In this study,a three-dimensional artificial compressibility solver based on the average-state Harten-Lax-van Leer-Contact(HLLC)[13]type Riemann solution is first proposed and developed to solve the time-dependent inc...In this study,a three-dimensional artificial compressibility solver based on the average-state Harten-Lax-van Leer-Contact(HLLC)[13]type Riemann solution is first proposed and developed to solve the time-dependent incompressible flow equations.To implement unsteady flow calculations,a dual time stepping strategy including the LU decomposition method is used in the pseudo-time iteration and the second-order accurate backward difference is adopted to discretize the unsteady flow term.Also a third-order accurate HLLC numerical flux is derived for approximating the inviscid terms.To verify numerical accuracy,flows over a lid-driven cavity and an oscillating flat plate are chosen as the benchmark tests.In addition,the current solver is extended to solve blood flows in a realistic human aorta measured from MRI(Magnetic Resonance Imaging).The simulation geometry was derived from a three-dimensional reconstruction of a series of two-dimensional slices obtained in vivo.Numerical results demonstrate wall stresses were highly dynamic,but were generally high along the outer wall in the vicinity of the branches and low along the inner wall,particularly in the descending aorta.The maximum wall stress distribution is presented on the aortic arch in the systole.In addition,extensive counter-clockwise secondary flows and three-dimensional helical vortex influenced considerably by the presence of vessel contraction,torsion and the branches were shown in the descending aorta in the late systole and early diastolic cycles.展开更多
The three-dimensional (3D) lattice Boltzmann models, 3DQ15, 3DQ19 and 3DQ27, under different wall boundary conditions and lattice resolutions have been investigated by simulating Poiseuille flow in a circular cylind...The three-dimensional (3D) lattice Boltzmann models, 3DQ15, 3DQ19 and 3DQ27, under different wall boundary conditions and lattice resolutions have been investigated by simulating Poiseuille flow in a circular cylinder for a wide range of Reynolds numbers. The 3DQ19 model with improved Fillippova and Hanel (FH) curved boundary condition represents a good compromise between computational efficiency and reliability. Blood flow in an aortic arch is then simulated as a typical haemodynamic application. Axial and secondary fluid velocity and effective wall shear stress profiles in a 180° bend are obtained, and the results also demonstrate that the lattice Boltzmann method is suitable for simulating the flow in 3D large-curved vessels.展开更多
The recently introduced real-time three-dimensional color Doppler flow imaging (RT-3D CDFI) technique provides a quick and accurate calculation of regurgitant jet volume (RJV) and fraction. In order to evaluate RT...The recently introduced real-time three-dimensional color Doppler flow imaging (RT-3D CDFI) technique provides a quick and accurate calculation of regurgitant jet volume (RJV) and fraction. In order to evaluate RT-3D CDFI in the noninvasive assessment of aortic RJV and regurgitant jet fraction (RJF) in patients with isolated aortic regurgitation, real-time three-dimensional echocardiographic studies were performed on 23 patients with isolated aortic regurgitation to obtain LV end-diastolic volumes (LVEDV), end-systolic volumes (LVESV) and RJV, and then RJF could be calculated. The regurgitant volume (RV) and regurgitant fraction (RF) calculated by two-dimensional pulsed Doppler (2D-PD) method served as reference values. The results showed that aortic RJV measured by the RT-3D CDFI method showed a good correlation with the 2D-PD measurements (r= 0.93, Y=0.89X+ 3.9, SEE= 8.6 mL, P〈0.001 ); the mean (SD) difference between the two methods was - 1.5 (9.8) mL. % RJF estimated by the RT-3D CDFI method was also correlated well with the values obtained by the 2D-PD method (r=0.88, Y=0.71X+ 14.8, SEE= 6.4 %, P〈0. 001); the mean (SD) difference between the two methods was -1.2 (7.9) %. It was suggested that the newly developed RT-3D CDFI technique was feasible in the majority of patients. In patients with eccentric aortic regurgitation, this new modality provides additional information to that obtained from the two-dimensional examination, which overcomes the inherent limitations of two-dimensional echocardiography by depicting the full extent of the jet trajectory. In addition, the RT-3D CDFI method is quick and accurate in calculating RJV and RJF.展开更多
Background: A Randomized Controlled Trial (RCT) has been elaborated where goal directed fluid and hemodynamic therapy (GDFHT) will be realized with trans-thoracic echocardiographic aortic blood flow peak velocity vari...Background: A Randomized Controlled Trial (RCT) has been elaborated where goal directed fluid and hemodynamic therapy (GDFHT) will be realized with trans-thoracic echocardiographic aortic blood flow peak velocity variation (ΔVpeak) and distance minute (DM) to guide fluid therapy and hemodynamics in high risk pediatric surgical patients. This RCT will clarify the impact of GDFHT with ΔVpeak and DM on postoperative outcome in terms of morbidity, length of stay in the intensive care unit (LOSICU), length of mechanical ventilation (LMV) and length of hospital stay (LOS) in children. To determine values of ΔVpeak, DM and VTI predictive of these postoperative outcomes, an observational pilot study will be realized. This pilot study is described here. The primary objective of this study is to determine values of ΔVpeak, DM and ITV predictive of postoperative outcome in children in terms of morbidity. The secondary objectives are to determine values of ΔVpeak, DM and ITV predictive of LOSICU, LMV, LOS, intraoperative, postoperative fluid administration and vasoactive-inotropic therapy. Methods: 500 - 1000 children aged less than 18 years will be included prospectively. Statistic analysis will be realized with XLSTAT 2019.4.2 software or plus. Results and Conclusions: This trial protocol will determine values of ΔVpeak, DM and ITV with echocardiography predictive of postoperative outcome in children.展开更多
Objectives: Despite continuous advancements in the surgical treatments for thoracoabdominal aortic aneurysms (TAAA), paraplegia remains a devastating treatment-related complication. We aimed to summarize our experienc...Objectives: Despite continuous advancements in the surgical treatments for thoracoabdominal aortic aneurysms (TAAA), paraplegia remains a devastating treatment-related complication. We aimed to summarize our experience with a novel surgical strategy involving maintenance of high blood pressure and early establishment of pulsatile blood flow to the spinal cord. Materials and Methods: Between August 2011 and October 2017, 29 patients (age, 67 ± 12 years) underwent open surgery for TAAA. According to the Crawford classification, two aneurysms were type I, eight were type II, 12 were type III, and seven were type IV. We used partial cardiopulmonary bypass under mild hypothermia in all patients except one. By maintaining distal aortic perfusion pressure at 60 - 80 mmHg and creating the distal aortic anastomosis before visceral branch reconstruction, we established early perfusion of the hypogastric arteries with native pulsatile flow. Intraoperative spinal monitoring and cerebrospinal fluid drainage were performed in 26 (90%) and 23 (79%) patients, respectively. Nineteen patients (66%) underwent reconstruction of the intercostal arteries. During perioperative management, the mean arterial pressure was kept >80 mmHg. Results: No in-hospital deaths or acute neurological complications occurred. One patient (3.4%) experienced delayed temporal paraplegia. During follow-up, aorta-related death occurred in only one patient, who developed prosthetic vascular graft infection but did not undergo repeat graft replacement. The 3-year freedom from aortic-related death was 95%. Conclusion: Our surgical strategy involving maintenance of high blood pressure and early establishment of pulsatile flow to the spinal cord was effective in preventing spinal cord injury following open surgery for TAAA.展开更多
Some patients with severe aortic stenosis (AS), due to restrictive cardiac physiology, paradoxically have relatively low flow and low gradients across stenotic aortic valves despite preserved left ventricular (LV) sys...Some patients with severe aortic stenosis (AS), due to restrictive cardiac physiology, paradoxically have relatively low flow and low gradients across stenotic aortic valves despite preserved left ventricular (LV) systolic function. It results in symptoms and reduced quality of life and carries a high mortality. Whilst this form of severe AS, termed paradoxical low flow low gradient (pLFLG), is well reported, patients with this diagnosis experience inappropriate barriers to aortic valve replacement (AVR), the only efficacious treatment. We present the case of an 88-year-old female with 12 months of exertional dyspnoea on a background of hypothyroidism and hypercholesterolemia. Transthoracic echocardiogram (TTE) revealed LV hypertrophy, with a small LV cavity size and reduced stroke volume, yet normal systolic function. A heavily calcified aortic valve was identified with severe aortic stenosis, based on valve area, yet with incongruous mean transvalvular gradient of 25 mmHg (severe ≥ 50 mmHg). Following exclusion of other differential diagnoses, her symptoms were attributed to paradoxical LFLG severe AS. She was however declined definitive transcatheter aortic valve implantation (TAVI) due to her paradoxically low mean aortic gradient. Following further deterioration in her symptoms and supportive quantification of poor exercise performance, she was ultimately re-referred, accepted, and underwent TAVI. Following her AVR, the patient experiences significant improvement in both symptoms and quality of life after only one month. Paradoxical LFLG severe AS remains a well-documented yet under recognized disease. It carries high morbidity and mortality if untreated, yet is significantly less likely to be referred and accepted for intervention. With its prevalence expected to rise with an ageing population, this case serves as a timely reminder for clinicians to address the under recognition of important pathology.展开更多
Increasing life expectancy is expected to lead to a corresponding increase in the prevalence of aortic valve disease(AVD). Further, the number of indications for transcatheter aortic valve replacement(TAVR) as a treat...Increasing life expectancy is expected to lead to a corresponding increase in the prevalence of aortic valve disease(AVD). Further, the number of indications for transcatheter aortic valve replacement(TAVR) as a treatment option for AVD is expanding, with a growing role for echocardiography in its management. In this review we summarize the current literature on some newer echocardiographic modalities and the parameters they generate, with a particular focus on their prognostic and clinical value beyond conventional methods in the management of aortic stenosis, TAVR, and aortic regurgitation. Speckle tracking and 3 D echocardiography are now increasingly being used in the management of AVD. For instance, global longitudinal strain, the beststudied speckle tracking echocardiographic parameter, can detect subtle subclinical cardiac dysfunction in patients with AVD that is not apparent using traditional echocardiographic techniques. The emerging technique of 3D full volume color Doppler echocardiography provides more accurate measurement of the severity of aortic regurgitation than 2D-proximal isovelocity surface area. These novel techniques are promising for evaluating and risk stratifying patients to optimize surgical interventions, predict recovery, and improve clinical outcomes.展开更多
Aim: This paper discusses the design and Finite Element Analysis (FEA) of a Percutaneous Aor-tic Valve Stent. The aim of this study was to model a percutaneous aortic valve stent and subject it to finite element analy...Aim: This paper discusses the design and Finite Element Analysis (FEA) of a Percutaneous Aor-tic Valve Stent. The aim of this study was to model a percutaneous aortic valve stent and subject it to finite element analysis. The design process was carried out to meet the functional and surgical requirements. Methods and Results: Analysis was done with different materials with loads ranging from 50 kgf/mm²to 73 kgf/mm². These forces were selected because these val-ues are far greater than the normal human blood pressure which ranges from 10kPa to 16kPa. It was also to understand the mechanical behavior of different stent materials under such high pressures. A stent model was generated and its physical, mechanical and behavioral properties were studied. Finite element analysis and simulation of the model enhanced the designer to optimize the geometry suitable for perform-ance during and after implantation. The design objective for the stent is to have long term du-rability, low thrombogenicity, resistance to mi-gration and paravalvular leak. Conclusion: The analysis performed in this paper may aid in understanding the stent’s tolerable pressures ranges in comparison with the physiological pressures exerted by the heart and cardiac blood flow during abnormal cardiovascular conditions.展开更多
Objective: To design a new trileaflet aortic valve and investigate its mechanical behavior using finite ele- ment methods. Background: Quantification of aortic valve deformation during cardiac cycle is essential in un...Objective: To design a new trileaflet aortic valve and investigate its mechanical behavior using finite ele- ment methods. Background: Quantification of aortic valve deformation during cardiac cycle is essential in understanding normal and pathological valvular function and eventually in the design of valves. We have designed and analyzed a new tissue valve model to investigate the mechanics of the valve and its components. Methods: Steps involves in 3D CAD based geometric modeling of a trileaflet aortic valve and the effects of different component dimensions on the mechanical behavior of valve is presented in this paper. Conceptual designing of individual components was used to build the total geometric model. Different physiological pressures were applied on the valve model and its deformation patterns were studied. Results: A new geometric model of a trileaflet aortic valve was designed. Its mechanical behavior was studied. Geometric analysis and simulation of these models enhanced the designer to optimize the geometry suitable for performance during and after implantation. Conclusion: The geometry-based model presented here allows determining quickly if the new set of valve component dimensions results in a functional valve. This is of great interest to designers of new prosthetic heart valve models, as well as to surgeons involved in valve- sparing surgery.展开更多
文摘In this study,a three-dimensional artificial compressibility solver based on the average-state Harten-Lax-van Leer-Contact(HLLC)[13]type Riemann solution is first proposed and developed to solve the time-dependent incompressible flow equations.To implement unsteady flow calculations,a dual time stepping strategy including the LU decomposition method is used in the pseudo-time iteration and the second-order accurate backward difference is adopted to discretize the unsteady flow term.Also a third-order accurate HLLC numerical flux is derived for approximating the inviscid terms.To verify numerical accuracy,flows over a lid-driven cavity and an oscillating flat plate are chosen as the benchmark tests.In addition,the current solver is extended to solve blood flows in a realistic human aorta measured from MRI(Magnetic Resonance Imaging).The simulation geometry was derived from a three-dimensional reconstruction of a series of two-dimensional slices obtained in vivo.Numerical results demonstrate wall stresses were highly dynamic,but were generally high along the outer wall in the vicinity of the branches and low along the inner wall,particularly in the descending aorta.The maximum wall stress distribution is presented on the aortic arch in the systole.In addition,extensive counter-clockwise secondary flows and three-dimensional helical vortex influenced considerably by the presence of vessel contraction,torsion and the branches were shown in the descending aorta in the late systole and early diastolic cycles.
基金Project supported by the National Natural Science Foundation of China(Grant No10274006)Education Ministry of China(Grant No03011)
文摘The three-dimensional (3D) lattice Boltzmann models, 3DQ15, 3DQ19 and 3DQ27, under different wall boundary conditions and lattice resolutions have been investigated by simulating Poiseuille flow in a circular cylinder for a wide range of Reynolds numbers. The 3DQ19 model with improved Fillippova and Hanel (FH) curved boundary condition represents a good compromise between computational efficiency and reliability. Blood flow in an aortic arch is then simulated as a typical haemodynamic application. Axial and secondary fluid velocity and effective wall shear stress profiles in a 180° bend are obtained, and the results also demonstrate that the lattice Boltzmann method is suitable for simulating the flow in 3D large-curved vessels.
文摘The recently introduced real-time three-dimensional color Doppler flow imaging (RT-3D CDFI) technique provides a quick and accurate calculation of regurgitant jet volume (RJV) and fraction. In order to evaluate RT-3D CDFI in the noninvasive assessment of aortic RJV and regurgitant jet fraction (RJF) in patients with isolated aortic regurgitation, real-time three-dimensional echocardiographic studies were performed on 23 patients with isolated aortic regurgitation to obtain LV end-diastolic volumes (LVEDV), end-systolic volumes (LVESV) and RJV, and then RJF could be calculated. The regurgitant volume (RV) and regurgitant fraction (RF) calculated by two-dimensional pulsed Doppler (2D-PD) method served as reference values. The results showed that aortic RJV measured by the RT-3D CDFI method showed a good correlation with the 2D-PD measurements (r= 0.93, Y=0.89X+ 3.9, SEE= 8.6 mL, P〈0.001 ); the mean (SD) difference between the two methods was - 1.5 (9.8) mL. % RJF estimated by the RT-3D CDFI method was also correlated well with the values obtained by the 2D-PD method (r=0.88, Y=0.71X+ 14.8, SEE= 6.4 %, P〈0. 001); the mean (SD) difference between the two methods was -1.2 (7.9) %. It was suggested that the newly developed RT-3D CDFI technique was feasible in the majority of patients. In patients with eccentric aortic regurgitation, this new modality provides additional information to that obtained from the two-dimensional examination, which overcomes the inherent limitations of two-dimensional echocardiography by depicting the full extent of the jet trajectory. In addition, the RT-3D CDFI method is quick and accurate in calculating RJV and RJF.
文摘Background: A Randomized Controlled Trial (RCT) has been elaborated where goal directed fluid and hemodynamic therapy (GDFHT) will be realized with trans-thoracic echocardiographic aortic blood flow peak velocity variation (ΔVpeak) and distance minute (DM) to guide fluid therapy and hemodynamics in high risk pediatric surgical patients. This RCT will clarify the impact of GDFHT with ΔVpeak and DM on postoperative outcome in terms of morbidity, length of stay in the intensive care unit (LOSICU), length of mechanical ventilation (LMV) and length of hospital stay (LOS) in children. To determine values of ΔVpeak, DM and VTI predictive of these postoperative outcomes, an observational pilot study will be realized. This pilot study is described here. The primary objective of this study is to determine values of ΔVpeak, DM and ITV predictive of postoperative outcome in children in terms of morbidity. The secondary objectives are to determine values of ΔVpeak, DM and ITV predictive of LOSICU, LMV, LOS, intraoperative, postoperative fluid administration and vasoactive-inotropic therapy. Methods: 500 - 1000 children aged less than 18 years will be included prospectively. Statistic analysis will be realized with XLSTAT 2019.4.2 software or plus. Results and Conclusions: This trial protocol will determine values of ΔVpeak, DM and ITV with echocardiography predictive of postoperative outcome in children.
文摘Objectives: Despite continuous advancements in the surgical treatments for thoracoabdominal aortic aneurysms (TAAA), paraplegia remains a devastating treatment-related complication. We aimed to summarize our experience with a novel surgical strategy involving maintenance of high blood pressure and early establishment of pulsatile blood flow to the spinal cord. Materials and Methods: Between August 2011 and October 2017, 29 patients (age, 67 ± 12 years) underwent open surgery for TAAA. According to the Crawford classification, two aneurysms were type I, eight were type II, 12 were type III, and seven were type IV. We used partial cardiopulmonary bypass under mild hypothermia in all patients except one. By maintaining distal aortic perfusion pressure at 60 - 80 mmHg and creating the distal aortic anastomosis before visceral branch reconstruction, we established early perfusion of the hypogastric arteries with native pulsatile flow. Intraoperative spinal monitoring and cerebrospinal fluid drainage were performed in 26 (90%) and 23 (79%) patients, respectively. Nineteen patients (66%) underwent reconstruction of the intercostal arteries. During perioperative management, the mean arterial pressure was kept >80 mmHg. Results: No in-hospital deaths or acute neurological complications occurred. One patient (3.4%) experienced delayed temporal paraplegia. During follow-up, aorta-related death occurred in only one patient, who developed prosthetic vascular graft infection but did not undergo repeat graft replacement. The 3-year freedom from aortic-related death was 95%. Conclusion: Our surgical strategy involving maintenance of high blood pressure and early establishment of pulsatile flow to the spinal cord was effective in preventing spinal cord injury following open surgery for TAAA.
文摘Some patients with severe aortic stenosis (AS), due to restrictive cardiac physiology, paradoxically have relatively low flow and low gradients across stenotic aortic valves despite preserved left ventricular (LV) systolic function. It results in symptoms and reduced quality of life and carries a high mortality. Whilst this form of severe AS, termed paradoxical low flow low gradient (pLFLG), is well reported, patients with this diagnosis experience inappropriate barriers to aortic valve replacement (AVR), the only efficacious treatment. We present the case of an 88-year-old female with 12 months of exertional dyspnoea on a background of hypothyroidism and hypercholesterolemia. Transthoracic echocardiogram (TTE) revealed LV hypertrophy, with a small LV cavity size and reduced stroke volume, yet normal systolic function. A heavily calcified aortic valve was identified with severe aortic stenosis, based on valve area, yet with incongruous mean transvalvular gradient of 25 mmHg (severe ≥ 50 mmHg). Following exclusion of other differential diagnoses, her symptoms were attributed to paradoxical LFLG severe AS. She was however declined definitive transcatheter aortic valve implantation (TAVI) due to her paradoxically low mean aortic gradient. Following further deterioration in her symptoms and supportive quantification of poor exercise performance, she was ultimately re-referred, accepted, and underwent TAVI. Following her AVR, the patient experiences significant improvement in both symptoms and quality of life after only one month. Paradoxical LFLG severe AS remains a well-documented yet under recognized disease. It carries high morbidity and mortality if untreated, yet is significantly less likely to be referred and accepted for intervention. With its prevalence expected to rise with an ageing population, this case serves as a timely reminder for clinicians to address the under recognition of important pathology.
文摘Increasing life expectancy is expected to lead to a corresponding increase in the prevalence of aortic valve disease(AVD). Further, the number of indications for transcatheter aortic valve replacement(TAVR) as a treatment option for AVD is expanding, with a growing role for echocardiography in its management. In this review we summarize the current literature on some newer echocardiographic modalities and the parameters they generate, with a particular focus on their prognostic and clinical value beyond conventional methods in the management of aortic stenosis, TAVR, and aortic regurgitation. Speckle tracking and 3 D echocardiography are now increasingly being used in the management of AVD. For instance, global longitudinal strain, the beststudied speckle tracking echocardiographic parameter, can detect subtle subclinical cardiac dysfunction in patients with AVD that is not apparent using traditional echocardiographic techniques. The emerging technique of 3D full volume color Doppler echocardiography provides more accurate measurement of the severity of aortic regurgitation than 2D-proximal isovelocity surface area. These novel techniques are promising for evaluating and risk stratifying patients to optimize surgical interventions, predict recovery, and improve clinical outcomes.
文摘Aim: This paper discusses the design and Finite Element Analysis (FEA) of a Percutaneous Aor-tic Valve Stent. The aim of this study was to model a percutaneous aortic valve stent and subject it to finite element analysis. The design process was carried out to meet the functional and surgical requirements. Methods and Results: Analysis was done with different materials with loads ranging from 50 kgf/mm²to 73 kgf/mm². These forces were selected because these val-ues are far greater than the normal human blood pressure which ranges from 10kPa to 16kPa. It was also to understand the mechanical behavior of different stent materials under such high pressures. A stent model was generated and its physical, mechanical and behavioral properties were studied. Finite element analysis and simulation of the model enhanced the designer to optimize the geometry suitable for perform-ance during and after implantation. The design objective for the stent is to have long term du-rability, low thrombogenicity, resistance to mi-gration and paravalvular leak. Conclusion: The analysis performed in this paper may aid in understanding the stent’s tolerable pressures ranges in comparison with the physiological pressures exerted by the heart and cardiac blood flow during abnormal cardiovascular conditions.
文摘Objective: To design a new trileaflet aortic valve and investigate its mechanical behavior using finite ele- ment methods. Background: Quantification of aortic valve deformation during cardiac cycle is essential in understanding normal and pathological valvular function and eventually in the design of valves. We have designed and analyzed a new tissue valve model to investigate the mechanics of the valve and its components. Methods: Steps involves in 3D CAD based geometric modeling of a trileaflet aortic valve and the effects of different component dimensions on the mechanical behavior of valve is presented in this paper. Conceptual designing of individual components was used to build the total geometric model. Different physiological pressures were applied on the valve model and its deformation patterns were studied. Results: A new geometric model of a trileaflet aortic valve was designed. Its mechanical behavior was studied. Geometric analysis and simulation of these models enhanced the designer to optimize the geometry suitable for performance during and after implantation. Conclusion: The geometry-based model presented here allows determining quickly if the new set of valve component dimensions results in a functional valve. This is of great interest to designers of new prosthetic heart valve models, as well as to surgeons involved in valve- sparing surgery.