In winter, spring and summer, the rhizome of wild Elytrzgia repens of Heilongjiang Province was selected to extract the soluble which whole protein and the apoplastic protein, and analyzed by SDS-PAGE. The result indi...In winter, spring and summer, the rhizome of wild Elytrzgia repens of Heilongjiang Province was selected to extract the soluble which whole protein and the apoplastic protein, and analyzed by SDS-PAGE. The result indicated that there were two specific polypeptides in two types protein from winter; their relative molecular weight were identified as 52 ku and 26 ku by analyzing software; the apoplastic protein from winter had the ability of modifing the growth of ice crystal which appeared hexagonal in shape observed with the phase-contrast photomicroscope. So the apoplastic protein from winter has the antifreeze characters and the 52 ku protein is more likely the antifreeze protein展开更多
During the attack of a pathogen, a variety of defense-associated proteins are released by the host plant in the apoplast to impede the perceived attack. This study utilized the mass spectrometry(LC-MS/MS) and label-fr...During the attack of a pathogen, a variety of defense-associated proteins are released by the host plant in the apoplast to impede the perceived attack. This study utilized the mass spectrometry(LC-MS/MS) and label-free quantification method to analyze the apoplastic fluid(APF) from maize stalk and identified the proteins responsive to the Fusarium verticillioides infection. We have identified 742 proteins, and among these, 119 proteins were differentially accumulated(DAPs), i.e., 35 up-regulated, 18 down-regulated, and 66 proteins were only induced by the pathogen infection. The differentially accumulated proteins were analyzed for their Gene Ontology(GO) and Kyoto Encyclopedia of Gene and Genomes(KEGG) pathway enrichment. The highly enriched Biological Process(BP) term was the L-serine biosynthesis process, whereas the most enriched Molecular Function(MF) term was the cysteine-type endopeptidase inhibitor activity. It was also found that the pathways related to the biosynthesis of amino acid, biosynthesis of secondary metabolites, protein processing in the endoplasmic reticulum, and carbohydrate metabolic pathways were significantly enriched. Moreover, 61 out of 119 differentially accumulated proteins were predicted as secretory proteins. The secretory pathways analysis showed that a greater number of proteins were secreted through the conventional secretion system compared to the unconventional secretion system. The identified secreted proteins were related to a variety of pathways in defense responses including cell redox homeostasis, cell wall modification, signal transduction, carbohydrate metabolism, binding proteins(metal ion binding, RNA binding and heme-binding), maintenance and stabilization of other proteins, indicating a complex response from the plant to the fungal infection. Our data suggested that a number of host proteins belonging to various pathways have been modulated in the apoplastic region.展开更多
基金Supported by Heilongjiang Province Science and Technology Key Project(GC04B115)
文摘In winter, spring and summer, the rhizome of wild Elytrzgia repens of Heilongjiang Province was selected to extract the soluble which whole protein and the apoplastic protein, and analyzed by SDS-PAGE. The result indicated that there were two specific polypeptides in two types protein from winter; their relative molecular weight were identified as 52 ku and 26 ku by analyzing software; the apoplastic protein from winter had the ability of modifing the growth of ice crystal which appeared hexagonal in shape observed with the phase-contrast photomicroscope. So the apoplastic protein from winter has the antifreeze characters and the 52 ku protein is more likely the antifreeze protein
基金partially supported by the National Key Research and Development Program of China(2017YFC1600903 and 2016YFD040015)the National Natural Science Foundation of China(32072377)+2 种基金the Beijing Natural Science Foundation,China(6192023)the Agricultural Science and Technology Innovation Program of China(CAAS-ASTIP-2020-IFST-03)the scholarship grant from the China Scholarship Council(CSC)(2017GXZ022555)。
文摘During the attack of a pathogen, a variety of defense-associated proteins are released by the host plant in the apoplast to impede the perceived attack. This study utilized the mass spectrometry(LC-MS/MS) and label-free quantification method to analyze the apoplastic fluid(APF) from maize stalk and identified the proteins responsive to the Fusarium verticillioides infection. We have identified 742 proteins, and among these, 119 proteins were differentially accumulated(DAPs), i.e., 35 up-regulated, 18 down-regulated, and 66 proteins were only induced by the pathogen infection. The differentially accumulated proteins were analyzed for their Gene Ontology(GO) and Kyoto Encyclopedia of Gene and Genomes(KEGG) pathway enrichment. The highly enriched Biological Process(BP) term was the L-serine biosynthesis process, whereas the most enriched Molecular Function(MF) term was the cysteine-type endopeptidase inhibitor activity. It was also found that the pathways related to the biosynthesis of amino acid, biosynthesis of secondary metabolites, protein processing in the endoplasmic reticulum, and carbohydrate metabolic pathways were significantly enriched. Moreover, 61 out of 119 differentially accumulated proteins were predicted as secretory proteins. The secretory pathways analysis showed that a greater number of proteins were secreted through the conventional secretion system compared to the unconventional secretion system. The identified secreted proteins were related to a variety of pathways in defense responses including cell redox homeostasis, cell wall modification, signal transduction, carbohydrate metabolism, binding proteins(metal ion binding, RNA binding and heme-binding), maintenance and stabilization of other proteins, indicating a complex response from the plant to the fungal infection. Our data suggested that a number of host proteins belonging to various pathways have been modulated in the apoplastic region.