To study the effects of low dose radiation (LDR) on tumor apoptosis, cellcycle progression and changes of apoptosis-related protein Bcl-2 in tumor-bearing mice. Methods:Male mice of Kunming strain were implanted subcu...To study the effects of low dose radiation (LDR) on tumor apoptosis, cellcycle progression and changes of apoptosis-related protein Bcl-2 in tumor-bearing mice. Methods:Male mice of Kunming strain were implanted subcutaneously with S180 sarcoma cells in the left inguenas an in situ experimental animal model. Seven days later, the mice were subjected to 75 mGywhole-body γ-irradiation. At 24 and 48 h after the irradiation, all mice were sacrificed. The tumorsizes were measured, and tumor cell apoptosis and cell cycle progression were analyzed by flowcytometry. The expression of apoptosis-related protein Bcl-2 and the apoptotic rate of tumor cellswere observed by immunohistochemistry and electron microscopy. Results: Tumors grew significantlyslower after LDR (P 【 0.05). The tumor cells were arrested in G1 phrase and the expression of Bcl-2protein decreased at 24 h. Apoptotic rate of tumor cells was increased significantly at 48 h afterLDR (P 【 0.01). Conclusion: LDR could cause a G1-phase arrest and increase the apoptosis of tumorcells through the low level of apoptosis-related protein bcl-2 in the tumor-bearing mice. Theorganized immune function and anti-tumor ability are markedly increased after LDR. Our studyprovides practical evidence of clinical application to cancer treatment.展开更多
The pan-Arctic is confronted with air pollution transported from lower latitudes.Observations have shown that aerosols help increase plant photosynthesis through the diffuse radiation fertilization effects(DRFEs).Whil...The pan-Arctic is confronted with air pollution transported from lower latitudes.Observations have shown that aerosols help increase plant photosynthesis through the diffuse radiation fertilization effects(DRFEs).While such DRFEs have been explored at low to middle latitudes,the aerosol impacts on pan-Arctic ecosystems and the contributions by anthropogenic and natural emission sources remain less quantified.Here,we perform regional simulations at 0.2o×0.2ousing a well-validated vegetation model(Yale Interactive terrestrial Biosphere,YIBs)in combination with multi-source of observations to quantify the impacts of aerosol DRFEs on the net primary productivity(NPP)in the pan-Arctic during 2001-19.Results show that aerosol DRFEs increase pan-Arctic NPP by 2.19 Pg C(12.8%)yr^(-1)under clear-sky conditions,in which natural and anthropogenic sources contribute to 8.9% and 3.9%,respectively.Under all-sky conditions,such DRFEs are largely dampened by cloud to only 0.26 Pg C(1.24%)yr^(-1),with contributions of 0.65% by natural and 0.59% by anthropogenic species.Natural aerosols cause a positive NPP trend of 0.022% yr^(-1)following the increased fire activities in the pan-Arctic.In contrast,anthropogenic aerosols induce a negative trend of-0.01% yr^(-1)due to reduced emissions from the middle latitudes.Such trends in aerosol DRFEs show a turning point in the year of 2007 with more positive NPP trends by natural aerosols but negative NPP trends by anthropogenic aerosols thereafter.Though affected by modeling uncertainties,this study suggests a likely increasing impact of aerosols on terrestrial ecosystems in the pan-Arctic under global warming.展开更多
Objective: To investigate the effects of intensity modulated radiation therapy + local hyperthermia on the cancer cell apoptosis and invasion in liver cancer lesion. Methods:A total of 94 patients with middle-advanced...Objective: To investigate the effects of intensity modulated radiation therapy + local hyperthermia on the cancer cell apoptosis and invasion in liver cancer lesion. Methods:A total of 94 patients with middle-advanced primary liver cancer who were diagnosed and treated in this hospital between November 2015 and February 2017 were divided into control group (n=47) and experimental group (n=47) by random number table method. Control group received intensity modulated radiation therapy and experimental group received intensity modulated radiation therapy + local hyperthermia. Both groups accepted peritoneal lesion biopsy before and after treatment, and the expression of apoptosis and invasion genes in specimen tissue were detected by fluorescence quantitative PCR. Results: There was no statistically significant difference in apoptosis and invasion gene expression between the two groups of patients before treatment. After treatment, apoptosis genes Fas, caspase-3, Bax and p53 mRNA expression in lesion tissue of experimental group were higher than those of control group whereas FasL and Bcl-2 mRNA expression were lower than those of control group;invasion genes Cofilin-1, Bmi-1, STAT3 and SOX18 mRNA expression in lesion tissue of experimental group were lower than those of control group whereas Tip30 and TP53IP1 mRNA expression were higher than those of control group. Conclusion: intensity modulated radiation therapy + local hyperthermia can effectively promote cancer cell apoptosis and inhibit its invasion activity in patients with middle and advanced primary liver cancer.展开更多
Iron(Fe)-based alloys,which have been widely used as structural materials in nuclear reactors,can significantly change their microstructure properties and macroscopic properties under high flux neutron irradiation dur...Iron(Fe)-based alloys,which have been widely used as structural materials in nuclear reactors,can significantly change their microstructure properties and macroscopic properties under high flux neutron irradiation during operation,thus,the problems associated with the safe operation of nuclear reactors have been put forward naturally.In this work,a molecular dynamics simulation approach combined with electronic effects is developed for investigating the primary radiation damage process inα-Fe.Specifically,the influence of electronic effects on the collision cascade in Fe is systematically evaluated based on two commonly used interatomic potentials for Fe.The simulation results reveal that both electronic stopping(ES)and electron-phonon coupling(EPC)can contribute to the decrease of the number of defects in the thermal spike phase.The application of ES reduces the number of residual defects after the cascade evolution,whereas EPC has a reverse effect.The introduction of electronic effects promotes the formation of the dispersive subcascade:ES significantly changes the geometry of the damaged region in the thermal spike phase,whereas EPC mainly reduces the extent of the damaged region.Furthermore,the incorporation of electronic effects effectively mitigates discrepancies in simulation outcomes when using different interatomic potentials.展开更多
Both nMOS and pMOS transistors with two-edged and multi-finger layouts are fabricated in a standard commercial 0.6μm CMOS/bulk process to study their total ionizing dose (TID) radiation effects. The leakage current...Both nMOS and pMOS transistors with two-edged and multi-finger layouts are fabricated in a standard commercial 0.6μm CMOS/bulk process to study their total ionizing dose (TID) radiation effects. The leakage current, threshold voltage shift, and transconductance of the devices are monitored before and after T-ray irradiation. Different device bias conditions are used during irradiation. The experiment results show that TID radiation effects on nMOS devices are very sensitive to their layout structures. The impact of the layout on TID effects on pMOS devices is slight and can be neglected.展开更多
The deformation in sedimentary rock induced by train loads has potential threat to the safe operation of tunnels. This study investigated the influence of stratification structure on the infrared radiation and tempora...The deformation in sedimentary rock induced by train loads has potential threat to the safe operation of tunnels. This study investigated the influence of stratification structure on the infrared radiation and temporal damage mechanism of hard siltstone. The uniaxial compression tests, coupled with acoustic emission(AE) and infrared radiation temperature(IRT) were conducted on siltstones with different stratification effects. The results revealed that the stratigraphic structure significantly affects the stress-strain response and strength degradation characteristics. The mechanical parameters exhibit anisotropy characteristics, and the stratification effect exhibits a negative correlation with the cracking stress and peak stress. The failure modes caused by the stratification effect show remarkable anisotropic features, including splitting failure(Ⅰ: 0°-22.50°, Ⅱ: 90°), composite failure(45°), and shearing failure(67.50°). The AE temporal sequences demonstrate a stepwise response characteristic to the loading stress level. The AE intensity indicates that the stress sensitivity of shearing failure and composite failure is generally greater than that of splitting failure. The IRT field has spatiotemporal migration and progressive dissimilation with stress loading and its dissimilation degree increases under higher stress levels. The stronger the stratification effect, the greater the dissimilation degree of the IRT field. The abnormal characteristic points of average infrared radiation temperature(AIRT) variance at local stress drop and peak stress can be used as early and late precursors to identify fracture instability. Theoretical analysis shows that the competitive relationship between compaction strengthening and fracturing damage intensifies the dissimilation of the infrared thermal field for an increasing stress level. The present study provides a theoretical reference for disaster warnings in hard sedimentary rock mass.展开更多
The development of low-cost,abundant,and efficient non-metal catalysts has always been a research focus on photocatalytic hydrogen evolution reactions.Boron nitride nanosheet(BNNS),which is a promising non-metallic tw...The development of low-cost,abundant,and efficient non-metal catalysts has always been a research focus on photocatalytic hydrogen evolution reactions.Boron nitride nanosheet(BNNS),which is a promising non-metallic two-dimensional material,possesses remarkable properties.However,its inherently wide bandgap significantly limits their potential for visible-light-responsive catalysis,and conventional chemical methods struggle to overcome this limitation.In this study,we employed high-energy ionizing radiation to precisely regulate defect formation in BNNS at ambient temperature and pressure.The results showed that gamma-ray radiation markedly enhanced the efficiency of photocatalytic hydrogen production of the irradiated BNNS with increasing absorbed dose.The maximum hydrogen production rate of the samples reached 1033.7μmol/(g·h),which represents an increase of almost two orders of magnitude compared to commercial BNNS.The structural characterization also confirmed that the introduction of three-boron-center defects results in forming intermediate energy levels and improving the charge carrier separation efficiency of BNNS.This transformation converts BNNS from a wide bandgap semiconductor to a visible-light-responsive catalyst.This work not only provides a novel approach for the application of BNNS in visible-light photocatalysis,but also demonstrates the unique role of radiation technology in quantitatively regulating defects and improving catalytic activity.展开更多
Objective To investigate whether apoptosis induced by low-dose radiation (LDR) is regulated by mitochondrial pathways in testicular cells. Methods Male mice were exposed to whole-body LDR, and changes in mitochondri...Objective To investigate whether apoptosis induced by low-dose radiation (LDR) is regulated by mitochondrial pathways in testicular cells. Methods Male mice were exposed to whole-body LDR, and changes in mitochondrial function and in expression of apoptotic factors were analyzed in the testicular cells as follows. Total nitric-oxide synthase (T-NOS) and Na+/K+ ATPase activities were biochemically assayed. Reactive oxygen species (ROS) and mitochondrial membrane potential (Adjm) were determined by flow cytometry using fluorescent probes. Levels of mRNAs encoding cytochrome c (Cyt c) and apoptosis-inducing factor (AIF) were quantified by real-time reverse-transcription PCR (RT-PCR). Expression of Cyt c, AIF, caspase-9, and caspase-3 at the protein level was assessed by western blotting and immunohistochemistry. Results LDR induced an increase in T-NOS activity and ROS levels, and a decrease in Na+/K~ ATPase activity and mitochondrial A^m, in the testicular cells. The intensity of these effects increased with time after irradiation and with dose. The cells showed remarkable swelling and vacuolization of mitochondria, and displayed a time- and dose-dependent increase in the expression of Cyt c, AIF, procaspase-9, and procaspase-3. Activation of the two procaspases was confirmed by detection of the cleaved caspases. The changes in expression of the four apoptotic factors were mostly limited to spermatogonia and spermatocytes. Conclusion LDR can induce testicular cell apoptosis through mitochondrial signaling pathways展开更多
The hydroponic culture experiments of soybean bean seedlings were conducted to investigate the effect of lanthanum (La) on nitrogen metabolism under two different levels of elevated UV-B radiation (UV-B, 280-320 nm...The hydroponic culture experiments of soybean bean seedlings were conducted to investigate the effect of lanthanum (La) on nitrogen metabolism under two different levels of elevated UV-B radiation (UV-B, 280-320 nm). The whole process of nitrogen metabolism involves uptake and transport of nitrate, nitrate assimilation, ammonium assimilation, amino acid biosynthesis, and protein synthesis. Compared with the control, UV-B radiation with the intensity of low level 0.15 W/m^2 and high level 0.45 W/m^2 significantly affected the whole nitrogen metabolism in soybean seedlings (p 〈 0.05). It restricted uptake and transport of NO3^-, inhibited activity of some key nitrogen-metabolism-related enzymes, such as: nitrate reductase (NR) to the nitrate reduction, glutamine systhetase (GS) and glutamine synthase (GOGAT) to the ammonia assimilation, while it increased the content of free amino acids and decreased that of soluble protein as well. The damage effect of high level of UV-B radiation on nitrogen metabolism was greater than that of low level. And UV-B radiation promoted the activity of the anti-adversity enzyme glutamate dehydrogenase (GDH), which reduced the toxicity of excess ammonia in plant. After pretreatment with the optimum concentration of La (20 mg/L), La could increase the activity of NR, GS, GOGAT, and GDH, and ammonia assimilation, but decrease nitrate and ammonia accumulation. In conclusion, La could relieve the damage effect of UV-B radiation on plant by regulating nitrogen metabolism process, and its alleviating effect under low level was better than that under the high one.展开更多
Summary: The study examined the role of endoplasmic reticulum stress (ERS) and signaling pathways of inositol-requiring enzyme-1 (IRE1), RNA-activated protein kinase-like ER kinase (PERK) and activating transcr...Summary: The study examined the role of endoplasmic reticulum stress (ERS) and signaling pathways of inositol-requiring enzyme-1 (IRE1), RNA-activated protein kinase-like ER kinase (PERK) and activating transcription factor-6 (ATF6) in apoptosis of mouse testicular cells treated with low-dose radiation (LDR). In the dose-dependent experiment, the mice were treated with whole-body X-ray irradiation at different doses (25, 50, 75, 100 or 200 mGy) and sacrificed 12 h later. In the time-dependent experiment, the mice were exposed to 75 mGy X-ray irradiation and killed at different time points (3, 6, 12, 18 or 24 h). Testicular cells were harvested for experiments. H202 and NO concentrations, and Ca2+-ATPase activity were detected by biochemical assays, the calcium ion concentration ([Ca2+]i) by flow cytometry using fluo-3 probe, and GRP78 mRNA and protein expressions by quantitative real-time RT-PCR (qRT-PCR) and Western blotting, respectively. The mRNA expressions of S-XBP1, JNK, caspase-12 and CHOP were measured by qRT-PCR, and the protein expressions of IREla, S-XBP1, p-PERK, p-elF2a, ATF6 p50, p-JNK, pro-caspase-12, cleaved caspase-12 and CHOP by Western blot- ting. The results showed that the concentrations of H202 and NO, the mR_NA expressions of GRP78, S-XBP1, JNK, caspase-12 and CHOP, and the protein expressions of GRP78, S-XBP1, IREla, p-PERK, p-elF2a, ATF6 p50, p-JNK, pro-caspase-12, cleaved caspase-12 and CHOP were significantly increased in a time- and dose-dependent manner after LDR. But the [Ca2]i and Ca2-ATPase activities were sig nificantly decreased in a time and dose-dependent manner. It was concluded that the ERS, regulated by IRE 1, PERK and ATF6 pathways, is involved in the apoptosis of testicular cells in LDR mice, which is associated with ERS-apoptotic signaling molecules of JNK, caspase-12 and CHOP.展开更多
The terahertz(THz) band lies between microwave and infrared rays in wavelength and consists of non-ionizing radiation. Both domestic and foreign research institutions, including the army, have attached considerable im...The terahertz(THz) band lies between microwave and infrared rays in wavelength and consists of non-ionizing radiation. Both domestic and foreign research institutions, including the army, have attached considerable importance to the research and development of THz technology because this radiation exhibits both photon-like and electron-like properties, which grant it considerable application value and potential. With the rapid development of THz technology and related applications, studies of the biological effects of THz radiation have become a major focus in the field of life sciences. Research in this field has only just begun, both at home and abroad. In this paper, research progress with respect to THz radiation, including its biological effects, mechanisms and methods of protection, will be reviewed.展开更多
With the increasing knowledge of shortwave radiation,it is widely used in wireless communications,radar observations,industrial manufacturing,and medical treatments.Despite of the benefits from shortwave,these wide ap...With the increasing knowledge of shortwave radiation,it is widely used in wireless communications,radar observations,industrial manufacturing,and medical treatments.Despite of the benefits from shortwave,these wide applications expose humans to the risk of shortwave electromagnetic radiation,which is alleged to cause potential damage to biological systems.This review focused on the exposure to shortwave electromagnetic radiation,considering in vitro,in vivo and epidemiological results that have provided insight into the biological effects and mechanisms of shortwave.Additionally,some protective measures and suggestions are discussed here in the hope of obtaining more benefits from shortwave with fewer health risks.展开更多
With the ever increasing application of electronic technology, our exposure to artificial electromagnetic energy is also rapidly increasing. Electromagnetic radiation (EMR) is the fourth largest source of pollution,...With the ever increasing application of electronic technology, our exposure to artificial electromagnetic energy is also rapidly increasing. Electromagnetic radiation (EMR) is the fourth largest source of pollution, after air, water, and noise.展开更多
Polytetrafluoroethylene (Teflon), a widely used spacecraft material, isstudied to investigate the vacuum ultraviolet (VUV) effects and its synergistic effects with atomicoxygen (AO) in a ground-based simulation facili...Polytetrafluoroethylene (Teflon), a widely used spacecraft material, isstudied to investigate the vacuum ultraviolet (VUV) effects and its synergistic effects with atomicoxygen (AO) in a ground-based simulation facility. The samples before and after the experiments arecompared in appearance, mass, optical properties and surface composition. The reactioncharacteristics of Teflon are summarized and the reaction mechanisms are analyzed. The followingconclusion can be drawn: at the action of VUV the Teflon sample surface is darkened for theaccumulation of carbon; and when the sample is exposed to AO, the carbon is oxidized and thedarkening surface is bleached; the synergistic effects of VUV and AO may cause the erosion of Teflonmore severe.展开更多
Objective: Study blood vessel injury and gene expression indicating vascular endothelial cell apoptosis induced by mannitol with and without administration of anti-oxidative vitamins. Methods: Healthy rabbits were ran...Objective: Study blood vessel injury and gene expression indicating vascular endothelial cell apoptosis induced by mannitol with and without administration of anti-oxidative vitamins. Methods: Healthy rabbits were randomly divided into four groups. Mannitol was injected into the vein of the rabbit ear in each animal. Pre-treatment prior to mannitol injection was per- formed with normal saline (group B), vitamin C (group C) and vitamin E (group D). Blood vessel injury was assessed under electron and light microscopy. In a second experiment, cell culture specimen of human umbilical vein endothelial cells were treated with mannitol. Pre-treatment was done with normal saline (sample B), vitamin C (sample C) and vitamin E (sample D). Total RNA was extracted with the original single step procedure, followed by hybridisation and analysis of gene expression. Results: In the animal experiment, serious blood vessel injury was seen in group A and group B. Group D showed light injury only, and normal tissue without pathological changes was seen in group C. Of all 330 apoptosis-related genes analysed in human cell culture specimen, no significant difference was seen after pre-treatment with normal saline, compared with the gene chip without pre-treatment. On the gene chip pre-treated with vitamin C, 45 apoptosis genes were down-regulated and 34 anti-apoptosis genes were up-regulated. Pre-treatment with vitamin E resulted in the down-regulation of 3 apoptosis genes. Conclusion: Vitamin C can protect vascular endothelial cells from mannitol-induced injury.展开更多
To improve the total-dose radiation hardness,silicon-on-insulator (SOI) wafers fabricated by the separation-by-implanted-oxygen (SIMOX) method are modified by Si ion implantation into the buried oxide with a post ...To improve the total-dose radiation hardness,silicon-on-insulator (SOI) wafers fabricated by the separation-by-implanted-oxygen (SIMOX) method are modified by Si ion implantation into the buried oxide with a post anneal. The ID- VG characteristics can be tested with the pseudo-MOSFET method before and after radiation. The results show that a proper Si-ion-implantation method can enhance the total-dose radiation tolerance of the materials.展开更多
Objective: To investigate whether the Bc1-2 antisense oligonucleotide(ASODN) may enhance radiation-induced apoptosis in Raji cell line. Methods: Cell surviving fraction was determined using the trypan blue dye exclusi...Objective: To investigate whether the Bc1-2 antisense oligonucleotide(ASODN) may enhance radiation-induced apoptosis in Raji cell line. Methods: Cell surviving fraction was determined using the trypan blue dye exclusion assay. The expression level of bc1-2 protein was assayed by immunofluorescence using fluoresce isothiocyanate label. Apoptosis was detected by Giemsa staining and flow cytomertric cell cycle analysis. Results: It was found that Bc1-2 ASODN combined with radiation had significantly reduced the number of viable cells (P<0.05). There was no difference on cell survival between mismatch Bc1-2 oligodeoxynucleotide/radiation combination and radiation-treated cells alone. Bc1-2 ASODN combined with radiation could significantly inhibit expression of Bc1-2 protein in Raji cells (P<0.05). Cells treated with Bc1-2 ASODN combined with radiation at 72 h displayed classic apoptotic changes. Apoptosis rates of Raji cells treated with Bc1-2 oligodeoxynucleotide/radiation combination and radiation-treated cells alone, respectively. Conclusion: Bc1-2 antisense oligonucleotide can enhance radiation-induced apoptosis in Raji cell line.展开更多
Alkaline phosphatase(ALP) plays an integral role in the metabolism of liver and development of the skeleton in humans. To date, the interactions between different-duration terahertz(THz) radiation and ALP activities, ...Alkaline phosphatase(ALP) plays an integral role in the metabolism of liver and development of the skeleton in humans. To date, the interactions between different-duration terahertz(THz) radiation and ALP activities, as well as the influence mechanism are still unclear. In this study, using the para-nitro-phenyl-phosphate(p NPP) method, we detect changes in ALP activities during 40-minute THz radiation(0.1 THz, 13 m W/cm^2). It is found that the activity of ALP decreases in the first 25 min, and subsequently increases in the later 15 min. Compared with the activity of ALP being heated, the results suggest that short-term terahertz radiation induces a decrease in enzyme activity through the non-thermal mechanism. In order to explore the non-thermal effects of THz radiation on ALP, we focus on the impacts of 0.1 THz radiation for 20 min on the activity of ALP in different concentrations. The results reveal that the activity of ALP decreases significantly after exposure to THz radiation. In addition, it could be deduced from fluorescence, ultraviolet-visible(UV-vis), and THz spectra results that THz radiation has induced changes in ALP structures. Our study unlocks non-thermal interactions between THz radiation and ALP, as well as suggests that THz spectroscopy is a promising technique to distinguish ALP structures.展开更多
Microwave radiation has been widely used in various fields,such as communication,industry,medical treatment,and military applications.Microwave radiation may cause injuries to both the structures and functions of vari...Microwave radiation has been widely used in various fields,such as communication,industry,medical treatment,and military applications.Microwave radiation may cause injuries to both the structures and functions of various organs,such as the brain,heart,reproductive organs,and endocrine organs,which endanger human health.Therefore,it is both theoretically and clinically important to conduct studies on the biological effects induced by microwave radiation.The successful establishment of injury models is of great importance to the reliability and reproducibility of these studies.In this article,we review the microwave exposure conditions,subjects used to establish injury models,the methods used for the assessment of the injuries,and the indicators implemented to evaluate the success of injury model establishment in studies on biological effects induced by microwave radiation.展开更多
This paper studies the total ionizing dose radiation effects on MOS (metal-oxide-semiconductor) transistors with normal and enclosed gate layout in a standard commercial CMOS (compensate MOS) bulk process. The lea...This paper studies the total ionizing dose radiation effects on MOS (metal-oxide-semiconductor) transistors with normal and enclosed gate layout in a standard commercial CMOS (compensate MOS) bulk process. The leakage current, threshold voltage shift, and transconductance of the devices were monitored before and after γ-ray irradiation. The parameters of the devices with different layout under different bias condition during irradiation at different total dose are investigated. The results show that the enclosed layout not only effectively eliminates the leakage but also improves the performance of threshold voltage and transconductance for NMOS (n-type channel MOS) transistors. The experimental results also indicate that analogue bias during irradiation is the worst case for enclosed gate NMOS. There is no evident different behaviour observed between normal PMOS (p-type channel MOS) transistors and enclosed gate PMOS transistors.展开更多
文摘To study the effects of low dose radiation (LDR) on tumor apoptosis, cellcycle progression and changes of apoptosis-related protein Bcl-2 in tumor-bearing mice. Methods:Male mice of Kunming strain were implanted subcutaneously with S180 sarcoma cells in the left inguenas an in situ experimental animal model. Seven days later, the mice were subjected to 75 mGywhole-body γ-irradiation. At 24 and 48 h after the irradiation, all mice were sacrificed. The tumorsizes were measured, and tumor cell apoptosis and cell cycle progression were analyzed by flowcytometry. The expression of apoptosis-related protein Bcl-2 and the apoptotic rate of tumor cellswere observed by immunohistochemistry and electron microscopy. Results: Tumors grew significantlyslower after LDR (P 【 0.05). The tumor cells were arrested in G1 phrase and the expression of Bcl-2protein decreased at 24 h. Apoptotic rate of tumor cells was increased significantly at 48 h afterLDR (P 【 0.01). Conclusion: LDR could cause a G1-phase arrest and increase the apoptosis of tumorcells through the low level of apoptosis-related protein bcl-2 in the tumor-bearing mice. Theorganized immune function and anti-tumor ability are markedly increased after LDR. Our studyprovides practical evidence of clinical application to cancer treatment.
基金jointly supported by the National Key Research and Development Program of China(Grant No.2022YFE0106500)Jiangsu Science Fund for Distinguished Young Scholars(Grant No.BK20200040)。
文摘The pan-Arctic is confronted with air pollution transported from lower latitudes.Observations have shown that aerosols help increase plant photosynthesis through the diffuse radiation fertilization effects(DRFEs).While such DRFEs have been explored at low to middle latitudes,the aerosol impacts on pan-Arctic ecosystems and the contributions by anthropogenic and natural emission sources remain less quantified.Here,we perform regional simulations at 0.2o×0.2ousing a well-validated vegetation model(Yale Interactive terrestrial Biosphere,YIBs)in combination with multi-source of observations to quantify the impacts of aerosol DRFEs on the net primary productivity(NPP)in the pan-Arctic during 2001-19.Results show that aerosol DRFEs increase pan-Arctic NPP by 2.19 Pg C(12.8%)yr^(-1)under clear-sky conditions,in which natural and anthropogenic sources contribute to 8.9% and 3.9%,respectively.Under all-sky conditions,such DRFEs are largely dampened by cloud to only 0.26 Pg C(1.24%)yr^(-1),with contributions of 0.65% by natural and 0.59% by anthropogenic species.Natural aerosols cause a positive NPP trend of 0.022% yr^(-1)following the increased fire activities in the pan-Arctic.In contrast,anthropogenic aerosols induce a negative trend of-0.01% yr^(-1)due to reduced emissions from the middle latitudes.Such trends in aerosol DRFEs show a turning point in the year of 2007 with more positive NPP trends by natural aerosols but negative NPP trends by anthropogenic aerosols thereafter.Though affected by modeling uncertainties,this study suggests a likely increasing impact of aerosols on terrestrial ecosystems in the pan-Arctic under global warming.
文摘Objective: To investigate the effects of intensity modulated radiation therapy + local hyperthermia on the cancer cell apoptosis and invasion in liver cancer lesion. Methods:A total of 94 patients with middle-advanced primary liver cancer who were diagnosed and treated in this hospital between November 2015 and February 2017 were divided into control group (n=47) and experimental group (n=47) by random number table method. Control group received intensity modulated radiation therapy and experimental group received intensity modulated radiation therapy + local hyperthermia. Both groups accepted peritoneal lesion biopsy before and after treatment, and the expression of apoptosis and invasion genes in specimen tissue were detected by fluorescence quantitative PCR. Results: There was no statistically significant difference in apoptosis and invasion gene expression between the two groups of patients before treatment. After treatment, apoptosis genes Fas, caspase-3, Bax and p53 mRNA expression in lesion tissue of experimental group were higher than those of control group whereas FasL and Bcl-2 mRNA expression were lower than those of control group;invasion genes Cofilin-1, Bmi-1, STAT3 and SOX18 mRNA expression in lesion tissue of experimental group were lower than those of control group whereas Tip30 and TP53IP1 mRNA expression were higher than those of control group. Conclusion: intensity modulated radiation therapy + local hyperthermia can effectively promote cancer cell apoptosis and inhibit its invasion activity in patients with middle and advanced primary liver cancer.
基金Project supported by the National MCF Energy Research and Development Program of China(Grant Nos.2022YFE03200200 and 2018YFE0308101)the National Natural Science Foundation of China(Grant No.12105194)the Natural Science Foundation of Sichuan Province,China(Grant Nos.2022NSFSC1265 and 2022NSFSC1251).
文摘Iron(Fe)-based alloys,which have been widely used as structural materials in nuclear reactors,can significantly change their microstructure properties and macroscopic properties under high flux neutron irradiation during operation,thus,the problems associated with the safe operation of nuclear reactors have been put forward naturally.In this work,a molecular dynamics simulation approach combined with electronic effects is developed for investigating the primary radiation damage process inα-Fe.Specifically,the influence of electronic effects on the collision cascade in Fe is systematically evaluated based on two commonly used interatomic potentials for Fe.The simulation results reveal that both electronic stopping(ES)and electron-phonon coupling(EPC)can contribute to the decrease of the number of defects in the thermal spike phase.The application of ES reduces the number of residual defects after the cascade evolution,whereas EPC has a reverse effect.The introduction of electronic effects promotes the formation of the dispersive subcascade:ES significantly changes the geometry of the damaged region in the thermal spike phase,whereas EPC mainly reduces the extent of the damaged region.Furthermore,the incorporation of electronic effects effectively mitigates discrepancies in simulation outcomes when using different interatomic potentials.
文摘Both nMOS and pMOS transistors with two-edged and multi-finger layouts are fabricated in a standard commercial 0.6μm CMOS/bulk process to study their total ionizing dose (TID) radiation effects. The leakage current, threshold voltage shift, and transconductance of the devices are monitored before and after T-ray irradiation. Different device bias conditions are used during irradiation. The experiment results show that TID radiation effects on nMOS devices are very sensitive to their layout structures. The impact of the layout on TID effects on pMOS devices is slight and can be neglected.
基金National Natural Science Foundation of China(No.52178393)2023 High-level Talent Research Project from Yancheng Institute of Technology(No.xjr2023019)+1 种基金Open Fund Project of Shaanxi Key Laboratory of Geotechnical and Underground Space Engineering(Grant No.YT202302)Science and Technology Innovation Team of Shaanxi Innovation Capability Support Plan(No.2020TD005).
文摘The deformation in sedimentary rock induced by train loads has potential threat to the safe operation of tunnels. This study investigated the influence of stratification structure on the infrared radiation and temporal damage mechanism of hard siltstone. The uniaxial compression tests, coupled with acoustic emission(AE) and infrared radiation temperature(IRT) were conducted on siltstones with different stratification effects. The results revealed that the stratigraphic structure significantly affects the stress-strain response and strength degradation characteristics. The mechanical parameters exhibit anisotropy characteristics, and the stratification effect exhibits a negative correlation with the cracking stress and peak stress. The failure modes caused by the stratification effect show remarkable anisotropic features, including splitting failure(Ⅰ: 0°-22.50°, Ⅱ: 90°), composite failure(45°), and shearing failure(67.50°). The AE temporal sequences demonstrate a stepwise response characteristic to the loading stress level. The AE intensity indicates that the stress sensitivity of shearing failure and composite failure is generally greater than that of splitting failure. The IRT field has spatiotemporal migration and progressive dissimilation with stress loading and its dissimilation degree increases under higher stress levels. The stronger the stratification effect, the greater the dissimilation degree of the IRT field. The abnormal characteristic points of average infrared radiation temperature(AIRT) variance at local stress drop and peak stress can be used as early and late precursors to identify fracture instability. Theoretical analysis shows that the competitive relationship between compaction strengthening and fracturing damage intensifies the dissimilation of the infrared thermal field for an increasing stress level. The present study provides a theoretical reference for disaster warnings in hard sedimentary rock mass.
文摘The development of low-cost,abundant,and efficient non-metal catalysts has always been a research focus on photocatalytic hydrogen evolution reactions.Boron nitride nanosheet(BNNS),which is a promising non-metallic two-dimensional material,possesses remarkable properties.However,its inherently wide bandgap significantly limits their potential for visible-light-responsive catalysis,and conventional chemical methods struggle to overcome this limitation.In this study,we employed high-energy ionizing radiation to precisely regulate defect formation in BNNS at ambient temperature and pressure.The results showed that gamma-ray radiation markedly enhanced the efficiency of photocatalytic hydrogen production of the irradiated BNNS with increasing absorbed dose.The maximum hydrogen production rate of the samples reached 1033.7μmol/(g·h),which represents an increase of almost two orders of magnitude compared to commercial BNNS.The structural characterization also confirmed that the introduction of three-boron-center defects results in forming intermediate energy levels and improving the charge carrier separation efficiency of BNNS.This transformation converts BNNS from a wide bandgap semiconductor to a visible-light-responsive catalyst.This work not only provides a novel approach for the application of BNNS in visible-light photocatalysis,but also demonstrates the unique role of radiation technology in quantitatively regulating defects and improving catalytic activity.
基金supported by the National Natural Science Foundation of China (30970681)Basic Research and Operating Expenses of Jilin University (200903116)
文摘Objective To investigate whether apoptosis induced by low-dose radiation (LDR) is regulated by mitochondrial pathways in testicular cells. Methods Male mice were exposed to whole-body LDR, and changes in mitochondrial function and in expression of apoptotic factors were analyzed in the testicular cells as follows. Total nitric-oxide synthase (T-NOS) and Na+/K+ ATPase activities were biochemically assayed. Reactive oxygen species (ROS) and mitochondrial membrane potential (Adjm) were determined by flow cytometry using fluorescent probes. Levels of mRNAs encoding cytochrome c (Cyt c) and apoptosis-inducing factor (AIF) were quantified by real-time reverse-transcription PCR (RT-PCR). Expression of Cyt c, AIF, caspase-9, and caspase-3 at the protein level was assessed by western blotting and immunohistochemistry. Results LDR induced an increase in T-NOS activity and ROS levels, and a decrease in Na+/K~ ATPase activity and mitochondrial A^m, in the testicular cells. The intensity of these effects increased with time after irradiation and with dose. The cells showed remarkable swelling and vacuolization of mitochondria, and displayed a time- and dose-dependent increase in the expression of Cyt c, AIF, procaspase-9, and procaspase-3. Activation of the two procaspases was confirmed by detection of the cleaved caspases. The changes in expression of the four apoptotic factors were mostly limited to spermatogonia and spermatocytes. Conclusion LDR can induce testicular cell apoptosis through mitochondrial signaling pathways
基金Project supported by the National Natural Science Foundation of China(No.30570323)Foundation of State Developing and Reforming Committee(No.IFZ20051210)
文摘The hydroponic culture experiments of soybean bean seedlings were conducted to investigate the effect of lanthanum (La) on nitrogen metabolism under two different levels of elevated UV-B radiation (UV-B, 280-320 nm). The whole process of nitrogen metabolism involves uptake and transport of nitrate, nitrate assimilation, ammonium assimilation, amino acid biosynthesis, and protein synthesis. Compared with the control, UV-B radiation with the intensity of low level 0.15 W/m^2 and high level 0.45 W/m^2 significantly affected the whole nitrogen metabolism in soybean seedlings (p 〈 0.05). It restricted uptake and transport of NO3^-, inhibited activity of some key nitrogen-metabolism-related enzymes, such as: nitrate reductase (NR) to the nitrate reduction, glutamine systhetase (GS) and glutamine synthase (GOGAT) to the ammonia assimilation, while it increased the content of free amino acids and decreased that of soluble protein as well. The damage effect of high level of UV-B radiation on nitrogen metabolism was greater than that of low level. And UV-B radiation promoted the activity of the anti-adversity enzyme glutamate dehydrogenase (GDH), which reduced the toxicity of excess ammonia in plant. After pretreatment with the optimum concentration of La (20 mg/L), La could increase the activity of NR, GS, GOGAT, and GDH, and ammonia assimilation, but decrease nitrate and ammonia accumulation. In conclusion, La could relieve the damage effect of UV-B radiation on plant by regulating nitrogen metabolism process, and its alleviating effect under low level was better than that under the high one.
基金supported by the grants from the National Natural Science Foundation of China(No.30970681)Basic Research and Operating Expenses of Jilin University(No.200903116)
文摘Summary: The study examined the role of endoplasmic reticulum stress (ERS) and signaling pathways of inositol-requiring enzyme-1 (IRE1), RNA-activated protein kinase-like ER kinase (PERK) and activating transcription factor-6 (ATF6) in apoptosis of mouse testicular cells treated with low-dose radiation (LDR). In the dose-dependent experiment, the mice were treated with whole-body X-ray irradiation at different doses (25, 50, 75, 100 or 200 mGy) and sacrificed 12 h later. In the time-dependent experiment, the mice were exposed to 75 mGy X-ray irradiation and killed at different time points (3, 6, 12, 18 or 24 h). Testicular cells were harvested for experiments. H202 and NO concentrations, and Ca2+-ATPase activity were detected by biochemical assays, the calcium ion concentration ([Ca2+]i) by flow cytometry using fluo-3 probe, and GRP78 mRNA and protein expressions by quantitative real-time RT-PCR (qRT-PCR) and Western blotting, respectively. The mRNA expressions of S-XBP1, JNK, caspase-12 and CHOP were measured by qRT-PCR, and the protein expressions of IREla, S-XBP1, p-PERK, p-elF2a, ATF6 p50, p-JNK, pro-caspase-12, cleaved caspase-12 and CHOP by Western blot- ting. The results showed that the concentrations of H202 and NO, the mR_NA expressions of GRP78, S-XBP1, JNK, caspase-12 and CHOP, and the protein expressions of GRP78, S-XBP1, IREla, p-PERK, p-elF2a, ATF6 p50, p-JNK, pro-caspase-12, cleaved caspase-12 and CHOP were significantly increased in a time- and dose-dependent manner after LDR. But the [Ca2]i and Ca2-ATPase activities were sig nificantly decreased in a time and dose-dependent manner. It was concluded that the ERS, regulated by IRE 1, PERK and ATF6 pathways, is involved in the apoptosis of testicular cells in LDR mice, which is associated with ERS-apoptotic signaling molecules of JNK, caspase-12 and CHOP.
文摘The terahertz(THz) band lies between microwave and infrared rays in wavelength and consists of non-ionizing radiation. Both domestic and foreign research institutions, including the army, have attached considerable importance to the research and development of THz technology because this radiation exhibits both photon-like and electron-like properties, which grant it considerable application value and potential. With the rapid development of THz technology and related applications, studies of the biological effects of THz radiation have become a major focus in the field of life sciences. Research in this field has only just begun, both at home and abroad. In this paper, research progress with respect to THz radiation, including its biological effects, mechanisms and methods of protection, will be reviewed.
文摘With the increasing knowledge of shortwave radiation,it is widely used in wireless communications,radar observations,industrial manufacturing,and medical treatments.Despite of the benefits from shortwave,these wide applications expose humans to the risk of shortwave electromagnetic radiation,which is alleged to cause potential damage to biological systems.This review focused on the exposure to shortwave electromagnetic radiation,considering in vitro,in vivo and epidemiological results that have provided insight into the biological effects and mechanisms of shortwave.Additionally,some protective measures and suggestions are discussed here in the hope of obtaining more benefits from shortwave with fewer health risks.
基金supported by the National Natural Science Foundation of China[No.31570847]
文摘With the ever increasing application of electronic technology, our exposure to artificial electromagnetic energy is also rapidly increasing. Electromagnetic radiation (EMR) is the fourth largest source of pollution, after air, water, and noise.
文摘Polytetrafluoroethylene (Teflon), a widely used spacecraft material, isstudied to investigate the vacuum ultraviolet (VUV) effects and its synergistic effects with atomicoxygen (AO) in a ground-based simulation facility. The samples before and after the experiments arecompared in appearance, mass, optical properties and surface composition. The reactioncharacteristics of Teflon are summarized and the reaction mechanisms are analyzed. The followingconclusion can be drawn: at the action of VUV the Teflon sample surface is darkened for theaccumulation of carbon; and when the sample is exposed to AO, the carbon is oxidized and thedarkening surface is bleached; the synergistic effects of VUV and AO may cause the erosion of Teflonmore severe.
文摘Objective: Study blood vessel injury and gene expression indicating vascular endothelial cell apoptosis induced by mannitol with and without administration of anti-oxidative vitamins. Methods: Healthy rabbits were randomly divided into four groups. Mannitol was injected into the vein of the rabbit ear in each animal. Pre-treatment prior to mannitol injection was per- formed with normal saline (group B), vitamin C (group C) and vitamin E (group D). Blood vessel injury was assessed under electron and light microscopy. In a second experiment, cell culture specimen of human umbilical vein endothelial cells were treated with mannitol. Pre-treatment was done with normal saline (sample B), vitamin C (sample C) and vitamin E (sample D). Total RNA was extracted with the original single step procedure, followed by hybridisation and analysis of gene expression. Results: In the animal experiment, serious blood vessel injury was seen in group A and group B. Group D showed light injury only, and normal tissue without pathological changes was seen in group C. Of all 330 apoptosis-related genes analysed in human cell culture specimen, no significant difference was seen after pre-treatment with normal saline, compared with the gene chip without pre-treatment. On the gene chip pre-treated with vitamin C, 45 apoptosis genes were down-regulated and 34 anti-apoptosis genes were up-regulated. Pre-treatment with vitamin E resulted in the down-regulation of 3 apoptosis genes. Conclusion: Vitamin C can protect vascular endothelial cells from mannitol-induced injury.
文摘To improve the total-dose radiation hardness,silicon-on-insulator (SOI) wafers fabricated by the separation-by-implanted-oxygen (SIMOX) method are modified by Si ion implantation into the buried oxide with a post anneal. The ID- VG characteristics can be tested with the pseudo-MOSFET method before and after radiation. The results show that a proper Si-ion-implantation method can enhance the total-dose radiation tolerance of the materials.
基金this work was supported by the grants from The Natural Science Program Foundation of Gaungdong Province(No.021195) and The Guangzhou City Key Foundation of Science and Technology Program (No.2001-Z- 037-01).
文摘Objective: To investigate whether the Bc1-2 antisense oligonucleotide(ASODN) may enhance radiation-induced apoptosis in Raji cell line. Methods: Cell surviving fraction was determined using the trypan blue dye exclusion assay. The expression level of bc1-2 protein was assayed by immunofluorescence using fluoresce isothiocyanate label. Apoptosis was detected by Giemsa staining and flow cytomertric cell cycle analysis. Results: It was found that Bc1-2 ASODN combined with radiation had significantly reduced the number of viable cells (P<0.05). There was no difference on cell survival between mismatch Bc1-2 oligodeoxynucleotide/radiation combination and radiation-treated cells alone. Bc1-2 ASODN combined with radiation could significantly inhibit expression of Bc1-2 protein in Raji cells (P<0.05). Cells treated with Bc1-2 ASODN combined with radiation at 72 h displayed classic apoptotic changes. Apoptosis rates of Raji cells treated with Bc1-2 oligodeoxynucleotide/radiation combination and radiation-treated cells alone, respectively. Conclusion: Bc1-2 antisense oligonucleotide can enhance radiation-induced apoptosis in Raji cell line.
基金Project supported by the National Natural Science Foundation of China(Grant No.61675151)
文摘Alkaline phosphatase(ALP) plays an integral role in the metabolism of liver and development of the skeleton in humans. To date, the interactions between different-duration terahertz(THz) radiation and ALP activities, as well as the influence mechanism are still unclear. In this study, using the para-nitro-phenyl-phosphate(p NPP) method, we detect changes in ALP activities during 40-minute THz radiation(0.1 THz, 13 m W/cm^2). It is found that the activity of ALP decreases in the first 25 min, and subsequently increases in the later 15 min. Compared with the activity of ALP being heated, the results suggest that short-term terahertz radiation induces a decrease in enzyme activity through the non-thermal mechanism. In order to explore the non-thermal effects of THz radiation on ALP, we focus on the impacts of 0.1 THz radiation for 20 min on the activity of ALP in different concentrations. The results reveal that the activity of ALP decreases significantly after exposure to THz radiation. In addition, it could be deduced from fluorescence, ultraviolet-visible(UV-vis), and THz spectra results that THz radiation has induced changes in ALP structures. Our study unlocks non-thermal interactions between THz radiation and ALP, as well as suggests that THz spectroscopy is a promising technique to distinguish ALP structures.
基金supported by the National Natural Science Foundation of China(61801506)。
文摘Microwave radiation has been widely used in various fields,such as communication,industry,medical treatment,and military applications.Microwave radiation may cause injuries to both the structures and functions of various organs,such as the brain,heart,reproductive organs,and endocrine organs,which endanger human health.Therefore,it is both theoretically and clinically important to conduct studies on the biological effects induced by microwave radiation.The successful establishment of injury models is of great importance to the reliability and reproducibility of these studies.In this article,we review the microwave exposure conditions,subjects used to establish injury models,the methods used for the assessment of the injuries,and the indicators implemented to evaluate the success of injury model establishment in studies on biological effects induced by microwave radiation.
基金Project supported by the National Natural Science Foundation of China (Grant No 6037202/F010204).
文摘This paper studies the total ionizing dose radiation effects on MOS (metal-oxide-semiconductor) transistors with normal and enclosed gate layout in a standard commercial CMOS (compensate MOS) bulk process. The leakage current, threshold voltage shift, and transconductance of the devices were monitored before and after γ-ray irradiation. The parameters of the devices with different layout under different bias condition during irradiation at different total dose are investigated. The results show that the enclosed layout not only effectively eliminates the leakage but also improves the performance of threshold voltage and transconductance for NMOS (n-type channel MOS) transistors. The experimental results also indicate that analogue bias during irradiation is the worst case for enclosed gate NMOS. There is no evident different behaviour observed between normal PMOS (p-type channel MOS) transistors and enclosed gate PMOS transistors.