期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Competitive Adsorption of Anticorrosion and Antiwear Additives
1
作者 Feng Bing Chen Guoxu +2 位作者 Liu Shuanghong Chen Junjun Wang Kunt 《China Petroleum Processing & Petrochemical Technology》 SCIE CAS 2012年第1期68-73,共6页
Simulated adsorptive experiments using the axletree and lubricating oil containing anticorrosion additive were conducted,and the UV absorbance of the lubricating oil before and after the adsorptive experiments was mea... Simulated adsorptive experiments using the axletree and lubricating oil containing anticorrosion additive were conducted,and the UV absorbance of the lubricating oil before and after the adsorptive experiments was measured.Through the UV spectral measurements the difference in UV absorbance of the lubricating oil before and after the adsorptive experiments was identified,the adsorbed quantity of anticorrosion additive in the interfacial film between lubricating oil and bearing was calculated using the Lambert-Bell principle to verify the adsorption of corrosion inhibitor on the surface of friction pairs.Adsorption experiments on lubricating oil containing both antiwear and anticorrosion additives were carried out and the UV absorbance of lubricating oil samples before and after the experiments was measured to determine the difference in the UV absorbance among lubricating oil samples with the same mass fraction of anticorrosion additive and different mass fractions of antiwear additive.By measuring the ultraviolet spectral absorbance of lubricating oil samples and calculating the adsorbed quantity of anticorrosion additive in the interfacial film it was possible to determine the influence of antiwear additive on the quantity of adsorbed anticorrosion additive on the surface of friction pairs and verify the competitive adsorption relationship between the antiwear additive and the anticorrosion additive. 展开更多
关键词 anticorrosion additive antiwear additive ultraviolet spectrum interfacial film ABSORBANCE
下载PDF
M0S_(2) nanoparticles grown on carbon nanomaterials for lubricating oil additives 被引量:6
2
作者 Kuiliang GONG Wenjing LOU +2 位作者 Gaiqing ZHAO Xinhu WU Xiaobo WANG 《Friction》 SCIE EI CAS CSCD 2021年第4期747-757,共11页
In this study,the nanocomposites of MoS_(2) nanoparticles(NPs)grown on carbon nanotubes(MoS_(2)@CNT),graphene(MoS_(2)@Gr),and fullerene C60(MoS_(2)@C60)were synthesized,characterized,and evaluated for potential use as... In this study,the nanocomposites of MoS_(2) nanoparticles(NPs)grown on carbon nanotubes(MoS_(2)@CNT),graphene(MoS_(2)@Gr),and fullerene C60(MoS_(2)@C60)were synthesized,characterized,and evaluated for potential use as lubricant additives.By using the benefit of the synergistic effect between MoS_(2) and carbon nanomaterials(CNMs),these nanocomposites can be well dispersed in polyalkylene glycol(PAG)base oil and show superior stability compared with pure MoS_(2) NPs.Moreover,the dispersions of MoS_(2)@CNT,MoS_(2)@Gr,and MoS_(2)@C60 added in PAG have noticeably improved friction reducing and antiwear(AW)behaviors at elevated temperature for comparison with that of PAG and PAG containing CNT,Gr,C60,and M0S2 NPs,respectively.The enhanced lubricating properties of these nanocomposites were also elucidated by exploring the tribofilm formed on the disc. 展开更多
关键词 MoS_(2)nanoparticle carbon nanomaterial NANOCOMPOSITE antifriction and antiwear additive
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部