期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
A Biproportional Construction Algorithm for Correctly Calculating Fourier Series of Aperiodic Non-Sinusoidal Signal
1
作者 Zicheng Li Mingwei Ren +1 位作者 Zhaoling Chen Guohai Liu 《Engineering(科研)》 2021年第10期503-525,共23页
<span style="font-family:Verdana;">The </span><span style="font-family:Verdana;">Fourier series</span><span style="font-family:Verdana;"> (FS)</span>&l... <span style="font-family:Verdana;">The </span><span style="font-family:Verdana;">Fourier series</span><span style="font-family:Verdana;"> (FS)</span><span style="font-family:Verdana;"> applies to </span><span style="font-family:Verdana;">a </span><span style="font-family:Verdana;">periodic non-sinusoidal function</span><span style="font-family:;" "=""> </span><span style="font-family:Verdana;">satisfying </span><span style="font-family:Verdana;">the </span><span style="font-family:Verdana;">Dirichlet conditions, whereas </span><span style="font-family:Verdana;">the</span><span style="font-family:Verdana;"> being-processed function</span><span style="font-family:;" "=""> <img src="Edit_5f802cf4-e7c1-43f0-9bf6-97cfac22ce08.png" alt="" style="white-space:normal;" /></span><span style="font-family:;" "=""></span><span style="font-family:;" "=""><span style="font-family:Verdana;"> in practical applications is usually an aperiodic non-sinusoidal signal. When </span><img src="Edit_5f802cf4-e7c1-43f0-9bf6-97cfac22ce08.png" alt="" /><span style="font-family:Verdana;"> is aperiodic, its calculated </span></span><span style="font-family:Verdana;">FS</span><span style="font-family:Verdana;"> is not correct, </span><span style="font-family:Verdana;">which is </span><span style="font-family:Verdana;">still a challenging problem. To overcome the problem, </span><span style="font-family:Verdana;">we</span><span style="font-family:Verdana;"> derive a direct calculation algorithm, a constant iterati</span><span style="font-family:Verdana;">on </span><span style="font-family:Verdana;">algorithm, and an optimal iterati</span><span style="font-family:Verdana;">on </span><span style="font-family:Verdana;">algorithm. The direct calculation algorithm correctly calculate</span><span style="font-family:Verdana;">s</span><span style="font-family:Verdana;"> its Fourier coefficients </span><span style="font-family:Verdana;">(FCs) </span><span style="font-family:;" "=""><span style="font-family:Verdana;">when </span><img src="Edit_5f802cf4-e7c1-43f0-9bf6-97cfac22ce08.png" alt="" style="white-space:normal;" /><span></span><span style="font-family:Verdana;"> is periodic</span></span><span style="font-family:Verdana;"> and </span><span style="font-family:Verdana;">satisf</span><span style="font-family:Verdana;">ies</span><span style="font-family:;" "=""> </span><span style="font-family:Verdana;">the </span><span style="font-family:Verdana;">Dirichlet conditions</span><span style="font-family:Verdana;">.</span><span style="font-family:;" "=""> </span><span style="font-family:Verdana;">B</span><span style="font-family:Verdana;">oth the constant iterati</span><span style="font-family:Verdana;">on</span><span style="font-family:Verdana;"> algorithm and the optimal</span><span style="font-family:;" "=""> </span><span style="font-family:Verdana;">iterati</span><span style="font-family:Verdana;">on</span><span style="font-family:Verdana;"> algorithm provide </span><span style="font-family:Verdana;">an</span><span style="font-family:;" "=""> </span><span style="font-family:Verdana;">idea</span><span style="font-family:;" "=""><span style="font-family:Verdana;"> of</span><span style="color:red;"> </span><span style="font-family:Verdana;">determining </span></span><span style="font-family:Verdana;">the </span><span style="font-family:;" "=""><span style="font-family:Verdana;">states of </span><img src="Edit_5f802cf4-e7c1-43f0-9bf6-97cfac22ce08.png" alt="" style="white-space:normal;" /><span></span></span><span style="font-family:Verdana;">.</span><span style="font-family:Verdana;"> From the </span><span style="font-family:Verdana;">idea</span><span style="font-family:Verdana;">, </span><span style="font-family:Verdana;">we obtain </span><span style="font-family:Verdana;">an algorithm for determining </span><span style="font-family:Verdana;">the </span><span style="font-family:;" "=""><span style="font-family:Verdana;">states of </span><img src="Edit_5f802cf4-e7c1-43f0-9bf6-97cfac22ce08.png" alt="" style="white-space:normal;" /><span></span><span style="font-family:Verdana;"> based on the optimal iterati</span></span><span style="font-family:Verdana;">on</span><span style="font-family:Verdana;"> algorithm. In the algorithm, </span><span style="font-family:Verdana;">the</span><span style="font-family:;" "=""> </span><span style="font-family:Verdana;">variable</span><span style="font-family:Verdana;"> iterati</span><span style="font-family:Verdana;">on</span><span style="font-family:Verdana;"> step </span><span style="font-family:Verdana;">is</span><span style="font-family:Verdana;"> introduced</span><span style="font-family:Verdana;">;</span><span style="font-family:;" "=""> </span><span style="font-family:Verdana;">t</span><span style="font-family:Verdana;">hus</span><span style="font-family:Verdana;">,</span><span style="font-family:;" "=""> </span><span style="font-family:Verdana;">we present </span><span style="font-family:Verdana;">an algorithm for determining </span><span style="font-family:Verdana;">the </span><span style="font-family:;" "=""><span style="font-family:Verdana;">states of </span><img src="Edit_5f802cf4-e7c1-43f0-9bf6-97cfac22ce08.png" alt="" style="white-space:normal;" /><span></span><span style="font-family:Verdana;"> based on the </span></span><span style="font-family:Verdana;">variable</span><span style="font-family:Verdana;"> iterati</span><span style="font-family:Verdana;">on</span><span style="font-family:Verdana;"> step. </span><span style="font-family:Verdana;">The presented</span><span style="font-family:Verdana;"> algorithm accurately determine</span><span style="font-family:Verdana;">s</span><span style="font-family:;" "=""> </span><span style="font-family:Verdana;">the </span><span style="font-family:;" "=""><span style="font-family:Verdana;">states of </span><img src="Edit_5f802cf4-e7c1-43f0-9bf6-97cfac22ce08.png" alt="" style="white-space:normal;" /><span></span></span><span style="font-family:Verdana;">. </span><span style="font-family:Verdana;">On the basis of the</span><span style="font-family:Verdana;">se</span><span style="font-family:Verdana;"> algorithms, </span><span style="font-family:Verdana;">we build </span><span style="font-family:Verdana;">a biproportional construction theory</span><span style="font-family:Verdana;">.</span><span style="font-family:;" "=""> </span><span style="font-family:Verdana;">The </span><span style="font-family:Verdana;">theory</span><span style="font-family:Verdana;"> consists of a </span><span style="font-family:Verdana;">first </span><span style="font-family:Verdana;">and a second</span><span style="font-family:Verdana;"> proportional construction theory</span><span style="font-family:Verdana;">.</span><span style="font-family:;" "=""> </span><span style="font-family:Verdana;">The</span><span style="font-family:;" "=""> </span><span style="font-family:Verdana;">former</span><span style="font-family:Verdana;"> correctly </span><span style="font-family:Verdana;">calcula</span><span style="font-family:Verdana;">te</span><span style="font-family:Verdana;">s</span><span style="font-family:;" "=""> </span><span style="font-family:Verdana;">the</span><span style="font-family:;" "=""> </span><span style="font-family:Verdana;">FCs</span><span style="font-family:;" "=""><span style="font-family:Verdana;"> of </span><img src="Edit_5f802cf4-e7c1-43f0-9bf6-97cfac22ce08.png" alt="" style="white-space:normal;" /><span></span><span style="font-family:Verdana;"> at </span></span><span style="font-family:Verdana;">the present</span><span style="font-family:Verdana;"> samp</span><span style="font-family:Verdana;">ling time</span> 展开更多
关键词 Fourier Coefficients (FCs) Fourier Series (FS) Iteration Algorithm aperiodic Non-Sinusoidal signal
下载PDF
Effects of potential functions on stochastic resonance
2
作者 李建龙 曾令藻 《Chinese Physics B》 SCIE EI CAS CSCD 2011年第1期181-185,共5页
In this paper, the effects of a bistable potential function U(x) = -ax2/2+b|x+|2y/(2y) on stochastic resonance (SR) is discussed. We investigate the effects of index y on the performance of the SR system wit... In this paper, the effects of a bistable potential function U(x) = -ax2/2+b|x+|2y/(2y) on stochastic resonance (SR) is discussed. We investigate the effects of index y on the performance of the SR system with fixed parameters a and b, and with fixed potential barriers, respectively. To measure the performance of the SR system in the presence of an aperiodic input, the bit error rate is employed, as is commonly used in binary communications. The numerical simulations strongly support the theoretical results. The goal of this investigation is to explore the effects of the shape of potential functions on SR and give a guidance of nonlinear systems in the application of information processing. 展开更多
关键词 stochastic resonance potential function aperiodic signal
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部