on ester bonds on the surface of poly (ethylene terephthalate) fibers and a possible hydrolytic product mono (2-hydroxyethyl) terephthalate was released. After the iipase modification, there were more carboxyi groups on the treated poly (ethylene terephthalate) fabric surface that resulted in binding with more cationic dyes. Increased hydrophilicity and antistatic ability of poly (ethylene terephthalate) samples were found based on moisture regain, water contact angle and static half decay time.
基金Funded by National Natural Science Funds of China(No.51173141)Natural Science Funds of Hubei Province,China(No.2014CFC1152)+1 种基金Science and Technology Research Program of Department of Education of Hubei Province,China(No.Q20122305)Funds of Hubei Key Laboratory of Automotive Power Train and Electronic Control(No.ZDK1201405)
文摘Polypropylene(PP) composites that contain silver micro-particles(MILLION KILLER, denoted as Ag-Ms) and conductive carbon black(CB) have both antibacterial and antistatic properties. In the present study, the antibacterial and antistatic PP/Ag-Ms/CB composites were prepared by melt blending. The results showed that when the content was 0.8 wt%, Ag-Ms could be uniformly dispersed in the PP matrix and the mechanical properties of the composites remained stable. And the reduction percentages of Staphylococcus aureus and Escherichia coli were more than 80% which showed the good antibacterial behavior. In addition, conductive carbon black had reinforcing and toughening effects on the mechanical properties of PP/Ag-Ms/CB composites. When the content of CB was beyond 30 wt%, the surface resistance of the composite was reduced to less than 108 Ω which showed a remarkable antistatic property. According to the different filling content of conductive carbon black, it can flexibly regulate the resistivity of PP, and the conductive effect is durable and stable. We thus can produce permanent antistatic materials.
文摘From the effects of the composition of the three kinds ofblended systems, the antistatic agent content and theblending methods on the spinnability, the antistatic prop-erty, and the wash fastness of PET filament, it is foundthat the antistatic behavior of the (PET) - (PEG) -(SDBS) - stearate quaternary system is improved greatlydue to the synergefic effect of the combined antistaticagents and the volume resistivity of the fiber made.Thereof reaches 10~8 ~ 10~9Ω·cm after being washed 20 tines in saponaceous water at 40℃. Its spinnability anddrawing behavior are good. The effect of the antistaticagent content on the mechanical property of PET fila-ment is also studied.
基金Project(2011CB605601)supported by the National Basic Research Program(973 Program)of ChinaProject(50902088)supported by the National Natural Science Foundation of China+1 种基金Project(ZR2011EMM002)supported by the Natural Science Foundation in Shandong Province,ChinaProject(2009AA035301)supported by the National High Technology Research and Development Program(863 Program)of China
文摘Abstract: PAN (Polyacrylonitrile)-based carbonaceous fibers were prepared at the heat treatment temperature (HTT) range of 650 to 900 ℃. The relationships among HTT, carbon content and volume resistivity of the carbonaceous fibers were investigated. The carbonaceous fibers/PTFE (Polytetrafluoroethylene) antistatic coatings were prepared by the spraying technology and the effects of carbonaceous fibers and pigments on surface resistivity of the coatings were systematically discussed. Micrographs provide insight into the antistatic mechanism of the coating. The results show that carbon content of the carbonaceous fibers increases from 68.8% to 74.8% (mass fraction) and the volume resistivity decreases drastically from 1.94× 10^-3 to 8.27× 10 ^-2.cm. The surface resistivity of the antistatic coating is adjustable between 10^5 and 10^8Ω2 to fit the different antistatic materials. Static is dissipated by a conductive network of short fibers and the tunneling effect between the neighboring fibers and conductive pigments. Conductive pigments make the conductive network more perfect and improve the antistatic ability, but insulating pigments acting as barriers for the formation of conductive channel increases the surface resistivity of the coatings. The influence of pigments on the surface resistivity drops gradually with the decrease of the carbonaceous fibers volume resistivity.
文摘A branched polyethyleneimine (BPEI) was applied to poly(ethylene terephthalate)(PET) fabric to improve its surface moisture absorption so that the fabric becomes lessliable to retention of electrostatic charg. The durability of this treatment was assessed bywashing and followed by measurement of charge development on the fabric. The treatedsamples showed improved surface wetting compared to the untreated. The results areconsistent with attachment of the BPEI to the PET surface by a cross-linking mechanism.
基金Open Fund Project of Clothing Engineering Research Center of Zhejiang Province(Zhejiang Sci-Tech University,China)(No.2019FZKF04)Transformation of Scientific and Technological Achievements Programs of Higher Education Institutions in Shanxi Province,China(TSTAP)(No.2020CG014)+2 种基金the MOE(Ministry of Education in China)Project of Humanities and Social Sciences(No.18YJC760051)2017 Shanxi Philosophy and Social Science Project,China(No.201702)Program for the Philosophy and Social Sciences Research(PSSR)of Higher Learning Institutions of Shanxi Province,China(No.201803060)。
文摘In order to develop a fabric with excellent flame resistance function,antistatic function,moisture absorption and breathability,the polysulfonamide(PSA)fiber and the flame retardant viscose(FRV)fiber were blended.Meanwhile,the conductive filaments were used as the core yarn,and then they were made into the core-spun yarn and the fabric at different blending ratios of PSA/FRV.The effects of the blending ratio of PSA/FRV on the mechanical properties and the evenness of the yarn were studied.The effects of the blending ratio of PSA/FRV on mechanical properties,flame retardant properties,antistatic properties,moisture permeability and drape of the fabric were analyzed.With the increase of the blending ratios of PSA/FRV,the strength and the elongation of the core-spun yarn increased firstly and then decreased.Moreover,the evenness of the core-spun yarn was improved,the fabric strength increased firstly and then decreased,the flame resistance decreased,and the antistatic performance improved.These results provide an important basis for the preparation and wide application of fabrics made of PSA/FRV/conductive filament.
基金supported by the Natural Science Foundation of Guangdong Province(Project No.2021A1515010140)the Natural Science Foundation of Shandong Province(Project No.ZR2020ME065)
文摘In order to improve the electrical conductivity of nylon 6(PA6)and avoid misfires and explosions caused by static charge accumulation,a quaternary ammonium salt polyionic liquid(PIL)antistatic agent was synthesized in this paper.The surface resistance of PA6 was reduced to 10~8Ωwith the addition of 2 wt%antistatic agent,and the mechanical properties and aging resistance of the substrate were improved.Meanwhile,the morphology and crystallinity of PIL/PA6 composites were further characterized by scanning electron microscope(SEM),energy dispersion spectrometer(EDS)and X-ray diffraction(XRD).It is worth noting that the quaternary ammonium salt polyionic liquid antistatic agent synthesized in this paper has the advantages of excellent antistatic effect,durability,low cost,and simple reaction condition,so it has a broad application prospect in the antistatic aspect of PA6.
基金Project supported by the Changjiang Scholars and Innovative Research Team in University
文摘Sb-doped SnO2(ATO)-(CeO2-TiO2) thin Films were deposited on glass substrates using the mixed solution including CeO2-TiO2 precursor and ATO particles by sol-gel dip coating process.ATO particles were prepared using low-temperature hydrothermal process.The mixed molar ratio of ATO to(CeO2-TiO2) vs the properties of CeO2-TiO2 thin film was investigated.The optical properties of the films were characterized by UV-visible transmission and infrared reflection spectra,the sheet resistance of ATO particles and films were measured by rubber sheeter(MYI-50) and four-point probe(HisuperGroup Inc,SDY-5),the surface morphology and structure of the films were analyzed using 3D Digitale Mikroskop and X-ray diffraction(XRD),respectively.The results showed that the ATO precursor solution lost weight completely at about 500 oC,and the ATO particles was obtained,which indicated the same rutile lattice structure as SnO2.The glass substrates coated with ATO-(CeO2-TiO2) thin films showed better properties in antistatic electricity(104-106 Ω/),shielding UV(almost 100%),visible light transmission(70%) and infrared reflection(】30%).
基金This work is supported by the National Nature Science Foundation of China(Grant Nos.51735013,51675513 and 51875564).
文摘Research on antistatic superhydrophobic surfaces has attracted widespread attention in some fields.However,in the application of superhydrophobic materials,fabricating stable and practical superhydrophobic surfaces through facile and low-cost approaches still faces considerable challenges.Herein,a polyphenylene sulfide(PPS)-based antistatic superhydrophobic composite coating with a high water contact angle(166°)and a low sliding angle(2°)was fabricated on a Q345 steel surface through a simple spray-coating method without any modifier.Furthermore,the as-prepared superhydrophobic coating also displayed excellent superhydrophobicity for water droplets at different pH values,as well as self-cleaning,anti-fouling and anti-icing properties.Importantly,the superhydrophobic coating still exhibited superhydrophobicity after calcination at 350°C for 1 h,indicating its outstanding thermal stability.Excellent antistatic and anticorrosion properties were obtained on the prepared coating surface,which allows the coating to be applied under harsh conditions.Benefiting from the above characteristics,compared with the commercial coating,the as-obtained antistatic superhydrophobic coating may be applied more widely in related fields.
基金financially supported by the National Natural Science Foundation of China (Nos. 51472253 and 51772306)
文摘Multilayer graphene was prepared by mechanical exfoliation of natural graphite with dioctyl phthalate (DOP) as milling medium without solvent. The obtained mixture could be directly mixed with poly(vinyl chloride) (PVC) for melt-forming, with DOP acting as plasticizer and graphene acting as conductive filler for antistatic performance. The composite showed surface resistance of 2.5 ×10 6 Ω/ at 1 wt% carbon additive, significantly lower than approx. 7 wt% of raw graphite required for achieving the same level. This value is low enough for practical antistatic criterion of 3 × 10 8 Ω/ . The effect of filler addition on mechanical performance was minimal, or even beneficial for the milled carbon in contrast to the case of raw graphite.
基金This work was financially supported by the National Natural Science Foundation of China(Nos.51973175 and 51603171)the Project for Chongqing University Innovation Research Group(No.CXQT19008)+1 种基金the Chongqing Talent Plan for Innovation and Entrepreneurship Demonstration Team(No.CQYC201903243)the Key Laboratory of Polymeric Composite&Functional Materials of Ministry of Education(No.PCFM201605).
文摘Static charges on optical ant-counterfeiting membranes may lead to materials structural changes,dust stain aggravation,and misreading of optical information.Incorporating conductive particles is a common way to transfer accumulative charges,but the key issue is how to achieve high dispersion and effective distribution of particles.According to the strategy of assembly-induced structural colors,cellulose nanocrystals(CNCS)were employed as a solid emulsifier to stabilize hydrophobic carbon nanoparticles(CNPs)in aqueous media;subsequently.by solvent evaporation-modulated co-assembly under a condition of 30°C and 20 RH%,the binary suspensions containing 2wt% CNC and CNPs with the equivalent concentration relative to CNC ranged from 1:40 to 1:10 were used to prepare antistatic composite membranes.Surface chemistry regulation of CNCs was applied to optimize the dispersiblity of CNPs and the orientation of assembled CNC arrays,and the hydrophilic CNCS were more favorable for dispersion and assembly of binary suspension systems.Meanwhile,one dimension carbon nanotube(CNT)and zero-dimension carbon black(CB)were found to show better dispersibility than two dimension graphene,which was verified by a semi-quantitative theoretical study.Moreover,the stable binary systems of CNT/CNC and CB/CNC were chosen for co-assembly as membranes,and the uniaxial orientation could be optimized as the fll-width of 9.8°at half maximum deviation angle while the surface resistivity could also drop down to 3.42 × 102 Qcmcm-1.The structural color character of such paper homology and antistatic integrated membranes contributes to optical information hiding and-reading,and shows great potential as optical mark recognition materials for electrostatic discharge protective packaging and anti.counterfeiting applications.
文摘To improve the mechanical properties of bio-based poly(ethylene succinate),the sugar monomer isosorbide,whicli is relatively easy to obtain,was used as a copolymerized third monomer to synthesize poly(ethyleneco-isosorbide succinate),a 100%biomass copolyester.The effects of isosorbide on the crystallinity and thermal properties of copolyester were studied by nuclear magnetic resonancefH NMR),differential scanning calorimeter(DSC),and thermogravimetric(TG).Owing to its distinct rigid bicyclic structure,isosorbide can improve the glass transition temperature of the copolyester and decrease the crystallization rate,as well as accelerate the hydrolysis of the copolyester.Simultaneously,the introduction of isosorbide can effectively improve the antistatic properties of copolyester.
基金financially supported by Natural Science Advance Research Foundation of Shaanxi University of Science and Technology(No.2020XSGG-07)the National Natural Science Foundation of China(No.31570578)Key Research and Development Program of Shaanxi(No.2022GY-278)。
文摘Antistatic and strength properties are of vital importance for polyurethane rubber used in moving parts of many industrial instruments.Herein,polyurethane was composited with polyaniline and nanosilica based on in situ synthesis of polymer and physical mixing of these fillers to reach desired antistatic and mechanical properties.Chemical,morphological and thermal properties of the polyurethane/polyaniline/nanosilica composites were studied.The electrical resistivity of the composite decreased from 1.1×10^(6)MΩto 7.6×10^(4)MΩas a result of the addition of 4%polyaniline.The tensile strength and elongation at break of the polyurethane composites improved by nearly 300%and100%,respectively,when compared with those of the neat polyurethane.The electronic resistance of PU/PANI/NS ternary is low enough for its antistatic property and decreases with the increase of the added nanosilica,which is unexpectedly and rather significant.Our results would shed light on the development of antistatic PU with excellent mechanical performance.